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Abstract: As a core content of forest management, the height to crown base (HCB) model can provide
a theoretical basis for the study of forest growth and yield. In this study, 8364 trees of Larix olgensis
within 118 sample plots from 11 sites were measured to establish a two-level nonlinear mixed
effect (NLME) HCB model. All predictors were derived from an unmanned aerial vehicle light
detection and ranging (UAV-LiDAR) laser scanning system, which is reliable for extensive forest
measurement. The effects of the different individual trees, stand factors, and their combinations
on the HCB were analyzed, and the leave-one-site-out cross-validation was utilized for model
validation. The results showed that the NLME model significantly improved the prediction accuracy
compared to the base model, with a mean absolute error and relative mean absolute error of 0.89%
and 9.71%, respectively. In addition, both site-level and plot-level sampling strategies were simulated
for NLME model calibration. According to different prediction scale and accuracy requirements,
selecting 15 trees randomly per site or selecting the three largest trees and three medium-size trees
per plot was considered the most favorable option, especially when both investigations cost and
the model’s accuracy are primarily considered. The newly established HCB model will provide
valuable tools to effectively utilize the UAV-LiDAR data for facilitating decision making in larch
plantations management.

Keywords: unmanned aerial vehicle LiDAR (UAV-LiDAR); height to crown base (HCB); two-level
mixed-effects model; calibration

1. Introduction

The forest biome is valuable for providing abundant wood resources, protecting
wildlife habitats, storing a high amount of carbon, regulating micro- and macro-climates,
and possessing other numerous ecological functions. It also plays a vital role in the ter-
restrial ecosystem, in which its fluctuation highly affects the terrestrial biosphere and
other surface processes [1,2]. Traditionally, forest resource inventory relies on field sample
measurements by collecting and summarizing the tree-level attributes within a designated
sampling area through tree-by-tree measurements. Ground-based forest inventory has
a high value of precision, consequently needing an immense amount of manpower, ma-
terial resources, and time [3]. Hence, delivering a prompt forest inventory becomes a
problematical obstacle, specifically for the inventory of an extensive forest area [4].

The continuous development of remote sensing technology has brought a promis-
ing solution to punctuality and the high-spatial limitation, providing a breakthrough for
highly efficient forest inventory [5,6]. Optical remote sensing data has achieved effective
results in large spatial extents for stand age identification, volume estimation, and biomass
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mapping [7,8]. Nevertheless, the optical sensors carried by this passive remote sensing
platform may have serious signal saturation dilemmas, leading to the deviation of some
forestry parameter extraction results [9]. As a burgeoning active remote sensing tech-
nology, airborne light detection and ranging (LiDAR) can provide precise measurements
of vertical forest structure. Combined with the ground-based sample data, LiDAR data
can obtain more accurate distribution characteristics of forest types and a wider range of
three-dimensional spatial structures. There is great potential in estimating forest inventory
parameters by analyzing the forest structure dynamics through multi-temporal remote
sensing data series [10,11]. Various studies have demonstrated that airborne LiDAR has a
special benefit in forest fire behavior prediction, canopy structure extraction, volume and
biomass estimation, and other forest attributes and ecosystem structure measurement, in
which the accuracy is beyond the reach of its traditional counterparts [12–15].

For the past few years, with the rapid development of unmanned aerial vehicle light
detection and ranging (UAV-LiDAR) remote sensing technology, the research on estimating
stand structure parameters by UAV-LiDAR is increasing gradually [16,17]. Compared to the
conventional airborne data, the UAV-LiDAR has quite a few advantages, such as lower data
acquisition cost, higher pulse sampling density, simpler operational procedure, and higher
flight route flexibility [18,19]. Hence, it is gradually becoming a powerful tool for 3D forest
mapping and convincingly appears as a low-cost remote sensing alternative to airborne
and satellite platforms [20,21]. The high-density point clouds UAV-LiDAR system can
obtain relatively high precision for tree height and crown structure measurement [22]. The
high spatial resolution of UAV-LiDAR provides high-precision single-tree segmentation
which leads to stronger data availability and a more accurate algorithm [23,24]. At present,
the extraction of tree height and crown information is crucial for the single-tree-based
forest inventory [25,26].

Crown is a crucial component of an individual tree that facilitates a material exchange
and energy transformation between the forest and environment, greatly determining trees’
vegetative space, such as sunlight, photosynthesis, and water utilization [27]. The height to
crown base (HCB) of a standing tree is defined as the distance from the first living branch at
the crown’s base to the ground position [28]. HCB reflects the crown’s vertical structure and
is closely related to the number of foliage [29]. As an essential indicator of an individual
tree’s crown characteristics, HCB not only determines the yield, productivity, and growth
vigor of an individual tree [30] but also reflects the competition status of a tree within the
stand along with other non-natural factors [31–33]. HCB is also a decisive variable in the
stand growth and yield model and plays a pivotal role in the crown width model [34,35],
crown shape model [36], biomass model [37], and fire behavior model [38]. However, in the
actual measurement of HCB, especially in stands with large canopy density and complex
forest conditions, the measurement accuracy is poor, and thus the efficiency is low [39,40].
Therefore, using LiDAR data to accurately and efficiently predict HCB in a large-scale
inventory project is particularly momentous for effective forest management.

In recent years, many studies have used LiDAR point cloud data to predict HCB, in
which the method is mainly divided into direct and indirect methods. The direct method
is to directly derive HCB from LiDAR data using a canopy, canopy approximation, or
percentile ranking based on a polygon or voxel [41–43], and the predicted distribution
of HCB is based on the descriptive statistics of LiDAR data [44]. However, the predic-
tion efficiency largely depends on the penetration of laser sensors and forest conditions;
hence, it is difficult to be transformed for other applications. On the other hand, the indi-
rect method utilizes a model which can predict HCB from other tree and/or stand-level
variables [35,38,45–48]. The model can accurately predict HCB in other forests with similar
species and stand and site conditions.

The majority of the developed HCB models use ordinary least squares (OLS) for
parameter estimation. However, the data used in modeling is often hierarchically structured
(multiple measurements within the same subject, such as plots within sites). Hence, these
measurements will be correlated, yielding a relatively high prediction error in the resulting



Remote Sens. 2021, 13, 1834 3 of 21

model’s deviation. The mixed-effect modeling method can effectively solve this problem
and greatly improve the prediction accuracy of the model. A mixed-effect model requires
both fixed and random parameters to be simultaneously estimated, allowing variation
from each level to be modeled [49]. The fixed parameters describe the variation between
covariates and experimental treatment, while the random components describe the data’s
correlation and heterogeneity [50,51]. Maltamo et al. (2018) utilized the linear mixed
effect (LME) approach to develop an HCB model using several predictors, such as the
LiDAR-derived diameter at breast height (DBH) and tree height percentile data, along with
the field-measured total tree height data [52]. Yang et al. (2020) considered the potential
linear and nonlinear relationship between HCB and other specific predictors to establish
and compare the applicability of the LME and nonlinear mixed effect model (NLME) using
the LiDAR-derived tree height and crown width along with the field-measured DBH as
predictors [46]. Nevertheless, few studies considered the nested data structures when
UAV-LiDAR is applied for data extraction. Furthermore, the field-measured data is still
necessary for some of the model’s predicted variables.

Korean larch (Larix olgensis) has high economic and ecological value, such as fast
growth, excellent wood properties, and strong resistance to insects and diseases, which are
widely distributed in Northern China, North Korea, Japan, and Russia [53,54]. As one of
the main afforestation and reforestation tree species, the Korean larch plantation covers an
area of 3.16 million hectares (accounting for 5.54% of the total plantation area in China),
and its volume reaches 23,700 m3 (accounting for 7.01% of the total plantation volume in
China) [55,56]. Timely and effective data acquisition of a series of a tree or stand attributes
is crucial to the rational management of larch forests.

Therefore, this study aims to develop a two-level nonlinear mixed effect model for
Larix olgensis to explain the difference in each variable’s influence on the HCB at both
site and plot level, in which all predictors were extracted from LiDAR data. The specific
objectives of this study are to (1) extract tree- and stand-level attributes from UAV-LiDAR
point cloud data; (2) propose a two-level nonlinear mixed effect model (NLME) framework
based on UAV-LiDAR-derived metrics; (3) calibrate the established NLME model using the
field-measured data within diverse test areas; and (4) assess the models’ predictability using
the site-level leave-one-out cross-validation method. This study is expected to improve
forestry investigation efficiency, economize survey cost, and provide guidance for future
research and forest management decision-making.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Mengjiagang Forest Farm (130◦32′42′′−130◦52′36′′ E,
46◦20′16′′−45◦30′50′′ N), located in the northeastern area of the Huanan County, Hei-
longjiang province, China. The forest farm is specifically situated in the western foothills of
Wanda mountain. The slope is relatively gentle, most of which is between 10◦ and 20◦. The
terrain is higher in the northeast and lower in the southwest, with a maximum, minimum,
and average altitude of 575 m, 170 m, and 250 m above sea level, respectively [57]. This
area pertains to a temperate continental monsoon climate, and the soil type is mostly dark
brown forest soil. The forests are primarily dominated by artificially grown coniferous
trees, including Larix olgensis, Pinus sylvestris var. mongolica, and Pinus koraiensis.

2.2. Field Measurement Data

The field survey was carried out in July 2019; a total of 118 square sample plots
(30 m × 30 m) with normal growth were established in 11 sites (Figure 1) for long-term
growth monitoring (the descriptive statistics of field-measured data are shown in Table 1).
The initial planting density of all sites was 3300 stems/ha (spacing 2 m × 1.5 m). The
young forest was treated with crown thinning (interval 3−5 years) to adjust the stand’s
composition and density. The middle-aged forest and near-mature forest were treated
with growth tending (interval 6−10 years) to promote the growth of trees. The intensity of
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crown thinning is 25−45%, or the accumulation intensity is 15−30%; the intensity of growth
tending is 15−30%, or the accumulation intensity is 10−20% [58]. All trees in sample plots
with DBH greater than 5 cm were measured by diameter tape. The four-directional canopy
width was measured by steel tape, and the values were averaged to obtain the crown
width. The total tree height and HCB were measured by Vertex IV Ultrasonic Hypsometer
made by Haglöf Sweden. The relative coordinates of the sampled trees were measured
according to their relative position to the corner of the plots. In addition, the geographic
coordinates of the individual trees and four corners of each plot were thoroughly measured
with a real-time kinetic (RTK) global navigation satellite system (GNSS) (UniStrong G10A,
China), except for trees having poor GNSS signals which were georeferenced by their
relative coordinates.
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Table 1. Descriptive statistics of the field-measured data.

Variable Mean Sd. Range

HCB (m) 9.1 4.7 0.5−22.8
DBH (cm) 14.9 6.1 5.0−39.4

Tree height (m) 14.7 5.7 5.0−33.3
Crown width (m) 2.7 0.4 0.6−8.7

Stand density (trees ha-1) 1386 832 267−3544
Stand age (a) 36.1 13.8 14–62

Stand area (ha) 11.3 4.4 6.4−22.4
Note: Sd. is standard deviation.

2.3. Unmanned Aerial Vehicle Laser Scanning Data Acquisition

The RIEGL mini VUX-1UAV LiDAR scanner mounted on the Feima D200 UAV plat-
form was used to obtain UAV-LiDAR data from the 11 sites (from 10–12 July 2019). The
working pulse repetition frequency, maximum measuring range, and maximum scanning
speed of the scanner were 100 kHz, 250 m, and 100 scans per second, respectively. The
scanning angle was controlled within ±60◦ to reduce the measurement error caused by an
immense angle. The flight speed was 5.0 m/s, maneuvering around 80 m of above-ground
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altitude, and the air route was a cross-transect with overlapping strips of 80 m. The average
point cloud density results for each site were between 150 and 270 pt./m2.

2.4. UAV-LiDAR Metrics Extraction

The UAV-LiDAR data processing and metrics extraction can be found in Figure 2.
The noise points were masked off manually from the raw LiDAR data, and the remaining
points were divided into ground points and non-ground points by using cloth-simulated
filtering [59]. To generate digital terrain models (DTMs), the ground points were inter-
polated by a Kriging spatial interposition method with a 0.5 m pixel size [60]. Then, the
normalized height of each point was obtained by subtracting the DTM value from the
elevation of all points [61]. We applied a canopy filtering method called graph-based
progressive morphological filtering (GPMF), which was used to obtain the canopy height
model (CHM) from LiDAR data. GPMF might prevent data pits obtained by traditional
methods from damaging the integrity and smoothness of the tree canopy, leading to a
large error in the extraction of tree parameters [62]. The resolution of CHM was set to
0.1 m. The individual tree canopies were detected automatically from the CHM using the
region-based hierarchical cross-section analysis (RHCSA) algorithm [63]. This algorithm
treats CHM as a mountain terrain and uses the crown’s horizontal relation in the vertical
direction to detect a single tree.
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Tree-to-tree matching generation was performed between field measurements and
segmented trees according to spatial position and height difference [2]. If the segmented
tree was located within a circular buffer (the corresponding crown radius) around the
reference point and the height difference was less than 20% of the plot’s highest height,
the segmented tree was designated as the reference tree candidate [64]; then, a unique
candidate or nearest individual in multiple candidates was selected as a different candidate
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to match the reference tree. Eight thousand seven hundred eighty-five (8785) trees in
118 plots were matched correctly with the field data, and the detection rate was 56–100%
(mean 76%). After the automatic matching generation, the dead trees and other irrelevant
data were removed from the dataset. Finally, the remaining 8364 trees were correctly
matched with the field-measured data and utilized for subsequent modeling.

Previous studies have shown that HCB is significantly affected by tree size, competi-
tion, and stand characteristics [31,65,66]. In this study, those three categories of predictors
were generated from UAV-LiDAR data (Table 2) and used to develop a generalized HCB
estimation model (Section 2.5). The indicators of tree size—including LiDAR-derived
tree height and crown width—were defined as the maximum height of all LiDAR pulses
and calculated by 2×

√
crownarea/π, where crownarea was the area of the convex hulls

of delineated crowns [15]. Furthermore, distance-independent competition indices were
calculated from LiDAR data [67]. The LiDAR-derived relative dimensions of tree height
and crown projection area were firstly introduced, including the ratios of a target tree’s
height to the maximum and mean tree height (RHmax and RHmean) and the ratios of a
target tree’s crown area to the maximum, mean, and total crown area (RCAmax, RCAmean
and RCAtotal), respectively. Secondly, a measure of competition based on crown areas
evaluated at a certain percentage of crown length was expanded and calculated using
LiDAR data [68]. The ratio between the subjected and the total crown areas computed
at a reference height equal to p% of the height of the subject tree (hp) was calculated as a
competition index. Finally, the plot-level metrics were generated to characterize the stand
conditions, including height percentiles (HP

5 , HP
10, . . . , HP

99), variance, standard deviation
and coefficient of variation of height (HP

var, HP
std, HP

cv), skewness and kurtosis of height
(HP

skw, HP
kur), and the proportion of points above the corresponding percentiles (HP

5 , HP
10,

. . . , HP
99) to the total number of points within a plot (DP

5 , DP
10, . . . , DP

99). The candidate
variables of this study are given in Table 2.

Table 2. Candidate trees and stand variables extracted by LiDAR.

Category Variable Description

Tree size metrics
H LiDAR-derived total tree height

CW LiDAR-derived crown width

Competition metrics

CCp25, CCp50,
CCp75, CCp100

the ratio of the crown area above p% relative height of the target tree to the
sum of all crown areas above this height in the sample-plot

RHmean
the ratio of the total height of the target tree to the mean total height in the

sample-plot

RHmax
the ratio of the total height of the target tree to the maximum total height in

the sample-plot

RCAmean
the ratio of the crown width of the target tree to the mean crown width in

the sample-plot

RCAmax
the ratio of the crown width of the target tree to the maximum crown

width in the sample-plot

RCAtotal
the ratio of the crown width of the target tree to the total crown width in

the sample-plot

Stand metrics

HP
5 , HP

10, . . . , HP
99 the height percentiles of the point cloud in the sample-plot

HP
var, HP

std, HP
cv

variance, standard deviation and coefficient of variation of height in the
sample-plot

HP
skw, HP

kur Skewness and kurtosis of height in the sample-plot

DP
5 , DP

10, . . . , DP
99 densities corresponding to the height percentiles
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2.5. Two-Level NLME HCB Model
2.5.1. Base HCB Development

Following previous field-based HCB modeling studies [45], we tested three candidates
of HCB models [65,69] for model development (logistic and exponential form). Instead
of DBH, we applied CW as the primary predictor (X = CW) since DBH mostly cannot be
directly extracted from aerial point cloud data due to the canopy obstruction. The following
exponential model was originally formulated by Wykoff, et al. (1982) [65] and was found
to be the most suitable for our dataset:

HCB = H[1− exp(βX)] (1)

where HCB and H is height to crown base and total tree height, respectively; X is vectors
of stand or tree variables; and β is the estimated parameter vector.

H and CW are closely related to HCB, affecting photosynthesis and interspecific
competition of trees, and both can be directly extracted from LiDAR data; hence, they are
often used as a predictive variable for the HCB model [4]. As an effort to improve the fitting
effect and prediction accuracy of the model, we introduced covariates to reflect the stand
quality and competition factors in constructing the based model (Table 2), the predictors
could be extended as:

X = f (CW, Stand., Comp.) (2)

where CW, Stand., and Comp. is the crown width, stand quality factors, and competition
factors, respectively.

All covariates were significant and had consistent correlation, which were selected
using optimal subset regression. To ensure the simplicity of the model and prevent ex-
cessive parameterization and collinearity, one covariate within each variable group was
introduced into the model.

The models were fitted to the whole data using nonlinear least-squares regression in
R4.0.3 software. Several statistical criteria were used to select the best fitting performance
model, including the coefficient of determination (R2), the mean difference (Bias), root mean
square error (RMSE), and Akaike information criterion (AIC) as in Dong, et al. (2014) [70].

2.5.2. Two-Level NLME HCB Model

A two-level NLME HCB model was further introduced to consider the random
interference of both site- and plot-level variation. The model expression is given below [71]:

HCBjik = f
(

ϕijk, xijk

)
+ εijk, i = 1, . . . , M, j = 1, . . . , Mi, k = 1, . . . , nij (3)

where the indices i, j, k are the site-level, the plot-level within the site-level, and the
observation of an individual tree, respectively; HCBjik is the height to the crown base of
the kth tree on the jth plot within the ith site; M is the number of site; Mi is the number of
the sample plots within the ith site; nij is the number of trees on the jth plot in the ith site;
f (.) is a real-valued and differentiable function of a plot-specific parameter vector ϕijk and
a covariate vector xijk; and εijk represents the within-group error with zero expected value
and follows a normal distribution, and has Rij as the positive-definite variance-covariance
structure. Furthermore, ϕijk can be expressed as:

ϕijk = Aijkβ + Bi,jkui + Bijkuij, ui ∼ N(0, ψ1), uij ∼ N(0, ψ2) (4)

where β is the p-dimensional fixed-effect parameter vector; ui and uij are the site- and
plot-level random-effects parameter, which assumed to obey the normal distribution with
the expectation of zero value and the variance-covariance of ψ1 and ψ2, respectively; and
Aijk, Bi,jk, and Bijk are respectively the design matrices corresponding to β, ui, and uij. εijk,
ui, and uij are mutually independent.
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The most important step for applying a mixed-effects model is to determine which
parameters are categorized as fixed effects and random-effects parameters. In this study, all
parameter combinations were simulated as mixed parameters with Akaike’s information
(AIC), Schawarz’s Bayesian information criterion (BIC), and likelihood (LL) as the main
criteria to evaluate the fitting performance.

Further analysis was carried out by selecting a mixed-effect parameter combination
having the smallest AIC, BIC, and LL. We performed a likelihood-ratio test (LRT) to avoid
overparameterization [72].

The predictions residuals of the NLME HCB model with both site- and plot-level
random effects were analyzed for potential spatial autocorrelation and heteroscedasticity.
The preliminary analysis showed that heteroscedasticity was detected, but there was no
spatial autocorrelation between the observed values. To solve this problem, the following
error term variance-covariance matrix structure was analyzed and applied:

Rij = σ2G0.5
ij ΓijG0.5

ij (5)

where Rij is the variance-covariance matrix of the error term εij in the jth plot within
the ith site (i = 1, . . ., M, j = 1, . . . , Mi); σ2 represents the scaling factor of the sample
plot error dispersion; G0.5

ij is a nij × nij dimensional diagonal matrix which accounts for
the heteroscedasticity of data in the sample plot; Γij is a nij × nij dimensional matrix
explaining within plot autocorrelation structure of errors. The Γij was supposed as an
identity matrix since there was not any spatial autocorrelation detected. Therefore, only the
effect of heteroscedasticity needed to be considered on the model. Three commonly used
variance stability functions were evaluated and compared, including exponential function,
power function, and constant plus power function. The results showed that the power
variance function with H as the independent variable (Equation (6)) effectively explained
the heteroscedasticity in our data.

var
(

εijk

)
= σ2H2γ

ijk (6)

where Hijk is the tree height derived from LiDAR data of the kth tree within the jth plot and
the ith site; and γ is the estimated parameter.

2.5.3. Prediction and Calibration

Two situations—using fixed-effects only and a mixture of fixed- and random-effects—
can be considered when using a two-level NLME model to predict HCB. The fixed-effect
only model can also be called a population average or uncalibrated response model. In
contrast, the model that contains random effects is typically called a localized or subject-
specific model, in which the localizing process is mostly known as model calibration [73].
The uncalibrated model nullifies the random effect parameter and does not need any prior
information. The subject-specific models were calibrated by predicting the specific plot and
site effects using several sampled trees’ measured attributes from the validation site. The
values of random effect parameters were determined by the best linear unbiased prediction
(BLUPs) [74]. The expression is as follows:

ûi = ψ̂ZT
i

(
R̂i + Ziψ̂ZT

i

)−1
ei = ψ̂ZT

i

(
R̂i + Ziψ̂ZT

i

)−1(
yi − ŷi f ixed

)
(7)

where ûi =
(
ûi, ûi1, ûi2, . . . , ûiMi

)T is a q1 + Mq2-dimensional vector of the estimated
random-effects parameters for the ith site; ûi is the q1-dimensional vector of the estimated
value at site level; ûi1 to ûiMi are the estimated q2-dimensional vectors of the random-
effects parameters at the sample plot level; R̂i is the variance-covariance matrix of within-
group errors; Zi is the design matrix of the partial derivatives of the nonlinear function
corresponding to the random parameters; and ψ̂ is an (q1 + Mq2) × (q1 + Mq2) block
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diagonal matrix consisting of ψ̂1 and ψ̂2, the two estimated variance-covariance matrices
for the random effects parameters ui and uij; and ei is the error terms of the predicted by
the fixed effects parameters of the mixed-effects models. The maximum likelihood method
of NLME function in NLME package [75] in the software R4.0.3 was employed to estimate
the model parameters.

2.6. Model Assessment

The prediction applicability of the HCB models including the base model, uncalibrated
model, and calibrated NLME model were evaluated by using independent observation
data. In this study, all data was utilized for model development, and the leave-one-site-
out cross-validation (LOOCV) was used to test the independence and adaptability of the
model. Base model, uncalibrated model, and calibrated NLME model were compared
using the average statistics of cross-validation within a sample plot. The performance of
the model was evaluated by calculating four model validation statistics (Bias, Bias%, MAE,
and MAE%) as follows:

Bias =
∑

(
HCBt − ĤCBt

)
n

(8)

Bias% =
Bias

mean(HCB)
× 100 (9)

MAE =
∑

∣∣∣HCBt − ĤCBt

∣∣∣
n

(10)

MAE% =
MAE

mean(HCB)
× 100 (11)

where HCBt and ˆHCBt is the tth observed and predicted height to crown base (t = 1, . . . , N);
N is number of the observations; and mean(HCB) is the mean value of HCB observations.

2.7. Comparison of Different Sampling Strategies

The mixed-effect model’s calibration was calculated using the field-measured HCB of
some multiple sample trees as the prior information to predict the specific random-effects
parameters. Therefore, we proposed multilevel prediction (both site- and plot-level), which
is convenient for application across different scales yet still provides a high accuracy [76].

2.7.1. Site-Level Calibration

The site-level calibration was achieved by setting the plot-level random parameter
to zero, which can be completed without utilizing sample plots. Hence it is more suitable
for large-scale and efficient prediction. Generally, the larger the calibration sample size,
the more accurate the calibration result. However, sampling a large number of sample
trees only to calculate the random-effect parameters is impractical. Hence, we proposed a
simpler sampling strategy:

Selecting 1−50 trees randomly per site.
The simulation was repeated 1000 times to calculate the average results, preventing

the prediction from being biased.

2.7.2. Plot-Level Calibration

Compared with the site-level calibration, plot-level calibration has higher prediction
accuracy since it considers the random effects of both site-level and plot-level nested
within the site. Hence, it is more suitable for small-scale and high-precision prediction.
Considering the measurement cost and potential error of UAV-LiDAR in extracting forest
structure parameters, eight sampling strategies with different subsampling schemes were
proposed as follows:

Type I: Selecting l trees randomly per plot (l: 2, 3, . . . , 18).
Type II: Selecting l largest trees per plot (l: 2, 3, . . . , 18).
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Type III: Selecting l smallest trees per plot (l: 2, 3, . . . , 18).
Type IV: Selecting l medium-size trees (defined as the sample tree whose DBH is

closest to the quadratic mean diameter of stand) per plot (l: 2, 3, . . . , 18).
Type V: Selecting l

2 largest trees and l
2 smallest trees per plot (l: 2, 4, . . . , 18).

Type VI: Selecting l
2 largest trees and l

2 medium-size trees per plot (l: 2, 4, . . . , 18).
Type VII: Selecting l

2 smallest trees and l
2 medium-size trees per plot (l: 2, 4, . . . , 18).

Type VIII: Selecting l
3 largest trees, l

3 smallest trees and l
3 medium-size trees per plot

(l: 3, 6, . . . , 18).
Bias% and MAE% were used to assess the prediction accuracy under different sam-

pling strategies and sizes. The source code for assessment and an example for plot-level
sampling in R 4.0.3 are shown in Supplementary.

3. Results
3.1. Base Model Development

The optimal subset method was utilized to select covariates and H, CW, CCp75, and
HP

99 were used as predictive variables to expand the basic model since they have the largest
value of R2 and the smallest value of RMSE, Bias, and AIC. The CCp75—the ratio of the
target tree’s crown area to the sum of all crown areas above their 75% relative tree’s total
height within the sample plot—can commendably reflect the competitive situation [77].
Meanwhile, the elevation of the 99%-point cloud of the subject plot (HP

99) was used to
describe the stand variation’s effect on HCB. The final multivariate model is as follows:

HCBijk = Hijk ×
(

1− exp
(

β0 + β1 × CWijk + β2 × CCp75 + β3 × HP
99

))
+ εijk (12)

where HCBijk, Hijk, and CWijk are height to crown base, total tree height, and crown width
of the kth tree in the jth plot within the ith site, respectively; β0, β1, β2, and β3 are model
parameters to be determined; and εijk is an error term. The parameter estimates of the base
model were presented in Section 3.3.

All model parameters are significant, and the model fitting has substantially improved
after adding covariates (Table 3). The basic model explained more variations of HCB after
extending the site quality and competition indices, which could be useful for the further
construction of the two-level mixed effect model.

Table 3. Parameter estimates and fitting statistics for the base and NLME model.

Parameters Base NLME

Fixed Parameters

β0 −0.0527 −0.1364
β1 0.0711 0.0682
β2 −0.1739 −0.0276
β3 −0.0464 −0.0459

Variance Parameters

σ2
u0i

0.0072
σ2

u1i
0.0003

σu0i ,u1i −0.0008
σ2

u0ij
0.0176

σ2
u1ij

0.0014
σu0ij ,u1ij −0.0032

Fitting Statistics

σ2 1.8778 1.2728
γ 0.7344 0.6642

R2 0.9151 0.9424
RMSE 1.3703 1.1282
Bias −0.0068 0.0056
AIC 27,947 25,565

Note: σ2
u0i

, σ2
u1i

, σ2
u0ij

, σ2
u1ij

is variance of the random effect parameter u0i , u1i , u0ij, u1ij, respectively; σu0i ,u1i , σu0ij ,u1ij

is covariance of random effect parameter u0i and u1i , u0ij and u1ij, respectively; σ2 is the error variance; and γ is
the parameter of variance-stabilizing function.
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3.2. Two-Level Nonlinear Mixed-Effects HCB Model

The influences of site and plot variation on HCB were considered in model (12). There
were four parameters (β0−β3) considered in the base model, yielding 15 different com-
binations of random-effects parameters. However, only nine combinations of parameter
estimates were successfully converged. The model had the smallest AIC value (25,565) and
the highest fitting accuracy (R2 = 0.9424 and RMSE = 1.1282) when β0 and β1 were included
as the random effect parameters. All parameter estimates can be found in Section 3.3. The
specific form is as follows:

HCBijk = Hijk ×
(

1− exp
(

β0 + u0i + u0ij +
(

β1 + u1i + u1ij
)

×CWijk + β2 × CCp75 + β3 × HP
99

))
+ εijk (13)

where:

ui =

[
u0i
u1i

]
∼ N

{[
0
0

]
, ψ̂1

}

uij =

[
u0ij
u1ij

]
∼ N

{[
0
0

]
, ψ̂2

}
εijk ∼ N

(
0, Rij = G0.5

ij ΓijG0.5
ij

)
Gij = diag

(
σ2H2γ

ij1 , . . . , σ2H2γ
ijk

)
Γij = Iij

where u0i and u1i are the random effects caused by the ith site on β0 and β1, respectively;
u0ij and u1ij are the random effects caused by the jth sample plot nested in the ith site on β0
and β1, respectively; and other symbols have been described in previous sections. Figure 3
shows the standardized residuals distribution of the base model and calibrated NLME
model. The weighted power function significantly stabilized the heteroscedasticity. The
values of the power variance functions are listed in Table 3.
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3.3. Parameter Estimates

All parameters estimated in the NLME HCB model were statistically significant
(p < 0.05). The specific parameter estimation values and fitting statistics of each model are
shown in Table 3. The likelihood ratio test (LRT) of the base nonlinear model (12) and
the NLME model (13) showed that the mixed effect model was statistically significant
(p < 0.0001), indicating that the plot variation had a significant random effect on HCB.
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3.4. Model Assessment

The prediction ability of the base model, NLME model with fixed parameters only
(uncalibrated model), and NLME model with fixed and random parameters (calibrated
model) was assessed by the leave-one-site-out cross-validation method, and the results
were compared and are demonstrated in Table 4. The calibrated NLME model had the
best adaptability and stability performance compared to the two others, with the MAE
and MAE% as low as 0.89% and 9.71%, respectively. The base model’s performance was
worse than the NLME model but slightly better than the uncalibrated model. Figure 4
visualized that the prediction calculated by the calibrated NLME model is more consistent
along the trend line Y = X than the base and uncalibrated model. In addition, the base
and uncalibrated models show an apparent overestimation in predicting the individual
trees with lower HCB, which has been effectively solved by the calibrated NLME model
(Figure 4).

Table 4. Prediction accuracy of HCB with different models.

Model Bias (m) Bias% (%) MAE (m) MAE% (%)

Base 0.0113 0.1235 1.0720 11.7227
Uncalibrated 0.1408 1.5396 1.0968 11.9935

Calibrated 0.0545 0.5958 0.8879 9.7093
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Moreover, the prediction accuracy of the three models was scrutinized across 15 di-
ameter classes (Figure 5). The upper limit exclusion method was used for diameter class
integration with 2 cm equal difference (i.e., [5,7), [7,9), ...). The trees with DBH more than
33 cm are classified into 34 diameter classes. The uncalibrated model shows the worst
accuracy among all methods with the MAE value ranging from 0.69 to 1.88. Meanwhile,
the calibrated NLME model has the highest prediction accuracy with MAE ranging from
0.61 to 1.47, having approximately a 0.09 to 0.51 decrease compared with the uncalibrated
model. The MAE% values were the worst for the low diameter classes and were found to be
decreased with the increasing DBH. The calibrated NLME model presented the best predic-
tion accuracies across different diameter classes. It is worth mentioning that the base model
is generally underestimated in the lower and larger diameter classes but overestimated
in the medium diameter classes (Figure 5). Underestimation and overestimation lead to
the “canceling out” of positive and negative deviation, which also explains why the base
model has a lower bias (Table 4). Figure 5 also shows that the error range and prediction
accuracy of the calibrated NLME model are relatively stable, while the performance of
the uncalibrated model is often worse than that of the base model. The calibrated NLME
model provides a clear visualization of the whole population’s average responses and the
changes between different levels. The estimation was consistent across different diameter
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classes, proving the mixed effect model’s robustness in predicting the property’s change
of variables.
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3.5. Comparison of Different Sampling Strategies
3.5.1. Site-Level Calibration

We randomly selected 1−50 trees from each site for site-level local calibration using
the BLUPs theory, which is repeated continuously for 1000 times to calculate the average
of the error statistics (MAE% and Bias%). The results of the calibration response mode
are shown in Figure 6. For site-level calibration, only when the subsample is more than
five, the prediction effect is better than that of the uncalibrated model. MAE% gradually
decreased with the increase of sampling number. The overall trend of Bias% is similar to
MAE%, although there are slight fluctuations. When the subsample size is 15, MAE% was
reduced to 11.5%. Increasing the number of samples was not significant to improve the
model’s accuracy but it will increase the cost of measurement. Therefore, there is always be
a tradeoff between the cost and accuracy, in which selecting 15 trees randomly for site-level
calibration might be recommended as the best compromise between the two.
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3.5.2. Plot-Level Calibration

Eight BLUPs strategies in local plot-level calibration were proposed to improve the
model’s accuracy. The calibration prediction results were visualized by two error statistics
(Bias% and MAE%) and shown in Figure 7. Apart from type III, all sampling strategies
had similar trends, in which the calibration performance improves with the increase of
sample size, and the subject-specific predictions obtained higher accuracy than uncalibrated
predictions, even though only a small number of trees (i.e., two) are used as the basis for
the random effect predictions. The type VI sampling strategy obtained the smallest MAE%
when the prediction pre-measured sub-sample size was less than eight trees, while similar
prediction performance was delivered by both type VI and type IV when the sub-sample
size was more than eight trees. The largest MAE% was always acquired by the type III
sampling strategy. For the type VI, more stable prediction was obtained after including
seven sampling trees, even the results were still outperformed by other sampling strategies.
In addition, a paired t-test was used to compare the calibrated NLME predictions using
between 6 trees and 18 trees for calculating the random parameters, and the result was
found to be not statistically significant. Hence, using six sampling trees in the HCB model
calibration might present the most optimum results when the time and cost efficiency is
considered. A relatively high prediction accuracy with a low measurement cost might be
achieved by sampling the three largest trees and three medium-size trees (type VI) from
each sample plot.
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4. Discussion

As an essential individual tree variable, height to crown base (HCB) can effectively
reflect the crown size, subsequently affecting the forest’s vitality, wood quality, and com-
mercial value of trees [30]. Hence, it is very important to obtain accurate and efficient data
of HCB, which has been conveniently facilitated by utilizing remote sensing data. However,
due to the tree canopy occlusion and point cloud density limitation, acquiring a stable
method to accurately and directly extract the HCB from LiDAR data remains challenging.
Therefore, this study was intended to develop and provide an accurate HCB model using a
generalized NLME method.

In this study, three commonly used HCB models were evaluated to construct the
HCB model based on LiDAR data [65,69]. Tree height (H) and crown width (CW) were
used as the primary predictors since they account for the most variations on HCB and are
relatively easy to be accurately extracted [46]. Furthermore, stand quality and interspecific
competition were added to the model as potential predictors. In previous forest modeling
studies, dominant height (Hd) was the most commonly used variable to represent stand
quality [78,79]. However, the LiDAR-based relative percentile height can be directly ex-
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tracted from each sample plot to replace Hd and was not affected by the calculation method;
hence, it is more suitable for our model. All combinations of stand and competition metrics
were analyzed and used to finally determine both HP

99 and CCp75, which are novel to
LiDAR-derived variables. The RMSE decreased by 38.46% after these two covariates were
introduced into the model, showing that the covariates extension was effective and could
be further used for the random effects. The negative parameters of both stand and compe-
tition index indicated that the HCB was positively correlated with the stand quality and
competition size. This is ecologically reasonable since the better the stand conditions, the
higher the tree height, consequently promoting the crown’s overall upward movement and
increasing the HCB. The competition index expressed by CCp75 was constantly recognized
in the description of the crown competition. The larger the CCp75 of the targeted trees,
the weaker the competition ability, and the more difficult for the trees to acquire sunlight,
water, and soil nutrients, resulting in a shorter and smaller crown [80,81]. The proposed
multivariable generalized base model has high adaptability and was found to be effective
for detecting the variation of HCB with the same height and crown width. The selected
experimental sites have similar geographical conditions; hence, we did not consider the
influence of altitude, terrain, and slope on the developed model.

The nonlinear mixed effect (NLME) model can reflect the potential variations among
different levels and has been widely utilized to construct the HCB model [45,47,66]. In
this study, the data was sampled from an extensive and widely distributed area. Hence,
applying a two-level nested random effect model will be appropriate to describe the
specific effect of the plot and site variations on HCB. Generally, the mixed effect model’s
convergence becomes harder to be achieved as the number of random effect parameters
increases, especially when the model contains more than two parameters [82]. In this study,
all possible combinations of random effect parameters were considered. The HCB model
obtained the smallest AIC and the highest R2 after the random effects were added into the
intercept β0 and the regression coefficient β1 of the crown width. The calibrated model’s
accuracy was significantly higher than that of the generalized base model, which was
indicated by LRT. In addition, three functions were compared for selecting the appropriate
weighting function, in which the power function was finally chosen due to its simplicity
and convenient application.

The leave-one-site-out cross-validation method was applied to assess the indepen-
dence and applicability of the models. As shown in Table 4, the introduction of random
effects has greatly improved the model’s prediction accuracy, even after it was scrutinized
throughout various diameter classes (Figure 5). The relative bias of the calibrated NLME
model was closer to zero and relatively more stable than the other two models. However,
the model generally produced a larger MAE% and Bias% in small diameter classes (i.e.,
6−8 diameter classes). The possible reason is that the younger trees often have no crown
overlap between individuals, leading to less competition among trees. Thus, the lower
canopy’s living branches have more opportunities to absorb sunlight for photosynthesis,
which contributes to enhancing their growth activity. Furthermore, HCB is usually more
affected by non-natural factors (e.g., tending and pruning activity) [33]; hence, various
management measures should be considered to accurately predict the HCB of young trees.

Compared with the recently developed HCB models which are only based on field-
measured attributes [45,81], our LiDAR-based models might provide a more highly efficient
prediction that requires less effort to obtain the input information. Several researches [41,42,83]
extracted HCB directly from LiDAR data. However, the algorithms are not applicable for
large-scale estimation. In addition, some studies [46,52] include field-measured variables
(i.e., DBH) in building LiDAR-based HCB models that was unnecessary in our study, which
improves the flexibility of the model.

We proposed both site- and plot-level model calibration to improve the flexibility
of model application throughout different scale and accuracy requirements. Site-level
calibration does not need additional plot information; hence, it is convenient for efficient
prediction in large areas. Therefore, we proposed a simple sampling strategy (1−50 trees
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randomly selected per site). The model’s prediction accuracy will improve as the number
of sampled trees per plot increases [83]. The results showed that randomly selecting
15 trees from each site may be a good option when both precision and cost are considered.
In addition, for plot-level calibration, eight complex sampling strategies and various
numbers of subsampled trees were assessed by leave-one-site-out cross-validation, aiming
to ascertain the best calibration scheme for predicting the HCB of new stands. The results
showed that using the smallest trees for model calibration (type III) obtained the worst
result, consistent with other studies [45,46,51]. This may be attributed to the fact that some
fixed-effect variables in the NLME HCB model have reflected the variation of small-size
trees; hence, the type III sampling strategy did not provide any additional information
for calibration. On the contrary, using the largest trees and medium-size trees (type
VI sampling strategy) obtained the best calibration results. It is worth recalling that
type IV was worse than type VI when the sample size was small, but the difference
between them gradually decreased as the sampling size increased. However, this correction
strategy is necessary to obtain the DBH of each tree in the sample plot, which undoubtedly
increases the workload of the field measurement. The result of random sampling (type
I) is also given, which is only slightly worse than type VI (Figure 7). It can be used
when the field-measured DBH is not available. Generally, four to nine sample trees are
used for mixed effect model plot-level calibration to ensure a tradeoff between the model
predictability and inventory cost [79,84]. This study suggests that using six trees for NLME
model calibration is appropriate when prediction accuracy and measurement cost are
considered. Adding more sample trees in model calibration seems inefficient since it brings
an insignificant improvement to the model performance and yet causes a remarkable
increase in inventory cost.

This study only used the correctly matched individual trees for constructing and
evaluating the model. However, the commission and omission errors cannot be ignored
since they might affect the method’s actual application. The segmentation errors often
increase with stand density, which mainly miss detection of suppressed trees, especially in
young forests [85]. Therefore, a careful application should be conducted when applying
this method in high-density young forests. In the future, a segmentation algorithm suitable
for the high-density forest will substantially improve the application of this model.

5. Conclusions

Larix olgensis is one of the main afforestation tree species in Northeast China, which
has fast growth and provides high timber output. In this paper, a generalized nonlinear
mixed effect HCB model of larch plantation was established using UAV-LiDAR data. The
newly developed model could complement the missing HCB data in forest inventory
and reduce the field workload without ignoring the prediction accuracy. The tree- and
plot-level LiDAR-derived metrics (i.e., H, CW, CCp75 and HP

99) were introduced into the
base model, which significantly improved the model’s ability to explain the HCB variation.
The introduction of two-level random effects greatly improved the application ability and
prediction accuracy of the model. The newly developed model not only has an important
significance for HCB prediction, but also supplies a more flexible and convenient method
for forest application based on UAVs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13091834/s1. R code for assessment and an example for plot-level sampling are shown
in Supplementary.
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