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Abstract: Motion estimation is crucial to predict where other traffic participants will be at a certain pe-
riod of time, and accordingly plan the route of the ego-vehicle. This paper presents a novel approach
to estimate the motion state by using region-level instance segmentation and extended Kalman filter
(EKF). Motion estimation involves three stages of object detection, tracking and parameter estimate.
We first use a region-level segmentation to accurately locate the object region for the latter two
stages. The region-level segmentation combines color, temporal (optical flow), and spatial (depth)
information as the basis for segmentation by using super-pixels and Conditional Random Field.
The optical flow is then employed to track the feature points within the object area. In the stage
of parameter estimate, we develop a relative motion model of the ego-vehicle and the object, and
accordingly establish an EKF model for point tracking and parameter estimate. The EKF model
integrates the ego-motion, optical flow, and disparity to generate optimized motion parameters.
During tracking and parameter estimate, we apply edge point constraint and consistency constraint
to eliminate outliers of tracking points so that the feature points used for tracking are ensured within
the object body and the parameter estimates are refined by inner points. Experiments have been
conducted on the KITTI dataset, and the results demonstrate that our method presents excellent
performance and outperforms the other state-of-the-art methods either in object segmentation and
parameter estimate.

Keywords: motion estimation; autonomous driving; region-level segmentation; extended Kalman filter

1. Introduction

Research on autonomous vehicles is being in the ascendant [1–3]. Autonomous
Vehicles are cars or trucks that operate without human drivers, using a combination of
sensors and software for navigation and control [4]. Autonomous vehicles require not
only detecting and locating moving objects but also knowing their motion state relative
to the ego-vehicle, i.e., motion estimation [5–7]. Motion estimation is a benefit to predict
where other traffic participants will be at a certain period of time, and accordingly plan the
route of the ego-vehicle. In this work, we propose a novel approach to estimate the motion
state for autonomous vehicles by using region-level segmentation and Extended Kalman
Filter (EKF).

Motion estimation involves three stages of object detection, tracking, and estimate
of motion parameters including position, velocity, and acceleration in three directions.
Accurate object detection is crucial for the high quality of motion estimation because
the late two stages rely on the points within the object region; that is, only the points
exactly within the object region can be used for tracking and parameter estimate. Existing
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works on motion estimation such as Refs. [8–15] normally generate bounding boxes as
object proposals for the late two stages. One inherent problem of these methods is that
the bounding boxes contain substantial background points as shown in Figure 1. These
points are noise points and will result in unreliable object tracking and incorrect parameter
estimate. To address this issue, we adopt two strategies: (1) Instead of bounding boxes, we
use segmented object regions as object proposals. We employ the YOLO-v4 detector [16]
to generate object bounding boxes and apply a region-level segmentation on them to
accurately locate object contour and determine points within the objects (Figure 1 shows
the results). (2) We compose an edge-point constraint on the feature points and apply
the random sample consensus (RANSAC) [17] algorithm to eliminate outliers of tracking
points so that the points used for tracking are ensured within the object body and the
parameter estimate are refined by inner points. By the above processing, we can obtain a
high-quality point set for tracking and parameter estimate, thereby generating accurate
motion estimation.

Figure 1. An illustration of bounding boxes including objects/background points. Three bounding
boxes are detected, each of which contains background points and an object. The object regions are
accurately segmented by blue, red, and green masks generated by our region-level segmentation.
The pixels within the masks are used as feature points for tracking and parameter estimates.

Other aspects affecting motion estimation are how to establish the motion model for
tracking and how to optimize the parameter estimate. In this work, we use optical flow
to track the feature points. We propose a relative motion model of the ego-vehicle and
moving objects, and accordingly establish an EKF model for point tracking and parameter
estimate. The EKF model takes the ego-motion into considerations and integrates optical
flow, and disparity to generate optimized object position and velocity.

In summary, we propose a novel framework for motion estimation by using region-
level segmentation and Extended Kalman Filter. The main contributions of the work are:

• A region-level segmentation is proposed to accurately locate object regions. The
proposed method segments object from a pre-generated candidate region, and refines
it by combining color, temporal (optical flow), and spatial (depth) information using
super-pixels and Conditional Random Field.

• We propose a relative motion model of the ego-vehicle and the object, and accord-
ingly establish an EKF model for point tracking and parameter estimate. The EKF
model integrates the ego-motion, optical flow, and disparity to generate optimized
motion parameters.

• We apply edge-point constraint, consistency constraint, and the RANSAC algorithm
to eliminate outliers of tracking points, thus ensuring that the feature points used
for tracking are within the object body and the parameter estimates are refined by
inner points.
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• The experimental results demonstrate that our region-level segmentation presents
excellent segmentation performance and outperforms the state-of-the-art segmentation
methods. The motion estimation experiments confirm the superior performance of
our proposed method over the state-of-the-art approaches in terms of the root mean
squared error.

The remainder of this paper is organized as follows: Section 2 briefly introduces the
relevant works. Section 3 describes the details of the proposed method including object
detection and segmentation, and tracking and parameter estimate. The experiments and
results are presented and discussed in Section 4. Section 5 concludes the paper.

2. Related Work

Motion estimation involves three stages of object detection, tracking, and estimate
of motion parameters. The third stage that is served by the first two stages is the core
of the whole pipeline. Thus, we divide the existing works on motion estimation into
three categories in terms of the parameter estimates method, i.e., Kalman filter (KF)-based,
camera ego-motion-based, and learning-based method.

The Kalman filter is an optimal recursive data processing algorithm that improves
the accuracy of state measurement by fusion of prediction and measurement values. The
KF-based method [10–12,18–20] generates optimized motion parameters by iteratively
using a motion state equation for prediction and a measurement equation for updating.
During the iteration, estimation error covariance is minimized. Lim, et al. [10] proposed
an inverse perspective map-based EKF to estimate the relative velocity via predicting
and updating the motion state recursively. The stereovision was used to detect moving
objects, and the edge points within the maximum disparity region were extracted as the
feature points for tracking and parameter estimate. Liu, et al. [11] combined Haar-like
intensity features of the car-rear shadows with additional Haar-like edge features to detect
vehicles, adopted an interacting multiple model algorithm to track the detected vehicles and
utilized the KF to update the information of the vehicles including distances and velocities.
Vatavu, et al. [12] proposed a stereo vision-based approach for tracking multiple objects
in crowded environments. The method relied on measurement information provided by
an intermediate occupancy grid and on free-form object delimiters extracted from this
grid. They adopted a particle filter-based mechanism for tracking, in which each particle
state is described by the object dynamic parameters and its estimated geometry. The object
dynamic properties and the geometric properties are estimated by importance sampling
and a Kalman Filter. Garcia, et al. [18] presented a sensor fusion approach for vehicle
detection, tracking, and motion estimation. The approach employed an unscented Kalman
filter for tracking and data association (fusion) between the camera and laser scanner.
The system relied on the reliability of laser scanners for obstacle detection and computer
vision technique for identification. Barth and Franke [19] proposed a 3-D object model by
fusing stereovision and tracked image features. Starting from an initial vehicle hypothesis,
tracking and estimate are performed by means of an EKF. The filter combines the knowledge
about the movement of the object points with the dynamic model of a vehicle. He, et al. [20]
applied an EKF for motion tracking with an iterative refinement scheme to deal with
observation noise and outliers. The rotational velocity of a moving object was computed
by solving a depth-independent bilinear constraint, and the translational velocity was
estimated by solving a dynamics constraint that reveals the relation between scene depth
and translational motion.

The camera ego-motion-based method [9,13,14,21] derives motion states of moving
objects from camera ego-motion and object motion information relative to the camera.
It generally consists of two steps: the first step is to obtain the camera’s ego-motion,
and the second step is to estimate the object’s motion state by fusing the camera’s ego-
motion with other object’s motion cues (such as relative speed, optical flow, depth, etc.).
Kuramoto, et al. [9] obtained the camera ego-motion from the Global Navigation Satellite
System/Inertial Measurement Unit. A framework using a 3-D camera model and EKF was
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designed to estimate the object’s motion. The output of the camera model was interlay
utilized to calculate the measurement matrix of the EKF. The matrix was designed to map be-
tween the position measurement on the objects in the image domain and the corresponding
vector state in the real world. Hayakawa, et al. [13] predicted 2D flow by PWC-Net and
detected the surrounding vehicles’ 3D bounding box using a multi-scale network. The
ego-motion was extracted from the 2D flow using projection matrix and ground plane
corrected by depth information. A similar approach was used for the estimation of the
relative velocity of surrounding vehicles. The absolute velocity was derived from the
combination of the ego-motion and the relative velocity. The position and orientation of
surrounding vehicles were calculated by projecting the 3D bounding box into the ground
plane. Min and Huang [14] proposed a method of detecting moving objects from the
difference between the mixed flow (caused by both camera motion and object motion) and
the ego-motion flow (evoked by the moving camera). They established the mathematical
relationship between optical flow, depth, and camera ego-motion. Accordingly, a visual
odometer was implemented for the estimation of ego-motion parameters by using ground
points as feature points. The ego-motion flow was calculated from the estimated ego-
motion parameters. The mixed flow was obtained from the correspondence matching
between consecutive images. Zhang, et al. [21] presented a framework to simultaneously
track the camera and multiple objects. The 6-DoF motions of the objects, as well as the
camera, are optimized jointly with the optical flow in a unified formulation. The object
velocity was calculated using the rotation and translation part of the motion of points in the
global reference frame. The proposed framework detected moving objects via combining
Mask R-CNN object segmentation [22] and scene flow, and tracked them over frames using
optical flow.

Different from the first two categories of the methods, the learning-based
method [8,15,23,24] does not require a specific mathematical estimation model but re-
lies on ma-chine learning and the ability of neural network regression to estimate the
motion parameters. Jain, et al. [8] used Farneback’s algorithm to calculate optical flow and
the DeepSort algorithm to track vehicles detected from the YOLO-v3. The optical flow
and the tracking information of the vehicle were then treated as input for two different
networks. The features extracted from the two networks were stacked to create a new
input for a lightweight Multilayer Perceptron architecture which finally predicts positions
and velocities. Cao, et al. [15] presented a network for learning motion parameters from
stereo videos. The network masked object instances and predicted specific 3D scene flow
maps, from which the motion direction and speed for each object can be derived. The
network took the 3D geometry of the problem into account which allows it to correlate
the input images. Kim, et al. [23] developed a deep neural network that exploits different
levels of semantic information to perform the motion estimation. The network used a
multi-context pooling layer that integrates both object and global features, and adopt the
cyclic ordinal regression scheme using binary classifiers for effective motion classifica-
tion. In the detection stage, they ran the YOLO-v3 detector to obtain the bounding boxes.
Song, et al. [24] presented an end-to-end deep neural network for estimation of inter-vehicle
distance and relative velocity. The network integrated multiple visual clues provided by
two time-consecutive frames, which include deep feature clue, scene geometry clue, as
well as temporal optical flow clue. It also used a vehicle-centric sampling mechanism to
alleviate the effect of perspective distortion in the motion field.

Moving object detection is a prerequisite for motion estimation. Most of the existing
methods use bounding boxes as object proposals which affect the accuracy of the motion
estimation for the late two stages. In this study, we leverage a region-level segmentation to
accurately locate object regions for tracking and parameter estimate. Therefore, we review
here relevant segmentation works compared with our segmentation methods. PSPNet [25]
is a pyramid scene parsing network based on the full convolution network [26], which
exploits the capability of global context information by different-region-based context
aggregation. PSPNet can provide a pixel-level prediction for the scene parsing task. Mask
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R-CNN [22] is a classic network for object instance segmentation. It extends Faster R-CNN
by adding a branch in parallel with the existing detection branch for predicting object
masks. Bolya, et al. [27,28] proposed the YOLACT series, a fully convolutional model for
real-time instance segmentation. YOLACT series break instance segmentation into two
parallel subtasks, generating a set of prototype masks and predicting per-instance mask
coefficients, to achieve compromise of segmentation quality and computation efficiency.

3. Method

The framework of the proposed method is shown in Figure 2. The main idea is
to accurately determine feature points within the object through instance segmentation
and predict the motion state by tracking the feature points through an EKF. The method
includes two stages: (1) object segmentation, (2) tracking and motion estimate.

Figure 2. The framework of the proposed method. P( , ) represents the lateral and longitudinal distances of objects in the
camera coordinates, and V( , ) denotes the lateral and longitudinal absolute velocities.

In the first stage, we use the YOLO-v4 detector to locate the object region in a form of a
bounding box, and then extract accurate object contour through a region-level segmentation.
The output is the feature points exactly within the object body.

In the second stage, we compose an edge-point constraint to further refine the feature
points. We use Optical Flow to track the refined feature points. We propose a relative mo-
tion model with respect to the ego-vehicle and a moving object, and accordingly establish
an EKF model for parameter estimation. We also apply the random sample consensus
(RANSAC) algorithm to eliminate outliers of the tracked points. The EKF model inte-
grates the ego-motion, optical flow, and disparity to generate optimized object position
and velocity.

3.1. Object Detection and Region-Level Segmentation

Object detection is to locate the object region while segmentation is to determine
foreground pixels (the object body) within the region. Figure 3 shows a process of object
detection and segmentation.

We employ a YOLO-v4 detector to locate the object region. The details of YOLO-v4
can be found in Reference [16]. The detection result is in a form of a bounding box contains
background, as shown in Figure 3a.
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Figure 3. An illustration of object/background confidence maps and segmentation results. (a) Bound-
ing box detected by YOLO-v4. (b) Foreground confidence map. Red represents higher confidence
value while blue represents lower value. (c) Background confidence map. (d) Segmentation result
generated by GrabCut. (e) Super-pixels generated by Simple Linear Iterative Clustering. (f) Segmen-
tation result after applying CRF.

Region-level segmentation consists of three stages including Grabcut, Super-pixels,
and Super-pixels fixed by Conditional Random Field. Starting from the bounding box
(Figure 3a) detected by YOLO-v4, we apply the GrabCut algorithm to segment foreground
from background. GrabCut algorithm proposed in Ref. [29] is an interactive method that
segments images according to texture and boundary information. When using GrabCut,
we initially define the inner of the bounding box as foreground and the external as back-
ground, and accordingly build a pixel-level Gaussian Mixture Model to estimate the texture
distribution of foreground/background. By an iterative process until convergence, we can
obtain the confidence maps of the foreground and background. The results are shown in
Figure 3b,c.

Accordingly, GrabCut assigns a label (γuv) to pixel (u, v) as follows:

γuv =

{
1, if (u, v) is foreground
0, if (u, v) is background

(1)

The result is shown in Figure 3d in which the background is marked as black and the
foreground is marked as red. This is a pre-segmentation process with some significant
errors, for example, the license plate in Figure 3d is excluded from the car body.

We refine the pre-segmentation in virtue of Super-pixels idea proposed in Refer-
ence [30]. Super-pixels are an over-segmentation formed by grouping pixels based on
low-level image properties including color, brightness, etc. Super-pixels provide a percep-
tually meaningful tessellation of image content, and naturally preserve the boundary of
objects, thereby reducing the number of image primitives for subsequent segmentation. We
adopt Simple Linear Iterative Clustering (SLIC) [31] to generate M super-pixels. SLIC is a
simple-minded and easy-to-implement algorithm. It transforms the color image to CIELAB
color space, constructs the distance metric based on coordinates and L/A/B color compo-
nents, and adopts the k-means clustering approach to efficiently generate super-pixels. The
label ϑsβ

of a super-pixel sβ is marked by Equation (2):

ϑsβ
=

 1, ∑
(u,v)∈sβ

γuv ≥ num
2

0, other
(2)
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where num is the total number of pixels within super-pixel sβ. The generated super-pixels
are shown in Figure 3e where the white lines partition the super-pixels. Super-pixels can
greatly reduce computation load in the late stages.

Conditional Random Field (CRF) [32] is a discriminative probability model and is
often used in pixel labeling. Supposing the output random variable constitutes a Markov
random field, CRF is the extension of the maximum entropy Markov model. Since the labels
of super-pixels can be regarded as such a random variable, we can use CRF to model the
labeling problem. We define the CRF as an undirected graph with super-pixels as nodes. It
can be solved through an approximate graph inference algorithm by minimizing an energy
function. The energy function generally contains a unary potential and a pairwise potential.
The unary potential is only related to the node itself and determines the likelihood of the
node to be labeled as a class. The pairwise potential describes the interactions between
neighboring nodes, and is defined as similarity between them. In this work, we employ
CRF to fix the labels of super-pixels generated in Figure 3e. Two super-pixels are considered
as neighbors if they share an edge in image space. Let sβ and sj (β, j = 1, 2, · · · , M) be
neighboring super-pixels, the CRF energy function is defined as

Eseg(Θ) = ∑
sβ

∅u

(
sβ, ϑsβ

)
+ ∑

(sβ ,sj)∈ε

∅p
(
sβ, sj

)
(3)

where ε denotes the set of all neighboring super-pixels. ϑsβ
is the initial super-pixel label

assigned in Equation (2). Θ represents the 1/0 labeling of super-pixels. The energy
function is minimized by using graph cuts algorithm. We refer readers to [33] for a detailed
derivation of the minimization algorithm.

The unary potential ∅u

(
sβ, ϑsβ

)
in Equation (3) measures the cost of labeling sβ with ϑsβ

:

∅u

(
sβ, ϑsβ

)
=

 −log
(

COFf g
(
sβ

))
, i f ϑsβ

= 1

−log
(

COFbg
(
sβ

))
, i f ϑsβ

= 0
(4)

where COFf g
(
sβ

)
denotes the probability that sβ belongs to the foreground, computed by

averaging the foreground confidence scores (Figure 2b) over all pixels in sβ. COFbg
(
sβ

)
is

the probability that sβ belongs to the background.
The pairwise potential ∅p

(
sβ, sj

)
in Equation (3) describes the interaction relationship

between two neighboring super-pixels. ∅p
(
sβ, sj

)
incorporates the pairwise constraint

by combining color similarity, the mean optical flow direction similarity and the depth
similarity between sβ and sj. ∅p

(
sβ, sj

)
is defined as

∅p
(
sβ, sj

)
= λ1

(
ϑsβ
6= ϑsj

)
·Dlab

(
sβ, sj

)
·D f low

(
sβ, sj

)
·Ddepth

(
sβ, sj

)
Dlab

(
sβ, sj

)
= 1/

(
1 + ‖lab

(
sβ

)
− lab

(
sj
)
‖2

)
D f low

(
sβ, sj

)
= FLsβ

FLsj /
(
‖FLsβ

‖2‖FLsj‖2

)
Ddepth

(
sβ, sj

)
= ∑

√
histsβ

× histsj

(5)

where λ is the weight used to adjust the pairwise potential function in Eseg. 1(·) is an
indicator function: if the input condition is true, the output is 1; otherwise, the output is
0. ‖·‖2 denotes the L 2-norm. Dlab

(
sβ, sj

)
defines the color similarity between sβ and sj.

lab
(
sβ

)
is computed as the average LAB color of sβ in CIELAB color space. FLsβ

is the mean
optical flow of sβ and D f low

(
sβ, sj

)
represents the direction similarity between the mean

flows of sβ and sj. Ddepth
(
sβ, sj

)
is the depth similarity between sβ and sj, measured using

the Bhattacharyya distance. histsβ
is the normalized depth histogram of sβ. It can been

seen that the pairwise potential integrates color, temporal (optical flow) and spatial (depth)
information as criteria for segmentation purpose. The final segmentation result is shown
in Figure 3f.
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3.2. Tracking and Parameter Estimate

We use Optical Flow to track the feature points. We establish a relative motion
model between ego-vehicle and object by taking camera ego-motion into considerations,
accordingly build an EKF model for point tracking and parameter estimate. The EKF model
integrates the ego-motion, optical flow, and disparity to generate optimized object position
and velocity. During the tracking process, we compose an edge-point constraint to refine
the feature points. During the parameter estimate, we apply the RANSAC algorithm to
eliminate outliers of tracked points.

3.2.1. The Relative Motion Model of the Ego-Vehicle and the Object

Figure 4 shows the relative motion model between the ego-vehicle and a moving object.

Figure 4. Relative motion model. (a) The camera coordinates. (b) Relative motion between ego-
vehicle and moving object.

The ego-vehicle and the object move on X-Z plane. Assuming that the ego-vehicle
moves from position C1 to C2 within a time interval ∆t with a translational velocity
VS =

[
VS

X , VS
Y , VS

Z
]T and a rotational velocity around Y-axis ωS, the trajectory can be re-

garded as the arc C1C2 with a rotation angle α = ωS × ∆t. The displacement
∆LS =

[
∆XS, 0, ∆ZS]T in the camera coordinates at position C2 will be:

∆LS =

 ∆XS

0
∆ZS

 =
‖VS‖2

ωS

 1− cosα
0

−sinα

 (6)

The object P is located at C3 at time t, and the absolute velocities in the camera
coordinates at position C1 is VO

t =
[
VO

Xt, VO
Yt, VO

Zt
]T . Assuming that the object moves from

C3 to C4 with VO
t within ∆t, the absolute velocities VO

t+∆t of P at time t + ∆t is related to
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the change of the camera coordinates. Taking ego-vehicle motion into considerations, the
displacement ∆LO and VO

t+∆t of P in the camera coordinates at C2 are computed from:

∆LO = VO
t+∆t × ∆t (7)

VO
t+∆t = R(α)VO

t (8)

where R(α) is the rotation matrix given by the Rodrigues rotation formula:

R(α) =

 cosα 0 −sinα
0 1 0

sinα 0 cosα

 (9)

Thus, given the coordinates of P in the camera coordinates at C1 at time
t Pt = [Xt, Yt, Zt]

T , the coordinates of P in the camera coordinates at C2 at time t + ∆t
Pt+∆t is calculated by:

Pt+∆t = R(α)× Pt + ∆LO + ∆LS (10)

3.2.2. Design of Kalman Filter

(1) Motion Model
The state vector for P is defined as

SV =
[

X, Y, Z, VO
X , VO

Y , VO
Z

]T
(11)

where [X, Y, Z]T represents the coordinates of P in the moving camera coordinates.[
VO

X , VO
Y , VO

Z
]T is the absolute velocities of P moving along the X-axis, Y-axis and Z-axis.

Combing Equations (6)–(8) and (10), The time-discrete motion equation for the state
vector SV is given by:

SVk = A× SVk−1 + Bk−1 + δk (12)

A =

[
R(α) ∆t×R(α)

0 R(α)

]
(13)

Bk−1 =
VS

k−1

ωS



1−cosα
0

−sinα
0
0
0

 (14)

where k is the time index, the process noise δk is considered as Gaussian white noise with a
mean value of zero.

(2) Measurement Model
The measurement vector for P is MV = [u, v, d]T where (u, v) is the projection, and d

is the disparity. The optical flow is used to track Pk(u, v) at time k to Pk+1(u, v) at time k+1,
and the corresponding disparities dk and dk+1 can be measured from the stereovision.

According to the ideal pinhole camera model, the nonlinear measurement equation
can be written as:

MVk = H(SVk) + εk (15)

H(SVk) =


u = fu×X

Z + cu

v = fv×Y
Z + cv

d = b× fu
Z

(16)
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where εk is the Gaussian measurement noise. fu, fv are the camera focal lengths; cu, cv
are the camera centre offsets and b is the camera baseline length. The Jacobian matrix of
measurement equation can be expressed as

J =


fu
Z 0 − fu×X

Z2 0 0 0
0 fv

Z − fv×Y
Z2 0 0 0

0 0 − b× fu
Z2 0 0 0

 (17)

(3) Estimation and Update
The location and absolute velocities of P can be obtained by iterating the following

estimation and update process. The time update equations are:

SV−k = A× SVk−1 + Bk−1 (18)

P−k = APk−1AT + Qk (19)

where SV−k is the priori estimate of the state vector SV at time k, SVk−1 is the posteriori
estimate (optimal value) of the state vector SV at time k-1, P−k is the priori estimate of the
variance of the estimation error, Qk is the covariance of δk.

The measurement update equations are

Gk = P−k JT
k

(
JkP−k JT

k + Wk

)−1
(20)

SVk = SV−k + Gk
(
MVk −H

(
SV−k

))
(21)

Pk = (I−GkJk)P
−
k (22)

where Gk is the Kalman gain, Wk is the covariance of εk, I is the identity matrix, SVk is the
posteriori estimate (optimal value) of the state vector SV at time k, and Pk is the posteriori
estimate of the variance of the estimation error.

3.2.3. Feature-Point Filtering

The tracking discussed in the above EKF is for a single object point. As described in
Section 3.1, each segmented object consists of a cluster of points, i.e., a set of foreground
pixels. For sake of tracking reliability and computation efficiency, it is essential to select
reliable feature points for tracking and estimation. The motion state of an object is taken as
the average of these points. Feature-point filtering is crucial for tracking and estimation.

Since the edge points have a strong textural feature and facilitate optical flow calcu-
lations, we employ the Canny operator [34] to extract the edge points as feature points.
During the tracking, we compose an edge-point constraint on the tracking results. That is,
the tracked points must still be edge points, otherwise, they are excluded.

Furthermore, we enhance estimation accuracy by applying the RANSAC algorithm [17]
to eliminate outliers of tracking points. The RANSAC is a statistics-based hypothesis-
verification method that iteratively finds the inner data from noisy data. In each iteration,
a minimum number of samples is randomly selected to construct a consistency hypothesis,
and other samples are verified whether they conform to the hypothesis. The samples that
conform are taken as inner samples. Repeat the above steps to form a sample set with the
largest number of inner samples, i.e., the maximum consensus set, for calculation of the
motion parameters.

We compose a consistency constrain on the estimate results, that is, the estimate results
for feature points in the same object should be consistent. In this work, the longitudinal
distance and velocity, the lateral distance and velocity are used as target parameters to
iteratively select the inner data set. The implementation flow for the RANSAC filtering is
illustrated in Algorithm 1.
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Algorithm 1. Implementation flow for RANSAC filtering (example of longitudinal distance).

Input: A set of feature points: FR The maximum iterations: Imax
Consistency threshold th, i.e., the threshold of the deviation that is the difference between
longitudinal distance and its average.

Output: The maximum consensus set: ∏max The object longitudinal distance: ζfinal

i = 0, Nmax = 0
while i < Imax do

1 Hypothesis generation
Randomly select m feature points form FR as minimal consensus set
Calculate the average longitudinal distance ζZ in the minimal consensus set
2 Verification

Calculate the difference between the longitudinal distance of each point in FR and ζZ, i.e.,
deviations

Determine a set FRi whose deviations are less than th
Count the total number of FRi as N
If N > Nmax then

∏max = FRi, Nmax = N
end if
i = i + 1

end while
Calculate the average longitudinal distance in ∏max as ζfinal

4. Experiments

Experiments have been conducted on image sequences (Road and City) of the KITTI
public datasets [35]. The binocular camera settings are: baseline length 0.54 m, mounting
height 1.65 m, tilt angle to the ground 0◦, and rectified image resolution 375 × 1242. KITTI
provides the ground truth of ego-vehicle motion, motion state of moving objects. The exper-
iments were implemented in the workstation with an Intel Xeon Silver 4110 4 core processor,
16GB RAM, a Nvidia GeForce gtx1080ti graphic processor, and 11 GB video memory.

We use HD3-flow [36] for predicting optical flow and employ PSMNet [37] to generate
the disparity maps. We retrained HD3-flow and PSMNet based on the original weights
using the KITTI dataset.

4.1. Segmentation Results

We compare our segmentation method with two state-of-the-art methods, PSPNet [25]
and YOLACT++ [28]. The results of three methods compared with the ground truth are
shown in Figure 5. The fourth row shows the results obtained by our method only using
color information without using optical flow, and disparity, called “Our method1”.

In the road scene, it can be seen that our method can accurately segment the Obj. 1,
2, and 3. Our method1 fails in recognizing the license plates and lights of Obj. 2 and 3 as
part of the car bodies. PSPNet wrongly mixtures Obj. 2 and 3 together while YOLACT++
wrongly mixtures distant building with Obj. 2 into one object.

In the city scene, our method also achieves the best result either in frame 4 (no-
occlusion case) or frame 9 (occlusion case). Especially, our method is able to accurately
distinguish Obj. 4 from the traffic light poles in frame 9. PSPNet presents significant errors
either on frame 4 or frame 9 while YOLACT++ fails to segment Obj. 4 from the traffic poles.
Our method1 does not correctly segment the front windshield of Obj. 4 in frame 9, while
the wheels are excluded from the car body in frame 4 and 9.

We use four metrics to quantitatively evaluate the segmentation performance.
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Figure 5. The segmentation results of three methods and ground truth in two traffic scenarios, including (1) Road scene; (2)
City scene. Our method1 indicates that our method only using color information without using optical flow, and disparity.

Mean Intersection over Union (MIoU) [38]: It computes a ratio between the intersec-
tion and the union of the ground truth and predicted segmentation.

MIoU =
1
l

1

∑
l1=0

CNl1l1

∑1
l2=0 CNl1l2 + ∑1

l2=0 CNl2l1 − CNl1l1

(23)

where l is the class number, in this case l = 2 (foreground/background). CNl1l2 is the
number of pixels of class l1 inferred to belong to class l2 and by parity of reasoning. When
calculating MIoU, l1 and l2 are regarded as foreground (1) or background (0) respectively
to count the positive and negative pixels. Thus, l1 and l2 refers to be 1 or 0.

The False Positive Rate (FPR) and the False Negative Rate (FNR) are computed by

FPR =
FP

FP + TN
(24)

FNR =
FN

FN + TP
(25)

where True Positive (TP) and False Positive (FP) indicate the correctly and incorrectly
segmented positive (foreground) pixels, while the True Negative (TN) and False Negative
(FN) indicate the correctly and incorrectly segmented negative (background) pixels.

Overall error (Ov. err.) is the percentage of wrongly labelled pixels.
Since the KITTI doesn’t provide the ground truth of the instance segmentation, we

manually labeled 411 images from the Road and City sequences. We conducted experiments
on those images, and the average values of the metrics are listed in Table 1. It can be seen
that our method achieves the best MIoU score and the lowest FPR, FNR, and Ov.err., and
outperforms other methods.
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Table 1. Comparison of segmentation performance of three methods.

MIoU (%) FPR (%) FNR (%) Ov.err. (%)

PSPNet [25] 72.04 19.05 13.98 14.75
YOLACT++ [28] 84.37 11.09 4.57 7.51

Our method1 63.67 20.53 23.35 19.57
Our method 88.42 5.6 4.88 5.24

The reasons for the superior performance of our method are: (1) our method segments
object from candidate region (bounding box) pre-generated by YOLO-v4 detector rather
than from the whole image, which eliminates trivial information and makes segmentation
easy; (2) our method combines color, temporal (optical flow), and spatial (depth) informa-
tion as the basis for segmentation; and (3) super-pixels naturally preserve the boundary of
objects and are computationally efficient for processing.

4.2. Results of Feature-Point Filtering

As described in Section 3.2.3, the edge points within the object point cluster are used
as feature points for tracking. The edge point constraint and consistency constraint are
applied to filter the feature points. Taking a segmented object as an example, the filtering
processing is shown in Figure 6. Figure 6a shows the point cluster obtained from our
region-level segmentation, and Figure 6b shows the edge points extracted by the Canny
operator, which are taken as feature points. The yellow points in Figure 6c are the feature
points in Figure 6b (previous frame) that are tracked to the current frame while the white
points are the edge points in the current frame. Some of the yellow points do not overlap
the white points and should be eliminated. The blue points in Figure 6d are the result of
excluding the non-overlapping points, i.e., satisfying the edge point constraint. The results
of applying the consistency constraint on Figure 6d are shown in Figure 6e. The red points
are the feature points with consistent distances and velocities that have been selected by
the RANSAC, i.e., the maximum consensus set. The arrows in Figure 6f represent the
optical flows of the valid feature points. It can be seen that the optical flows are identical,
indicating a valid feature point selection.

Figure 6. The processing of the feature-point filtering. (a) Object point cluster; (b) Edge points;
(c) Tracked feature points in current frame; (d) Result of applying edge point constraint; (e) Result of
applying consistency constraint; (f) Optical flow of valid feature points.
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4.3. Motion Estimate Results and Analysis
4.3.1. Motion Estimate Results

Table 2 lists the estimates and errors of position and absolute velocity of the objects
in Figure 5. It can be seen that our method presents small errors. In the Road scene,
objects have little variation in their lateral positions and mainly move longitudinally. The
maximum absolute errors of the objects’ longitudinal position and velocity estimations are
0.4 m (Obj. 3, corresponding to the ground truth 37.5 m) and 0.6 m/s (Obj. 3, corresponding
to −13.0 m/s), respectively. In the City scene, the objects are mainly moving laterally from
left to right. The maximum absolute errors of the objects’ lateral position and velocity
estimation are −0.2 m (Obj. 4 in frame 4, corresponding to −9.9 m) and −0.3 m/s (Obj.
5 in frame 4, corresponding to 10.8 m/s), respectively.

Table 2. Position and absolute velocity of objects in Figure 5 and their estimate errors.

Estimates (E) Ground Truth (GT) Absolute Errors (e = E −GT)

Sequence Obj. XE
(m)

ZE
(m)

VXE
(m/s)

VZE
(m/s)

XT
(m)

ZT
(m)

VXT
(m/s)

VZT
(m/s)

eX
(m)

eZ
(m)

eVX
(m/s)

eVZ
(m/s)

Road scene
(#frame 219)

1 −3.5 12.2 −0.2 −14.7 −3.6 12.3 −0.1 −14.4 0.1 −0.1 −0.1 −0.3

2 0.0 30.5 0.0 12.7 0.0 30.8 0.0 12.9 0.0 −0.3 0.0 −0.2

3 −3.5 37.9 0.0 −12.4 −3.5 37.5 −0.4 −13.0 0.0 0.4 0.4 0.6

City scene
(#frame 4)

4 −10.1 15.7 10.7 −2.2 −9.9 15.9 11.0 −2.1 −0.2 −0.2 −0.3 −0.1

5 8.1 12.0 10.5 −2.1 8.2 12.2 10.8 −2.2 −0.1 −0.2 −0.3 −0.1

City scene
(#frame 9) 4 −4.6 14.7 11.2 −2.2 −4.5 15.0 11.0 −2.1 −0.1 −0.3 0.2 −0.1

Figure 7 shows the results of object segmentation and motion estimation in three
frames of the Road scene sequence. P(X, Z) indicates the lateral and longitudinal distances
of objects in the camera coordinates, while V(VX , VZ) denotes the lateral and longitudinal
absolute velocities. Starting from frame 210 to frame 291, the red car that moves in the same
direction as the ego-vehicle is tracked. At frame 210, it is 29.8 m away from the ego-vehicle
with a longitudinal velocity of 13.8 m/s. At frame 210, it is getting far with a distance of
33.9 m and a velocity of 15.2 m/s. At frame 291, it is getting closer with a distance of 32.3 m
and a velocity of 13.7 m/s. At the same time, other vehicles on the road (as shown in the
blue, green, brown, and purple masks) are also segmented, tracked and predicated with
their motion states.

4.3.2. Evaluation and Comparison

We tested our method against the ground truth over a sequence of images. We
evaluated our method in terms of: (1) the method with feature-point filtering (w Ft.Pts.F.);
(2) the method without feature-point filtering (w/o Ft.Pts.F.). Figure 8 shows the variations of
lateral distance and velocity of Obj. 4 from frame 4 to 23 in the City scene. It moves almost
uniformly from left to right, the lateral distance becomes progressively larger and the lateral
absolute velocity is approximately constant. Figure 9 shows the variations of longitudinal
distance and velocity of Obj. 2 from frame 4 to 294 in the Road scene. It moves in the same
direction as the ego-vehicle. It can also be seen that the variations of the w Ft.Pts.F. method
are closer to the ground truth and smoother than the w/o Ft.Pts.F. method. This indicates
that the performance of our method is improved by using feature-point filtering.
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Figure 7. Object segmentation and motion estimate in three frames of Road scene.

Figure 8. Variations of lateral distance and velocity of Obj. 4 over frame 4–23 in City scene. (a) The lateral distance; (b) The
lateral absolute velocity.
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Figure 9. Variations of longitudinal distance and velocity of Obj. 2 over frame 4–294 in Road scene. (a) The longitudinal distance;
(b) The longitudinal lateral absolute velocity.

There is no uniform evaluation metric for object motion estimation. One of the
commonly used metrics is the root mean squared error (RMSE) over a sequence of images.
The RMSE is defined as

RMSE∗ =

√
∑NF

c=1(mt∗c − gt∗c )
2

NF
(26)

where NF refers to the number of frames that at least one object is being tracked in a
sequence, mtc the estimate and gtc the ground truth. ∗ represents the parameters used
for evaluation including the lateral distance X, the lateral velocity VX, the longitudinal
distance Z and the longitudinal velocity VZ. For example, RMSEX is the root mean square
error of the lateral distance X. Therefore, we compared our method with other three start-
of-the-art works [13,21,24] that also used the RMSE as evaluation metric. Table 3 lists the
comparison results.

Table 3. The RMSE comparisons of our method with the state-of-the-art methods.

RMSE of Distance RMSE of Velocity

RMSEX RMSEZ RMSEVX RMSEVZ

ours

with feature-point filtering
(w Ft.Pts.F.) 0.25 m 0.51 m 0.37 m/s 0.91 m/s

without feature-point filtering
(w/o Ft.Pts.F.) 0.74 m 0.67 m 0.6 m/s 2.07 m/s

Ref. [13] 1.19 m 1.7 m 0.7 m/s
Ref. [21] — 1 1.0 m/s
Ref. [24] 4.64 m 0.97 m/s

1—indicates that there is no corresponding parameter in Reference [21].

As can be seen in Table 3, our proposed method with feature-point filter brings
significant improvement compared with the other methods, particularly in the RMSE of
distance. It can also be seen the performance of our method is improved by using the
feature-point filtering.

To evaluate the effect of each component in the proposed method on motion estimation,
we have conducted an ablation study on different versions of the method. The results are
summarized in Table 4.
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Table 4. Quantitative comparison of different versions of our method in ablation study. RLS indicates
our region-level segmentation method, Ft.Pts.F. denotes feature-point filtering method, EKF model
represents the designed Kalman filter in Section 3.2.2, w/o means without and w is short for with. A
tick mark indicates the corresponding term is included in the counterpart.

RLS Ft.Pts.F. EKF Model RMSE of Distance RMSE of Velocity

w/o w w/o w w/o w RMSEX RMSEZ RMSEVX RMSEVZ

√ √ √
0.25 m 0.51 m 0.37 m/s 0.91 m/s√ √ √
0.87 m 1.64 m 1.31 m/s 2.27 m/s√ √ √
0.74 m 0.67 m 0.6 m/s 2.07 m/s√ √ √
0.49 m 1.13 m 1.86 m/s 2.72 m/s

Comparing other rows with the first row which is the standard version, it can be
seen how each component contributes to improving the RMSE values. Comparing the
second row (using bounding box rather than region-level segmentation) with the first row
demonstrates the proposed region-level segmentation method can significantly improve
the results. Comparing the third row with the first row demonstrates the effect of the
feature-point filtering. Comparing the fourth row with the first row demonstrates that the
EKF model is effective.

5. Conclusions

In this work, we adopt three strategies to achieve accurate and robust motion esti-
mation for autonomous driving. (1) Instead of bounding boxes, we use segmented object
regions as object proposals for tracking and parameter estimates. We propose a region-level
segmentation to accurately locate object contour and determine points within the objects.
(2) We compose an edge-point constraint on the feature points and apply the random
sample consensus algorithm to eliminate outliers of tracking points so that the points used
for tracking are ensured within the object body and the parameter estimate are refined as
inner points. 3) We develop a relative motion model of the ego-vehicle and the object, and
accordingly establish an EKF model for point tracking and parameter estimate. The EKF
model takes the ego-motion into considerations and integrates the ego-motion, optical flow,
and disparity to generate optimized motion parameters. Substantial experiments have
been conducted on the KITTI dataset, and the results demonstrate that our region-level
segmentation presents excellent performance and outperforms the state-of-the-art seg-
mentation methods. For the motion estimation, our proposed method presents a superior
performance on RMSE compared to the other state-of-the-art methods.
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