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Abstract: The uncertainty behavior of an enhanced three-dimensional (3D) localization scheme for
pulsed sources based on relative travel times at a large-aperture three-hydrophone array is studied.
The localization scheme is an extension of a two-hydrophone localization approach based on time
differences between direct and surface-reflected arrivals, an approach with significant advantages, but
also drawbacks, such as left-right ambiguity, high range/depth uncertainties for broadside sources,
and high bearing uncertainties for endfire sources. These drawbacks can be removed by adding a
third hydrophone. The 3D localization problem is separated into two, a range/depth estimation
problem, for which only the hydrophone depths are needed, and a bearing estimation problem, if the
hydrophone geometry in the horizontal is known as well. The refraction of acoustic paths is taken
into account using ray theory. The condition for existence of surface-reflected arrivals can be relaxed
by considering arrivals with an upper turning point, allowing for localization at longer ranges. A
Bayesian framework is adopted, allowing for the estimation of localization uncertainties. Uncertainty
estimates are obtained through analytic predictions and simulations and they are compared against
two-hydrophone localization uncertainties as well as against two-dimensional localization that is
based on direct arrivals.

Keywords: source localization; Bayesian inversion; uncertainty quantification; ray theory; travel
times

1. Introduction

Underwater pulsed-source localization is of importance for a broad range of marine
operations, from the monitoring of underwater vehicles [1], search and rescue opera-
tions [2], to wildlife monitoring [3,4], and spatial audio applications [5]. For this purpose,
arrays of synchronized hydrophones are commonly used, such that relative arrival times,
so-called time differences of arrival (TDOAs), can be estimated.

The minimum number of hydrophones required for three-dimensional (3D) localiza-
tion is four when direct arrivals (one arrival per hydrophone) are considered [6]. In many
cases, direct arrivals are followed by arrivals that are associated with acoustic paths re-
flected off the sea surface and/or the sea bottom. While the surface-reflected arrivals are
typical in deep water environments [7], surface- and bottom-reflected arrivals are observed
in shallow waters [8].

If direct and surface-reflected arrivals are exploited, 3D localization can be obtained,
even with two hydrophones. Hydrophone pairs, usually towed behind a vessel, have broadly
been used for bearing estimation from direct arrivals [9]. Various 3D localization approaches
exploiting direct and surface-reflected arrivals at two hydrophones have been proposed for ho-
mogeneous environments [10–12], as well as for refractive environments [13–16]. In [16], the
two-hydrophone localization problem was embedded in a Bayesian framework, enabling
the estimation of localization uncertainties that are caused by errors in the TDOAs and
hydrophone locations, as well as by uncertainties in the sound-speed profile characterizing
a refractive environment. This approach was applied to a series of controlled localization
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experiments as well as for the localization of sperm whales in the Eastern Mediterranean
Sea using a large-aperture towed hydrophone array [17].

A significant point in [16,17] is that the 3D localization problem can be separated into
two problems, one of range/depth estimation, for which only the hydrophone depths
are needed, and one of bearing estimation, if the hydrophone locations in the horizontal
are also known. This is a significant advantage for hydrophones towed or suspended
from surface platforms, since the hydrophone depths can be obtained much easier (e.g.,
from depth sensors) than their location in the horizontal. On the other hand, the two-
hydrophone 3D localization approach suffers from certain drawbacks, such as left-right
ambiguity, high range/depth uncertainties for source locations close to the array broadside,
and high bearing uncertainties for source locations that are close to the endfire. These
drawbacks can be removed by adding a third hydrophone, not aligned with the other two,
such as to break the symmetry and increase directional diversity.

Several authors have proposed methods for 3D localization with three or more hy-
drophones using direct arrivals and, in some cases, reflected arrivals [6–8,18]. The most
common approach is through the intersection of hyperboloids corresponding to the TDOAs
between direct arrivals at the different hydrophone pairs [19–22], which can be regarded
as a generalization of methods for bearing estimation [9,23]. Several of these works
refer to large-aperture arrays of synchronized hydrophones with separations between
0.5 and 3 km. Networks of asynchronous compact (tetrahedral) arrays have also been
proposed [24–26], allowing for 3D localization through triangulation or, alternatively,
through back-propagation by exploiting surface-reflected arrivals at a single node [26].
Networks of asynchronous free-drifting acoustic stations with suspended hydrophone
pairs have been used for localization exploiting direct and surface-reflected arrivals [27,28],
whereas combinations of different types of receiving stations (single hydrophones, vertical
line arrays, and compact hydrophone arrays) have also been used [29,30]. For the estima-
tion of localization uncertainties that are caused by measurement errors and parameter
ambiguities various error propagation methods have been applied [6,7,21]. The applica-
tion of a Bayesian framework has enabled an integrated approach to the localization and
uncertainty quantification problem [8,16,17,31–33].

In this work, an enhanced three-hydrophone 3D localization method is presented,
which extends and enhances the two-hydrophone approach based on direct and surface-
reflected arrivals [16]. The proposed method adopts the Bayesian framework for the
estimation of localization uncertainties, takes refraction of acoustic paths using ray theory
into account, and exploits rays with an upper turning point, achieving localization at
longer ranges. The 3D localization problem is solved in two steps, first the range/depth
estimation problem is addressed relying on known hydrophone depths, followed by the
localization in the horizontal if the hydrophone geometry in the horizontal is also known.
Uncertainty distributions, obtained through linearized, analytic predictions, are compared
against two-hydrophone localization uncertainties [16] and against empirical distributions
from full non-linear inversions. Comparisons against a two-dimensional (2D) localization
approach, based on direct arrivals [6], are also presented. Three different array geometries
are considered, being associated with the design of a moored acoustic observatory for
sperm whales, planned to be deployed in summer 2021 in deep water, south of the island
of Crete in the Eastern Mediterranean Sea, in the framework of the SAvEWhales project.

The contents of the work are organized, as follows: Section 2 presents the general
Bayesian estimation framework for range/depth estimation (Section 2.1.1) and localization
in the horizontal (Section 2.1.2). These two steps comprise the 3D localization approach,
in which both direct and surface-reflected arrivals are exploited. Section 2.2 addresses
2D localization in the horizontal relying on direct arrivals only. Section 3 presents the
numerical results for localization uncertainties that are based on analytic estimates and
simulations. It also presents some comparisons to uncertainties from two-hydrophone
localization as well as from 2D localization based on direct arrivals. Section 4 discusses
the main results and, finally, the basic conclusions are drawn in Section 5.
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2. Bayesian Inversion Framework

In this section, the general Bayesian inversion framework is described and, then, in the
following subsections, it is adapted to the specific localization problems of interest. Let d
be a data vector, i.e., a vector containing any observable (measured) quantities, and m a
model vector containing the sought (unknown) parameters. The model relation expressing
the data vector in terms of the model vector is formulated as

d = F(m). (1)

This relation is non-linear, in general, but it can be linearized by applying a Taylor
series expansion [34] regarding a reference model state, ml ,

d = dl + Jl(m−ml), (2)

where dl = F(ml) and Jl is the Jacobian matrix of F(·) evaluated at the linearization
reference ml , i.e., Jl,ij = ∂Fi(ml)/∂mj. The data vector is subject to measurement errors
and it can be written as d = dm + δd, where dm is the measured data vector and δd is
the vector of measurement errors, which are assumed to be uncorrelated and normally
distributed zero-mean random variables, characterized by a diagonal covariance matrix
Cd. Exploiting prior information, the model vector can be regularized assuming a normal
distribution about an a priori mean mp, i.e., m = mp + δm. Assuming uncorrelated prior
regularization constraints, the covariance matrix Cp of δm will also be diagonal.

The posterior probability density of the model vector, m, given the measured data
vector, dm, according to Bayes’ theorem [35] for the linear problem that is described in
Equation (2) takes the form

pm|d(m|dm) =
pd|m(dm|m)pm(m)

pd(dm)

∝ exp
{
−1

2
(dm − dl − Jl(m−ml))

T × C−1
d (dm − dl − Jl(m−ml))

−1
2
(
m−mp

)TC−1
p
(
m−mp

)}
.

(3)

The maximum a posteriori solution is then provided by the value maximizing the
above expression [36]

m̂ = mp +
(

JT
l C−1

d Jl + C−1
p

)−1
JT

l C−1
d ×

(
dm − dl − Jl

(
mp −ml

))
. (4)

The corresponding posterior covariance matrix of pm|d(m|dm) is given by the expression

Cm =
(

JT
l C−1

d Jl + C−1
p

)−1
. (5)

The square root of the diagonal elements of Cm provides the posterior root-mean-
square (RMS) uncertainties of the model parameters.

In the following subsections, the above Bayesian inversion framework is adapted to
each of the two steps of the 3D localization problem. In the first step, the three source ranges
(source distances from the three hydrophones) and the source depth are estimated from the
TDOAs at the three hydrophones. For this step, only the hydrophone depths need to be
known. If the hydrophone locations in the horizontal are as well known, then, in the second
step, these are combined with the estimated source ranges from the first step to estimate
the source location in the horizontal. Thus, the 3D source location, i.e., range, depth,
and bearing, can be estimated. In the last part of this section, a simpler 2D localization
method omitting the depth dimension is described, relying on the two TDOAs between
direct arrivals at the three hydrophones.
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2.1. 3D Localization
2.1.1. Step 1: Range/Depth Estimation

An array of three synchronized hydrophones, H1, H2, and H3, at known depths in a
refractive environment characterized by a depth-dependent, range-independent sound–
speed profile, is assumed. Direct and surface-reflected acoustic arrivals from a pulsed
source of unknown location are picked up by the hydrophones, as shown in Figure 1.
By utilizing the TDOAs between direct and surface-reflected arrivals at each hydrophone
and between direct arrivals at the different hydrophones, the three source ranges (distances
from the three hydrophones) as well as the source depth can be estimated.

Figure 1. Direct and surface-reflected paths from a source to a three-hydrophone array and the
corresponding travel times.

Let t1 denote the travel time of the pulsed signal from the source to hydrophone H1
over the direct path and t1r the travel time over the surface-reflected path. Similarly, t2,
t2r, t3, and t3r are the corresponding travel times to hydrophones H2 and H3, respectively.
Subsequently, five TDOAs can be defined, resulting in the following data vector

d = [τ1r1, τ2r2, τ3r3, τ21, τ31]
T , (6)

where τ1r1 = t1r − t1, τ2r2 = t2r − t2, τ3r3 = t3r − t3, τ21 = t2 − t1, and τ31 = t3 − t1.
The model vector includes the source ranges (horizontal distances between the source

and each of the three hydrophones), r1, r2, and r3, the source depth, zs, as well as the
hydrophone depths, h1, h2, h3, and a sound-speed parameter, θ representing the variability
in the sound speed profile,

m = [r1, r2, r3, zs, h1, h2, h3, θ]T . (7)

The last four quantities, h1, h2, h3, and θ, are included, such that the influence of
the corresponding inaccuracies on the localization uncertainties can be accounted for.
The actual sound-speed profile, c(z), is assumed to be a perturbation of the measured
sound-speed profile, cm(z)

c(z) = cm(z) + θg(z), (8)

where g(z) is a depth-dependent perturbation mode (vertical mode) and the parameter θ is
assumed to be a Gaussian, zero-mean random variable. The mode g(z) and the parameter
θ represent the anticipated divergence from the measured sound-speed profile.

The Jacobian matrix expresses the sensitivity of the data vector, i.e., the TDOAs,
to changes in the model vector, m, i.e., changes in the source ranges and depth, the hy-
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drophone depths, and the sound-speed parameter, θ. The expressions for the derivatives
of the travel times and their analytical derivation can be found in [16].

The above approach relies on TDOAs between the direct and surface-reflected arrivals.
In a homogeneous environment (constant sound speed), surface-reflected arrivals will
always be available for any source range and depth. However, in the case of strong near-
surface sound-speed gradients, e.g., due to rapid temperature increase towards the surface,
refraction may prevent a ray from reaching the surface, especially for sources at longer
ranges. In that case, the source signal reaches the receiver over a direct path and a path that
has an upper turning point rather than a surface reflection. In this connection, the dashed-
line eigenrays that are shown in Figure 1 may be thought of either as surface-reflected rays
or rays with an upper turning point. Rays with upper turning points can alternatively be
used in place of surface-reflected rays for source range/depth estimation. The extension
to turning-point eigenrays enables the localization of sources at longer ranges and, in this
connection, it is of practical interest, as will become clear in Section 3.

With the above definitions and expressions, the solution of the linearized range/ depth
estimation problem can be obtained from Equations (4) and (5). An iterative scheme is
applied to address the non-linearity of the model relations: using a first guess for r1, r2,
r3, zs, and their standard deviations, the model relations are linearized about the selected
source range/depth values, the measured hydrophone depths and the measured sound-
speed profile (θ = 0), and the linear inverse problem is solved (Equations (4) and (5)).
Subsequently, each next step in the iteration process uses the inversion results from the
previous step as linearization reference. For r1, r2, r3, and zs, the inversion results are also
used as prior means, whereas the initial standard deviations are gradually increased such
as to remove the corresponding constraints. For h1, h2, h3 and θ the measured values and
corresponding standard deviations are used as a priori constraints for all inversions. For a
robust estimation, the final localization, after convergence, has to be independent of the
initial guess.

2.1.2. Step 2: Localization in the Horizontal

If the hydrophone locations in the horizontal are known, they can be combined
with the estimated ranges, r1, r2, r3 from the previous section to specify the horizontal
location of the source. Adopting a cartesian coordinate system (x, y), the assumed receiver
locations are denoted by (x1, y1), (x2, y2), (x3, y3) and the sought source location by (xs, ys).
Subsequently, the following equations hold:

(xs − xi)
2 + (ys − yi)

2 = r2
i , i = 1, 2, 3. (9)

This is an overdetermined system of equations for (xs, ys) with data vector

d = [r1, r2, r3]
T , (10)

and model vector
m = [xs, ys, x1, y1, x2, y2, x3, y3]

T . (11)

In this case, the data covariance matrix is the upper-left 3×3 submatrix of the posterior
covariance matrix from the previous step, which is not diagonal in general. The individual
terms of the Jacobian (i.e., the derivatives of ri with respect to xs, ys, xi, and yi, i = 1, 2, 3)
can be easily derived from Equation (9). Equations (4) and (5) give the solution to the linear
problem. To deal with the non-linearity of the model relations, Equation (9), an iterative
approach is applied, initiated by a first guess for xs, ys, and their standard deviations, in a
similar way as in the previous section. Section 3.1.2 gives examples of this iterative scheme.

2.2. 2D Localization

In the previous Section 2.1, the estimation of source range, depth, and horizontal
location is achieved by exploiting the TDOAs between double arrivals (direct and surface-
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reflected arrivals or direct and turning-point arrivals) at the three hydrophones. However,
there are cases where double arrivals may not be available, e.g., the surface-reflected
arrivals may be weak due to increased surface roughness, or the delay from the leading
direct arrivals may be too small to resolve, e.g., if the source is too close to the surface.
In such situations, an approximate 2D localization in the horizontal can be carried out
based on the direct arrivals only, omitting the depth dimension of the problem, assuming
known hydrophone locations in the horizontal [6].

In this case, the data vector, based on TDOAs between direct arrivals, is defined as

d = [τ21, τ31]
T , (12)

and the model vector as

m = [xs, ys, x1, y1, x2, y2, x3, y3]
T . (13)

In the absence of the depth dimension, the model relations can be expressed as

τi1 =

[√
(xs − xi)

2 + (ys − yi)
2

−
√
(xs − x1)

2 + (ys − y1)
2
]

/c, i = 2, 3, (14)

where c is a typical sound-speed value (e.g., 1500 m/s). The Jacobian terms are simply
the derivatives of these expressions with respect to xs, ys, xi, and yi, i = 1, 2, 3. While
the Jacobian can be used for the calculation of the localization uncertainties, Equation (5),
the location estimates, x̂s, and ŷs, themselves can be directly obtained by triangulation.

3. Numerical Results

Some numerical results for localization uncertainties that are based on analytic esti-
mates and simulations are presented in this section. The same sound-speed profile and
vertical sound-speed mode are assumed, as in [16], shown in Figure 2, representing typical
propagation conditions for the eastern Mediterranean Sea in summer. The sound speed
mode is linearly increasing from 0 m/s at a depth of 30 m to 1 m/s at the surface, rep-
resenting sound speed deviations due to warming/cooling of the near the surface layer.
The source is assumed at a depth of 800 m, a typical foraging depth for sperm whales,
and at different ranges and azimuths.

All three hydrophones are assumed at a depth of 100 m forming an isosceles triangle
with side length L12 = L13 =1000 m and central angle of 120°, 90°, and 60°, i.e., an obtuse,
right, and equilateral triangle, respectively, as shown in Figure 3. For comparison purposes
a two-hydrophone array, Figure 3d, is also considered.

The RMS error for TDOAs between direct arrivals at different hydrophones, assuming
high-accuracy synchronization, e.g., through pulse-per-second (PPS) signals [37], is taken
δτ21,RMS = δτ31,RMS = 0.1 ms. The surface-reflected travel times are subject to additional er-
rors due to the sea-surface roughness [38] and, in this connection, a larger value is taken for
the RMS error for TDOAs between direct and surface-reflected arrivals, δτiri,RMS = 0.2 ms,
i = 1, 2, 3 [17]. The RMS uncertainty for the hydrophone depths is taken δhi,RMS = 0.1 m,
i = 1, 2, 3, being compatible with typical accuracies of depth sensors (±0.1 to ±0.2% of
the full scale, the latter assumed 100 m) and for the sound-speed parameter θRMS = 1
corresponding to an RMS error in the temperature measurement at the sea surface of
about 0.45 °C.
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Figure 2. Sound speed profile (left panel) and vertical sound-speed mode (right panel).

Figure 3. The three-hydrophone geometries considered: (a) obtuse triangle, (b) right triangle,
(c) equilateral triangle. and (d) two-hydrophone array.

3.1. 3D Localization Uncertainty

Localization uncertainties for the two steps of the 3D localization approach, range/
depth estimation, and localization in the horizontal are presented in this section. Further,
some comparisons with two-hydrophone localization uncertainties are carried out.

3.1.1. Range/Depth Estimation

Figure 4 presents the analytic source range and depth uncertainty distributions for
the three array geometries considered, for different source locations in the horizontal (x-y
plane), covering a 20 km × 20 km area about each array. The top three panels show the
RMS uncertainty in range, and the bottom three panels the RMS uncertainty in depth, both
being normalized with the actual value of the respective quantity (actual range or depth).
The normalized range uncertainty increases with distance from the array, taking larger
values at the broadside of the hydrophone pair with the largest separation. As expected,
the uncertainty distribution becomes more uniform in azimuth as the array geometry
changes from obtuse to right and, finally, equilateral. The maximum range uncertainties
remain smaller than 25% for all source locations. The normalized depth uncertainty also
increases with distance up to a certain range, beyond which it starts to decrease—this
behavior will be explained shortly—remaining smaller than 15%. Again, the uncertainties
are larger at the broadside of the hydrophone pair with the largest separation and become
azimuthally more uniform in the case of the equilateral array geometry.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Posterior RMS uncertainty distributions for normalized source range (a–c) and depth (d–f) as a function of source
position in the horizontal (source depth 800 m) for the three array geometries considered. The marked points, A, B, and, C
in the leftmost panels denote source locations for Monte Carlo simulations.

At a range of approximately 6 km, a ring formation is observed in Figure 4, charac-
terized by a slightly different uncertainty behavior for all three array types, both in range
and depth. This ring is associated with the existence of caustics and, in this connection,
it is called “the caustics zone”. Figure 5 shows the geometries of surface-reflected and
turning-point rays (cyan and gray lines, respectively) emanating from a receiver on the
vertical axis at a depth of 100 m in the refractive environment that is characterized by
the sound-speed profile of Figure 2. Only the parts of the rays from the corresponding
surface-reflection/turning point outward are shown. Rays that have a large grazing angle
at the receiver reach the surface and continue as surface-reflected (cyan) rays. At smaller
grazing angles after a certain point, the strong downward refraction prevents the rays from
reaching the surface and gives rise to an upper turning point, such that the rays are no
longer surface-reflected, but refracted (grey) with an upper turning point. Refracted rays
have the tendency to form caustics, in which case a decrease of the grazing angle at the
receiver causes a temporary contraction, a range decrease, in contrast to the general trend.
Such a caustic formation is seen in the first gray rays that are shown in Figure 5.

The isochrones corresponding to 5, 10, 15, and 20 ms are also shown (black lines)
in Figure 5. Each isochrone is the locus of points (range-depth pairs), where the TDOA
between direct and surface-reflected/turning-point arrivals at the receiver takes a certain
value and, thus, it is the locus of possible solutions to the localization (range/depth
estimation) problem. The shallowest isochrone presented in Figure 5 corresponds to 5 ms
and the deepest one to 20 ms.
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Figure 5. Surface-reflected (cyan) and turning-point rays (grey) emanating from a receiver at 100 m
depth, after reflection/turning point. Black lines: Isochrones corresponding to 5 (shallowest), 10, 15,
and 20 ms (deepest).

Taking the 5-ms isochrone, the following remarks can be made. In general, the depth
increases with range, and the gradient of this dependence decreases with range due to
refraction. When the isochrone meets the caustic, it suffers a temporary setback during
which the range and depth decrease—rather than increase—with decreasing grazing
angle at the receiver. This behavior gives rise to local multiplicity in the range-depth
dependence, which causes ambiguity in the localization problem [13]. Nevertheless,
as it is observed in Figure 5, the deviation of the caustic loop from the main part of
the isochrone is relatively small and it becomes smaller for steeper isochrones that
correspond to larger TDOA values (deeper sources): the 5-ms isochrone meets the
caustic at about 300-m depth and 3300-m range, and the resulting caustic loop is quite
well separated from the main isochrone body, whereas the 10-ms isochrone meets the
caustic at about 670-m depth and 5400-m range, and the caustic loop is very close to the
isochrone body. For a source depth of 800 m, the caustic is encountered at the range of
about 6 km, the range where the rings in Figure 4 are observed. The rings result from
the superposition of the caustic deviations from the three hydrophones.

The leveling in the shape of the isochrones with increasing range, as observed in
Figure 5, explains the difference in the behavior of the uncertainty distribution of the
normalized depth, when compared to that of the normalized range for longer ranges in
Figure 4, namely the fact that the range uncertainty increases for longer ranges, while
the depth uncertainty increases up to a certain point and then decreases. By observing
the isochrones presented in Figure 5, it is seen that for a certain source depth, e.g., 800 m,
the gradient of the depth dependence on range decreases as the range becomes larger.
This change in slope, which is due to refraction, indicates that the uncertainty in depth
estimation becomes gradually smaller relative to the uncertainty in range estimation.
This is the behavior observed in Figure 4 at longer ranges.

Further, in Figure 5, the extension of the localization range that is obtained through
the exploitation of turning-point arrivals can be seen. For example, for source depths of
800 m and 1000 m, the surface-reflected rays in the particular environment reach out to
about 5.7 and 7 km, respectively. Assuming that a minimum time difference of 10 ms
is required for arrival resolution, the corresponding ranges for turning-point arrivals
along the 10-ms isochrone are about 6.7 and 9 km, an extension by about 1 km and
2 km, respectively.
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The uncertainty estimates that are shown in Figure 4 are based on local linear
approximations of the model relations. In order to check the validity of these linear
approximations, Monte Carlo simulations are carried out in the case of the obtuse array
geometry for three source locations A, B, and C, as shown in Figure 4a,d. In each simu-
lation, a large number of non-linear inversions are carried out. Each inversion applies
on different synthetic data (TDOAs, hydrophone depths, sound-speed parameter) that
are generated by adding random errors that are drawn from normal probability density
functions (PDFs), the same as those underlying Figure 4. The histograms of the resulting
source ranges and depth (posterior empirical distributions) are then compared with the
posterior analytic PDFs that result from the analytic approach.

Figure 6 shows the normalized histograms of the deviations of the ranges r1, r2, r3,
and depth zs from their true values (xs = −100 m, ys = 5600 m, zs = 800 m) for source
location A. For the generation of the histograms, 5000 independent non-linear inversions
were conducted with randomly perturbed synthetic data. The corresponding normal
PDFs (red solid curves) that result from the analytic approach are also shown in this
figure. It is seen that all four empirical distributions are in very good agreement with
the analytic PDFs indicating that the linearization is a good approximation in this case.

Figure 7 shows the normalized empirical distributions for source location B (xs = 3500 m,
ys = −5000 m, zs = 800 m). In this case, the source lies on the caustics zone. As in the
previous case, 5000 non-linear inversions with randomly perturbed synthetic data were
used to generate the histograms. Again, the corresponding analytic normal PDFs (red
solid curves) from the local linear approach are superimposed. Additionally, for this
case, the histograms fit very well the analytic PDFs. It is worth noticing that the depth
uncertainty presented in Figure 7d is smaller than in Figure 6d. This is due to the drop
in relative uncertainty on the caustics zone, cf. Figure 4d. On the other hand, the range
deviations have approximately the same behavior as in the previous case (Figure 6d);
this is because the drop in relative uncertainty on the caustics zone, cf. Figure 4a, is
compensated by the increase, by about 500 m, in source range, from A to B.
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The normalized empirical distribution of range/depth deviations for source location
C, from 5000 non-linear inversions with randomly perturbed synthetic data, is shown in
Figure 8, along with the corresponding analytic PDFs. Now, the source lies outside the
caustics zone at a range of about 7.9 km (true source location xs = −7500 m, ys = −2500 m,
zs = 800 m), and the empirical distributions are slightly skewed, more for range deviations
and less for depth deviations. This is caused by the deviation of the isochrones from
linearity and the decrease in their slope at longer ranges, as observed in Figure 5, in a way
that affects more the range deviations than the deviations in depth. A further remark is that,
while the range uncertainties have increased significantly, by a factor of approximately 3,
as compared to the corresponding uncertainties at locations A and B, the increase in the
source depth uncertainty is much smaller, approximately by a factor of 1.5; this is associated
with the different behavior of range and depth uncertainties that are observed in Figure 4
at longer ranges.

3.1.2. Localization in the Horizontal

The horizontal source location and source bearing can be obtained from the estimated
source ranges, provided that the hydrophone geometry in the horizontal is known, to within
some uncertainty. In the following, the RMS uncertainty for the horizontal hydrophone
fixes is taken δxRMS = δyRMS =10 m.

Figure 9 shows the bearing estimation uncertainty distribution for the three array
geometries (obtuse, right, and equilateral triangle), relying on the covariance characteristics
of the estimated ranges from the previous step. In general, the uncertainty is low, less than
2◦, increasing for source locations close to the endfire and decreasing for locations close to
the broadside of the hydrophone pair with the largest separation, i.e., the directions aligned
with and perpendicular to the longest dimension of the array, respectively. As expected,
the uncertainty distribution becomes more uniform as the array geometry changes from
obtuse to equilateral. However, in the case of the obtuse array, positions about the endfire
exhibit higher error in comparison with the other geometries, whereas, in the broadside
area, the obtuse array performs better.

(a) (b) (c)

Figure 9. Posterior RMS uncertainty distributions for bearing estimation from 3D localization as a function of source
position in the horizontal for the three array geometries considered, (a) obtuse, (b) right, and (c) equilateral.
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(a) (b) (c)

(d) (e) (f)
Figure 10. Examples of iterative localization in the xy-plane for the obtuse array geometry, for source locations A, B, and C
defined in Figure 4, leftmost (a,d), middle (b,e), and rightmost (c,f) panels, respectively. A circle denotes the true source
location, a cross the final estimation result, the ×’s denote intermediate estimates, and a diamond marks the initial guess.
The ellipses represent the localization uncertainties corresponding to one standard deviation. Full/detailed views are
presented in the upper/lower panels, respectively.

Figure 10 shows three examples for iterative localization in the horizontal in the case
of the obtuse array geometry. The three examples correspond to the three source locations,
A, B, and C, as shown in Figure 4a,d. For each localization the hydrophone locations are
perturbed by adding random errors, drawn from the corresponding prior distributions,
to the true hydrophone locations. The prior RMS uncertainties for xs and ys for the first
iteration step (the first inversion) are set to 10 m, and they are gradually relaxed (doubled)
at every subsequent iteration step. The same first guess is used for all three localizations to
show that the final localization result is independent from the selection of the first guess
once convergence is established. The initial guess, the intermediate, and final localization
results are shown in Figure 10 for the three cases, A, B, and C. The uncertainty ellipses
about the final localization results that correpond to one standard deviation, resulting from
the estimated posterior covariance matrix between xs and ys are also shown. In all three
cases, the uncertainty in range estimation is in agreement with the results that are shown
in Figure 4a. Furthermore, the true source location in each case lies within the uncertainty
ellipse of the corresponding final localization.

In order to compare between two- and three-hydrophone performance, Figure 11
presents the estimated uncertainty distributions for normalized range (left), normalized
depth (center), and bearing (right) for a pair of hydrophones with the same separation
(1 km) and depth (100 m), as in the previous examples, following the localization approach
described in [16], extended to also exploit turning-point arrivals and corresponding TDOAs.
In this connection, the caustics zone at ranges of about 6 km, associated with refracted
turning-point arrivals, is observed in the uncertainty distributions for the normalized range
and depth.
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From a comparison of these results with the results that are shown in Figures 4 and 9,
the benefit of using three rather than two hydrophones becomes immediately apparent.
With the three-hydrophone array, smaller uncertainties are obtained in general. While the
two-hydrophone array has blind spots, areas of high uncertainty, such as the broadside
direction for range and depth estimation and the endfire direction for bearing estimation,
the considered three-hydrophone arrays demonstrate functional performance in all direc-
tions. Furthermore, the left-right ambiguity, characterizing hydrophone pairs, and linear
arrays in general, is resolved with the addition of a third hydrophone, non-aligned with
the other two.

(a) (b) (c)
Figure 11. Posterior RMS uncertainty distributions for normalized source range (a), depth (b), and bearing (c) from
two-hydrophone localization as a function of the source position in the horizontal. The source depth is 800 m.

3.2. 2D localization Uncertainty

In this section, some uncertainty results for 2D localization, omitting the depth di-
mension and relying on direct arrivals [6], are presented. Figure 12 shows the estimated
uncertainty distributions for source bearing (top) and relative range (bottom) for the obtuse
array geometry and for different values in the uncertainty of the hydrophone location in
the horizontal, 10 m RMS (left) and 30 m RMS (right), respectively. The same RMS error
for TDOAs between direct arrivals as before has been used (δτ21,RMS = δτ31,RMS = 0.1 ms).
The bearing uncertainty distribution in the upper left panel is almost identical with the
corresponding distribution from 3D localization (Figure 9a). This is a confirmation that, for
the bearing estimation, the TDOAs between direct arrivals are sufficient [9]. The top right
panel exhibits a deterioration in bearing estimation accuracy with hydrophone location
uncertainty in the horizontal (note the difference in the color scales), and the bearing
estimation in 3D localization (not shown) is affected in a similar way. This points to the
importance of the hydrophone horizontal positioning accuracy for bearing estimation.

The bottom panels presented in Figure 12 show the uncertainties in normalized ranges.
The uncertainties in Figure 12c are much larger than the ones that are shown in Figure 4a
(note the difference in the color scales), even though a relatively small horizontal receiver
location uncertainty is used (10 m RMS). On the other hand, the result shown in Figure 4a is
independent of the uncertainty in the hydrophone location in the horizontal. In Figure 12d,
the range estimation uncertainties are much larger due to the larger uncertainty in receiver
locations in the horizontal (30 m RMS). The range/depth estimation in the 3D localiza-
tion approach is not affected at all by this change. The uncertainty patterns shown in
Figure 12c,d are similar to the 2D localization error results presented in [6], where larger
uncertainties (50 m RMS) for the horizontal receiver locations are assumed.
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(a) (b)

(c) (d)
Figure 12. Posterior RMS uncertainty distributions for source bearing (a,b) and relative source range (c,d) from 2D
localization as a function of source position in the horizontal for the obtuse array geometry assuming different RMS
uncertainties for the hydrophone locations in the horizontal: (a,c) 10 m. (b,d) 30 m.

Figure 13 presents the RMS horizontal localization uncertainty ellipses resulting from
the 3D and the 2D localization approaches for different source locations around the obtuse
hydrophone array. For both approaches, an uncertainty of 10 m RMS is assumed for
the receiver locations in the horizontal. While the bearing uncertainties from the two
approaches are comparable, in agreement with the above remarks, the range uncertainties
are very different in both magnitude and behavior. The range estimation uncertainties
in 3D localization are larger close to the broadside and decrease towards the endfire
of H2 and H3, the hydrophone pair with the largest separation. The 2D localization,
on the other hand, results in much larger range uncertainties in general, which also follow
the more complicated pattern of Figure 12c. This is because, in 2D localization, range
estimation is obtained through the intersection of different bearings; in this connection
the range uncertainties are smaller at the broadside of H2 and H3, still much larger than
their 3D localization counterparts, simply because bearing estimation is subject to smaller
uncertainties at the broadside. On the basis of these results, 2D localization is useful
for bearing estimation, but quite questionable for range estimation. On the other hand,
the exploitation of surface-reflected or turning-point arrivals results in smaller errors in
range estimation and smaller dependence on receiver location accuracy.
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(a) (b)
Figure 13. RMS ellipses demonstrating the posterior localization uncertainties corresponding to one standard deviation for
various source locations around the obtuse array. (a) 3D localization. (b) 2D localization.

4. Discussion

The proposed Bayesian localization approach aims at extending two-hydrophone
source localization in a way that retains its advantages and eliminates its drawbacks,
with the minimum possible addition, that of a third hydrophone, not in line with the
other two. The present approach can be extended to an arbitrary number of hydrophones;
nevertheless, the emphasis here is on keeping the array size small.

The environmental conditions are assumed range independent, being characterized
by a single sound-speed profile measured close to the time of the localization; for ranges
up to 10 km and in areas away from ocean fronts, the range dependence of the medium
is expected to be of limited importance. The sound speed mode is introduced in order to
account for small deviations from the measured sound-speed profile, e.g., due to warming
or cooling in the near-surface layer, in the estimation of localization uncertainty. Thus,
the sound-speed profile accounts for the gross refraction effects on localization, whereas
the sound-speed mode serves the quantification of uncertainty.

Different array geometries were considered in order to study their effect on the
uncertainty distributions. The optimal configuration in each case depends on deployment
constraints and set goals. For example, for open-ocean deployments, the equilateral triangle,
providing a nearly uniform coverage in the azimuth, would be in general preferable. On the
other hand, for near-shore deployments where the emphasis is on covering a broad offshore
sector, the obtuse geometry could provide acceptable uncertainties over a wider area.

The array geometries and dimensions that are considered in this work are associated
with the design of a moored deep-water large-aperture acoustic observatory for sperm
whales planned to be deployed in summer 2021 south of the island of Crete in the Eastern
Mediterranean Sea, in the framework of the SAvEWhales project. Three hydrophones, each
one suspended from a different surface platform, are planned to form a large-aperture
array with separations of about 1 km. This is expected to result in small localization er-
rors, while, at the same time, it will pose significant challenges that are related to arrival
association [11,19,39] across the different hydrophones. The association problem will be
addressed using a pattern cross-correlation approach that has been developed and will
be presented in a future publication, together with experimental results. The synchro-
nization between the hydrophones will be obtained by exploiting PPS (pulse per second)
signals – periodic box-shaped pulses of duration 0.1 s and period 1 s – emitted from GPS
satellites [18,37]. A thermistor chain is planned to be suspended from the central acoustic
station, which will periodically measure the temperature profile in the upper water layer,
in order to account for the environmental variability [40].
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Regular sperm whale clicks have ICIs (inter-click intervals) that range between 0.5
and 2 s [41]. In order to cope with such repetition rates and possibly also with multiple
vocalizations, the localization codes have been implemented in C-language resulting in
short execution times, typically less than 0.03 s per 3D localization on a standard PC and,
thus, enabling the development of a real-time monitoring system.

5. Conclusions

In this work an enhanced three-hydrophone 3D localization method addressing the
pitfalls of two-hydrophone localization was presented. The addition of a third hydrophone,
not aligned with the other two, removes the left-right ambiguity and lowers the range/
depth and bearing estimation uncertainties for sources at the broadside and the endfire
of the array respectively, also offering useful fallback options, e.g., in the case of failure of
one hydrophone.

Refraction is taken into account and turning-point arrivals are exploited, in addition
to surface-reflected arrivals, enabling localization at longer ranges, which, however, may
be influenced by the formation of caustics. Furthermore, significant differences in the
uncertainty behavior of estimated source range and depth have been observed, caused by
refraction and the induced nonlinearity of the isochrones at longer ranges.

The non-linearity of the model relations is treated through linearization and iter-
ative inversions. The initialization affects the inversion results in the early iteration
steps, as expected, nevertheless, the final estimates, after convergence, are independent of
the initial guess.

The analytic uncertainty distributions for different array geometries are compared
against the two-hydrophone array performance and against the empirical distributions
that result from full, non-linear inversions, showing that the adopted local linearization
scheme is a good approximation. Finally, the horizontal localization results are compared
against 2D localization based on direct arrivals only.
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