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Abstract: Snapshot Compressive Imaging is an emerging technology that is based on compressive
sensing theory to achieve high-efficiency hyperspectral data acquisition. The core problem of this
technology is how to reconstruct 3D hyperspectral data from the 2D snapshot measurement in a
fast and high-quality manner. In this paper, we propose a novel deep network, which consists of
the symmetric residual module and the non-local spatial-spectral attention module, to learn the
reconstruction mapping in a data-driven way. The symmetric residual module uses symmetric
residual connections to improve the potential of interaction between convolution operations and
further promotes the fusion of local features. The non-local spatial-spectral attention module is
designed to capture the non-local spatial-spectral correlation in the hyperspectral image. Specifically,
this module calculates the channel attention matrix to capture the global correlations between all
of the spectral channels, and it fuses the channel attention attained feature maps and the spatial
attention weighted features as the module output, thus both of the spatial-spectral correlations of
hyperspectral images can be fully utilized for reconstruction. In addition, a compound loss, including
the reconstruction loss, the measurement loss, and the cosine loss, is designed to guide the end-to-end
network learning. We experimentally evaluate the proposed method on simulation and real datasets.
The experimental results show that the proposed network outperforms the competing methods in
terms of the reconstruction quality and running time.

Keywords: hyperspectral image; coded aperture snapshot spectral imaging; deep network; non-local
spatial-spectral attention; compound loss

1. Introduction

Hyperspectral images (HSIs) are three-dimensional data cubes, in which the first two
dimensions represent spatial information, and the third dimension represents spectral
information of scene objects [1]. By performing high-resolution spectral imaging, each
pixel can contain dozens or hundreds of spectral bands. Therefore, HSIs not only reflect
the spatial geometric distribution of the scene, but they also obtain the spectral signature
for each pixel in the scene. The spectral signature can reflect the variation of reflectance of
a material with respect to wavelengths, such that they can be used to identifying materials
and detect the object in the scene [2]. HSI has been applied in many fields, such as remote
sensing [3], precision agriculture [4], and military applications [5].

Although hyperspectral data are three-dimensional, hyperspectral imagers usually
detect the spatial-spectral data through one-dimensional line sensors or two-dimensional
sensors. In order to acquire the full hyperspectral cube, some representative hyperspectral
imaging devices, including push broom [6] and whisk broom [7] and staring imagers [8],
need to perform spatial scanning or spectral scanning to complete the acquisition of three-
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dimensional spatial-spectral information. Different from these scanning based spectral
imagers, snapshot compressive imaging systems take advantage of the compressing sens-
ing technology to sample the whole spatial-spectral data by snapshot measurement without
scanning [9,10]. According to this mechanism, a Coded Aperture Snapshot Spectral Imag-
ing (CASSI) system [9], as a representative type of hyperspectral snapshot imaging system,
has been developed for more than ten years. Specifically, CASSI systems obtain a 2D snap-
shot measurement by a linear random encoding of the whole data cube according to the
compressive sensing theory. The most significant benefits of these snapshot hyperspectral
imaging systems over the scanning based imagers are the lower data sampling volume
and shorter imaging time. Owing to these advantages, CASSI systems have the capacity
to achieve high-speed hyperspectral imaging. However, the snapshot measurement is a
projection transformation of the original data value, not the data value itself. The CASSI
system needs to solve an optimization problem to obtain the final reconstruction.

The task of reconstructing HSI from the acquired snapshot measurement is a highly
ill-posed problem due to the under-mined acquisition mode of CASSI systems [10,11]. To
cope with this issue, many studies try to exploit pre-defined image priors to formulate
the reconstruction as a regularized optimization problem. Some commonly used priors
include the sparse representation, the total variation (TV) [12], non-local similarity [13],
and so on [14]. However, solving these problems requires the use of time-consuming
iterative optimization, which leads to high reconstruction complexity. This has become
an important factor hindering the practical application of the CASSI system. At the same
time, these predefined priors cannot describe the spatial-spectral correlation characteristics
of hyperspectral data well, which reduces the reconstruction quality. With the excellent
learning ability of deep networks [15], scholars are committed to using deep convolutional
networks to supervisely learn the explicit mapping from snapshot measurement to the
original HSI. This end-to-end learning method can significantly reduce the reconstruction
time. However, these existing deep learning methods do not make full use of the coupled
spatial-spectral structure of hyperspectral data in network design. In terms of spectral
dimension, there are correlations between not only adjacent channels, but also global
channels. Because each channel of HSI is the imaging of the same scene at different
wavelengths, and these wavelengths are densely sampled at certain intervals within a
certain range. In terms of spatial dimension, neighboring pixels usually have similar
spectral characteristics. For this reason, these prior structures should be used in the design
of the network architecture, which can further improve the quality of reconstruction.

In this paper, we propose a novel Non-local Spatial-Spectral Residual Network
(dubbed as NSSR-Net) to learn the parametric reconstruction mapping. The proposed net-
work exploits the symmetric residual module and the non-local spatial-spectral attention
module to represent the underlying hyperspectral data, and learns network parameters in
a supervised manner under the constraint of a well-defined compound loss function, as
shown in Figure 1. Subsequently, we only need to feed the snapshot measurement of the
test sample to the well-trained network to achieve efficient and fast reconstruction. Our
main contributions can be summarized as follows:

1. we propose a non-local spatial-spectral attention module to represent the HSI data, and
both the spatial structure and the global correlations between spectral channels are
exploited to improve the reconstruction quality;

2. we design a compound loss, consisting of the reconstruction loss, the measurement loss
and the cosine loss, to supervise the network learning. In particular, the cosine loss can
further enhance the fidelity of the reconstructed spectral signatures;

3. and experimental results demonstrate that the proposed model achieves better perfor-
mance on simulation and real datasets, which proves the effectiveness and superiority
of the proposed network.
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Figure 1. The overall framework of the proposed method. It consists of the training stage and test stage. The reconstruction
of test image can be obtained by just feeding the CASSI measurement into the well-trained network.

2. Related Work

Hyperspectral snapshot compressive imaging is an important manner for achieving
efficient spatial-spectral data acquisition. Specifically, it follows that the computational
imaging mechanism encodes the scene content into a snapshot measurement through the
principle of compressive sensing and decodes it through a reconstruction algorithm. How
to develop a fast and efficient reconstruction algorithm is a key problem for hyperspectral
snapshot compressive imaging. Many methods have been proposed to cope with this
problem. The prior-driven method is a classical reconstruction framework, which models
the reconstruction as a convex optimization problem with prior regularization, and obtains
an ideal hyperspectral image through iterative optimization. With the development of
deep learning, recent attention has focused more on developing network-driven methods
and exploits the deep network to learn the reconstruction mapping from training dataset.
In the following, we briefly introduce some representative work in these two categories
of methods.

Prior-Driven methods: because to the inherently underdetermined measurement, the
prior-driven methods utilize the diverse priors to regularize the reconstruction problem.
The objective function of the reconstruction model can be formulated as a weighted sum
of the regularization term associated with HSI priors and a data fidelity term associated
with the imaging observation equation. A primary concern of prior-driven methods is how
to design proper priors to characterize the spatial-spectral correlations in HSIs. Ref. [10]
used the wavelet transform to represent each sub-band image of the unknown HSI and
formulate the reconstruction as a sparse optimization problem. The total variation (TV)
prior is recognized to be effective in maintaining the sharp structures, and it was also
used for hyperspectral snapshot compressive reconstruction to improve the reconstruction
accuracy [16]. Ref. [17] proposed an adaptive non-local sparse representation model to
improve the performance. Liu et al. [18] exploited the weighted nuclear norm to characterize
the low rank prior of a group of matched patches. The reconstruction performance of
prior-driven methods largely depends on the prior regularization used. However, these
priors are hand-crafted and cannot match the characteristics of hyperspectral data well,
thus affecting the reconstruction quality.

Given the established reconstruction model, we need to perform iterative optimization
to find the final reconstruction. Many optimization algorithms, including iterative shrink-
age thresholding, proximal gradient, and the alternating direction method of multipliers,
are used to reduce the optimization complexity of each iteration through decomposing the
original complex problems into simple sub-problems [19]. However, each iteration still
involves huge matrix multiplication, which is time-consuming.

Network-Driven methods: deep networks have made gratifying progress in vision-
related tasks [15,20,21]. With the help of the excellent representation ability of deep network,
some scholars apply it to compressive sensing reconstruction, forming a network-driven
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reconstruction method. Different from the iterative optimization based methods, the
network-driven methods can directly learn an explicit mapping from the compressive
measurement to the HSI and reconstruct the new HSI by just performing a feed-forward
computation over the learnt network.

Here, we introduce some representative deep networks for hyperspectral snapshot
reconstruction. Xiong et al. proposed a convolution network, dubbed Hscnn [22], to
learn the incremental residual to enhance HSI reconstruction. Chol et al. trained an
autoencoder to learn the nonlinear spectral representation and employed it as a spectral
prior of the variational model for reconstruction [23]. Wang et al. [24] unrolled the
iterative optimization of HSI reconstruction into a deep network, and then learned the
parameters simultaneously. Zheng et al. [25] exploited a deep-learning-based denoisers
as regularization priors and embedded it into the optimization framework for spectral
snapshot compressive reconstruction. Miao et al. [26] proposed a two-stage conditional
generative model, named λ–net, to generate the reconstruction conditional on the CASSI
measurement and masks. A discriminator is also employed by λ–net to discriminate
whether the network output is a reconstructed HSI or ground-truth.

Because of the correlation between spatial pixels and spectral bands in HSIs, a lot
of work began to introduce the attention mechanism [27] to capture the spatial-spectral
correlation [28,29] for hyperspectral image analysis. Ref. [30] combined four 3-D octave
convolution blocks and two attention models that were introduced from spatial and spec-
tral dimensions to capture spatial-spectral features from HSIs. This work achieved efficient
hyperspectral classification. Ref. [31] proposed an interpretable spatial-spectral reconstruc-
tion network, consisting of cross-mode message inserting, spatial reconstruction network,
and spectral reconstruction network, to achieve the efficient fusion of hyperspectral and
multispectral image. With respect to hyperspectral snapshot compressive reconstruction,
Ref. [32] used the self-attention mechanism to process the feature information separately
from the channel dimension and the spatial dimension, achieving high-quality reconstruc-
tion. Ref. [26] employed non-local spatial attention module to capture the long range
dependencies in space. However, the calculating of spatial attention map will consume a
lot of computing and memory resources due to huge size of HSIs. Inspired by the non-local
network in [33], our work designs a non-local spatial-spectral attention module consisting
of the spectral attention path and the spatial attention path. The spectral path calculates
the channel attention matrix to capture the global correlations between all of the spectral
channels, the spatial path captures the spatial correlation within hyperspectral images.
Therefore, the spatial-spectral correlations of hyperspectral images can both be effectively
utilized for reconstruction.

3. CASSI Forward Model

Before detailing the proposed reconstruction network, we first briefly introduce the
CASSI system. It encodes a 3D spectral scene into a 2D snapshot measurement according
to a specific compressive projection manner. Physically, the spectral scene is first collected
by the objective lens and spatially encoded by a coded aperture. Subsequently, the encoded
scene is dispersed through a disperser, for example, the dispersion degree of each band
is linear with its index, and the final snapshot measurement is captured by a 2D detector.
Mathematically, the snapshot compressive spectral imaging measurement process can be
formulated as:

y = Φh + ε, (1)

where h ∈ RHWB is the vectorized representation of original HSI x with H, W as the spatial
size, and B as the number of spectral channels, Φ ∈ RHW×HWB is the forward matrix
that describes the CASSI system imaging model, and ε represents the noise corruption
that naturally exists in the imaging system. According to the CASSI imaging principle,
Φ is actually a combination of diagonal matrices with a special form that can be further
expressed as

Φ = [D(C1), D(C2), · · · , D(CB)], (2)
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where coded apertures {Ci}B
i=1 ∈ RH×W are generated by shifting the mask with a dif-

ferent degree, D(•) is an operation that represents a diagonal matrix. In particular, the
sensing matrix Φ depends on the coded apertures and the measurement y is can be simply
computed as:

y =
B

∑
i=1

Xi � Ci + ε, (3)

where �means the element-wise product and {Xi}B
i=1 ∈ RH×W are spectral bands of the

original HSI x.

4. The Proposed Method

The core problem of hyperspectral snapshot compressive imaging is to reconstruct
unknown 3D data from the 2D measurement that is captured by the imaging system.
Different from the single-channel panchromatic image, hyperspectral images have many
spectral bands, and there are correlations within and between these spectral bands. The
correlations within these spectral bands mainly refer to te hspatial correlation, which is,
the gray levels of adjacent pixels also have a certain similarity. Regarding the correlations
between these spectral bands, not only does this correlation exist between adjacent bands,
but there is also a global correlation between spectral bands that are far apart, which is,
this correlation is non-local. We design a Non-local Spatial-spectral Residual Network
(NSSR-Net) to learn the parameterized reconstruction mapping in order to exploit both the
spatial and non-local spectral correlation prior for reconstruction.

4.1. Non Local Spatial-Spectral Residual Reconstruction Network

Figure 1 shows the network architecture of the proposed NSSR-Net. NSSR-Net
first employs a 3× 3 convolution layer to process the input snapshot measurement and
generates a feature map with 64 channels. What are subsequently configured are the core
components of the network, namely the residual module and the non-local spatial-spectral
attention module. The non-local spatial-spectral attention module is set in the middle of
the multiple symmetric residual modules. Finally, a 3× 3 convolutional layer with sigmoid
activation function is used to make the output of the network the same channel as the
original HSI and normalize the range of each item in the output to [0, 1]. In the following,
we elaborate on the details of the two core components of the proposed network.

4.1.1. The Symmetric Residual Module

The Deep Residual Network (ResNet) [34] is a widely-used network architecture. It
use the proprietary operation of skip connection to link the input to the output, so that the
convolutional block only needs to learn incremental information, which is, the residual
between input and output, which can further speed up the network convergence.

Being motivated by [35], we design a symmetric residual learning module with more
skips, so that the flow of information between convolutional blocks can be further enhanced.
We briefly explain the difference between symmetric residual and classical residual through
an illustration. {Fi}7

i=1 denote convolutional blocks. Figure 2a shows the classical residual
module, and the output Y is calculated as,

Y = [F2(F1(x)) + x] + F4(F3([F2(F1(x)) + x]). (4)

In the symmetric residual module (b), the output is expressed as,

Ŷ = F6[F2(F1(x)) + F5(x)] + F4[F3([F2(F1(x)) + F5(x)] + F7(F1(x)))]. (5)

It can be seen that through further linking, the final output can effectively realize
the repeated use of different convolutional layer features, which greatly enhances the
performance of feature extraction.
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Figure 2. A simple explanation of the symmetric residual module. (a) is the original residual block,
(b) is a symmetric residual module with seven convolutional blocks.

4.1.2. The Non-Local Spatial-Spectral Attention Module

As mentioned above, HSI exhibits coupled spatial-spectral correlation. For sake of
capturing this correlation, we propose a non-local spatial-spectral attention module with
the spectral attention path and the spatial attention path. The spectral attention calculates
the non-local correlation inter spectral channels, as shown in Figure 3. The spatial attention
path focuses on the spatial correlation of hyperspectral images. The final output S is the
sum of spectral attention attended feature maps Se and spatial attention attended feature
maps Sa.

Figure 3. The Non-local Spatial-spectral Attention Module, consisting of the spectral attention and
spatial attention.

We now present the detailed processing of spectral attention path. Let x ∈ RH×W×B

denote the input of this module. After 1× 1 convolution operation upon x and dimension
reshaping, we can obtain two matrices with sizes (B, H ×W) and (H ×W, B), respec-
tively. Subsequently, a weighted correlation matrix Cr ∈ RB×B can be calculated after
multiplying these two matrices and performing the so f tmax operation. Cr represents the
global correlation between the feature maps of different channels in Equation (6). Different
from the non-local processing in spatial-dimension in [33], our non-local processing occurs
in the spectral dimension, and the spectral dimension B is usually much smaller than
spatial dimension. Therefore, the entire non-local spectral correlation prediction does
not take up a lot of calculation and memory. After this operation, we also add weight
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symmetrization [36] to obtain a symmetric correlation matrix Cs. The weight symmetriza-
tion can be briefly expressed by a linear operator [36]. Subsequently, the feature map x
is subjected to 1× 1 convolution processing and then multiplication with Cs. After the
succeeding 1× 1 convolution and reshaping operation, we can obtain the final output Se of
the spectral attention path. At the same time, in the spatial attention path, we use spatial
attention to extract the spatial correlation of each feature map. The processing operation of
the non-local spatial-spectral attention module can be mathematically formulated as:

Cr = so f t max(φ1(x)× φ2(x))

Cs =
Cr+CT

r
2

Se = conv(Cs × g(x))
Sa = x� sigmoid(conv(x))
S = Se + Sa

(6)

where φ, g indicates the corresponding convolution operation, × is the matrix multiplica-
tion, � is the element-wise multiplication, and CT

r represents the transposition operation
of the weighted correlation matrix Cr. The coupled spatial-spectral correlation can be
effectively represented by the incorporation of spectral attention path and spatial attention
path. The ablation studies shown in Section 5 verify the effectiveness of the proposed
non-local spatial-spectral attention module.

4.1.3. Loss Function

We design a compound loss function consisting of the reconstruction loss, the measure-
ment loss, and the cosine loss to better guide the network learning. The reconstruction loss
Lreconstruction directly considers the geometric distance between hyperspectral images, and
the measurement loss Lmeasurement is the L1 loss between the snapshot measurement y of
the original HSI and the snapshot measurement ŷ of the network reconstructed image. The
cosine loss Lcosine is more helpful in maintaining the characteristics of the spectral signature.
It determines the average cosine distance between hyperspectral pixels, treating them
as vectors with the same dimension as the number of spectral bands. The mathematical
formulation of the cosine loss between two hyperspectral pixels is defined as

lcosine(i, j) = 1−cos(θi,j) = 1−
∑B

b=1 xi,j,b x̂i,j,b√
∑B

b=1 x2
i,j,b

√
∑B

b=1 x̂2
i,j,b

, (7)

where x is the ground truth of HSI, x̂ is the reconstructed HSI, xi,j,b denotes the entry of
x at spatial location (i, j) and spectral band b, and θ is the spectral angle formed between
reference hyperspectral pixel and reconstructed hyperspectral pixel. Figure 4 shows a
concise diagram of the spectral angle and geometric distance between pixel 1 and pixel
2. The spectral cosine distance and the geometric distance are measured by cosine loss
and L1 loss, respectively. With the joint constraints of the distance difference and the angle
difference, the reconstructed HSI can be as close as possible to the original HSI in each
spectral band.

Finally, the overall compound loss function is mathematically defined as:

Ltotal(Θ) = Lreconstruction + γ1Lmeasurement + γ2Lcosine
Lreconstruction = ‖x̂− x‖1,
Lmeasurement = ‖ŷ− y‖1,

Lcosine =
1

HW

H
∑

i=1

W
∑

j=1
lcosine(i, j),

(8)

where H, W are the spatial sizes of x, γ1 and γ2 are the parameters that tweak the weights
of each term.
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Figure 4. A diagram of the spectral angle and geometric distance between pixel 1 and pixel 2 of a
HSI with three bands.

5. Experiments

In this section, we conduct a series of experiments, including the comparative experi-
ments and ablation experiments, to evaluate the performance of the proposed method. The
methods to be compared with our method include several start-of-the-art methods, namely,
TwIST [37], GAP-TV [38], DeSCI [18], and λ-net [26]. The first three are Prior-Driven
methods, and the last is the Network-Driven method. For a comprehensive evaluation, we
perform a series of comparisons on simulation and real data.

5.1. Experimental Setting

All of the experiments are performed on an NVIDIA GTX TITAN X GPU. We employ
Pytorch to implement the proposed network. Our network is trained from scratch and
initializes all of the convolutional layers using the default setting of the Pytorch. The Adam
optimizer [39] is used to minimize the loss function and its hyper parameters are set as
learning rate lr = 0.00025, betas = (0.9, 0.999), eps = 10−8, weight decay = 0. The batch size
is 10. All of the competing methods use the code published by their authors.

We used the same data set to train the proposed network, as in [26]. The training data
set of [26] contains 150 hyperspectral images with a size of 1392× 1300× 31 randomly
selected from the ICVL dataset, and then a spectral interpolation is used to transform their
channels from the original 31 channels into 24 channels. The wavelength range of these
24 channels is from 400 nm to 700 nm, and the wavelength of each spectral band is: 398.62,
404.40, 410.57, 417.16, 424.19, 431.69, 439.70, 448.25, 457.38, 467.13, 477.54, 488.66, 500.54,
513.24, 526.8, 541.29 , 556.78, 573.33, 591.02, 609.93, 630.13, 651.74, 674.83, 699.51 nm. In
the process of network training, data cubes with a size of 256× 256× 24 are randomly
cut out from these hyperspectral data for data augmentation. Following the experimental
strategy that was used in [26], the same test set was composed of 10 hyperspectral images
is also used in this paper. These 10 test hyperspectral images are also selected from the
ICVL dataset and their size is 256× 256× 24.

5.2. Evaluation Metrics

Three quantitative image quality metrics, including PSNR, SSIM, and SAM [40,41],
are used to evaluate the performance of various methods. Peak Signal to Noise Ratio
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(PSNR) and Structural SIMilarity (SSIM) are the first two metrics, which are widely used in
the image restoration field. For hyperspectral images, we calculate the spatial fidelity of
each 2D spectral band and use the average of all spectral bands as the final output. The
higher the values of PSNR and SSIM, the better the performance. The last metric is Spectral
Angle Mapper (SAM) [40], which is a specified metric in the hyperspectral image field.
It measures the spectral fidelity between the hyperspectral pixels. Smaller SAM values
indicate better reconstruction.

5.3. Ablation Studies

We conduct two ablation experiments to investigate the effectiveness of cosine loss
and non-local spatial-spectral attention module. First, we test the impact of the non-local
spatial-spectral attention module by removing it from the original network and evaluating
the performance changes brought about by it. Table 1 shows the results of ablation studies,
which are obtained as the average of three runs. Table 1 also reports the standard deviations
of three quantitative metrics. It can be seen from Table 1 that the non-local spatial-spectral
attention module can improve all the three metrics, which fully affirms its effectiveness.
Furthermore, keeping the network architecture unchanged, we test the influence of the
cosine loss term on network learning. According to the experimental results shown in
Table 1, the cosine loss is conducive to improving SAM metrics of the reconstruction.
Overall, the non-local spatial-spectral attention module and the compound loss term can
better constrain the network learning and enhance the reconstruction performance, thus
demonstrating the rationality of the NSSR-Net design.

Table 1. Ablation study for the non-local spatial-spectral attention module and the cosine loss. The
numbers after ± denote standard deviations.

Configuration PSNR ↑ SSIM ↑ SAM↓

without Non-local Module 34.019 (±0.141) 0.967 (±0.0020) 0.091 (±0.0005)
without Cosine Loss 34.303 (±0.138) 0.970 (±0.0005) 0.092 (±0.0005)

NSSR-Net 34.764 (±0.114) 0.972 (±0.0009) 0.089 (±0.0005)

We visualize four-channel feature maps before and after the processing of this module
in Figure 5 to further analyze the role of the non-local spatial-spectral attention module.
It can be seen that the feature maps after the processing of the non-local spatial-spectral
attention module can have significantly more informative structures, which demonstrates
the advantage of taking the spatial-spectral joint correlation in the reconstruction network.

Figure 5. Visualization of feature maps. The upper column is feature maps before the non-local
spatial-spectral attention module, and the lower is feature maps after processing by this module.
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5.4. Simulation Data Results

In this Simulation case, we use the same coded masks as in [26], which are from the
real CASSI system and used to generate snapshot measurements of the test HSIs. Table 2
shows the PSNR, SSIM, and SAM values of five methods on 10 test images. According to
the quantitative metrics in Table 2, our method has the best average PSNR, SSIM, and SAM
values. Figures 6 and 7 show the plots of PSNR and SSIM values of two scenes as a function
of the number of spectral bands. The PSNR and SSIM plots of our method lie basically at
the top, and our method does not show a sudden drop in reconstruction quality at certain
spectral bands. Figures 8 and 9 provide the snapshot measurements that correspond to the
two scenes, as well as the reconstructed spectral signatures in the patches that are indicated
by the rectangles. The correlation coefficients that are presented in the legend demonstrate
that our method can reconstruct more accurate spectral signatures when compared with
the other methods. Figures 10 and 11 visualize the reconstructed spectral bands of two
scenes. We can see that our algorithm can reconstruct clear structures and fine details. We
also compare the reconstructed spectral signatures of different methods. Our method can
better maintain the fidelity of the spectral signatures than the competitive methods.

Table 2. Quantitative result comparison on 10 test images from the ICVL dataset.

Methods Metrics Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Average

TwIST

PSNR 25.621 18.413 21.750 21.240 23.784 20.579 24.232 20.202 27.014 18.921 22.140

SSIM 0.856 0.826 0.826 0.828 0.799 0.744 0.870 0.784 0.888 0.747 0.817

SAM 0.160 0.175 0.192 0.197 0.235 0.335 0.173 0.199 0.226 0.241 0.213

GAP-TV

PSNR 30.666 22.410 23.499 22.273 26.985 23.090 24.859 22.913 29.105 21.502 24.730

SSIM 0.892 0.869 0.863 0.829 0.792 0.802 0.877 0.841 0.912 0.796 0.847

SAM 0.207 0.185 0.302 0.184 0.330 0.334 0.166 0.186 0.225 0.213 0.233

DeSCI

PSNR 31.147 26.443 24.741 29.251 29.372 25.814 28.401 24.424 34.411 23.331 27.732

SSIM 0.937 0.947 0.898 0.949 0.907 0.906 0.921 0.872 0.971 0.834 0.914

SAM 0.168 0.081 0.263 0.105 0.229 0.262 0.148 0.186 0.175 0.190 0.181

λ-Net

PSNR 36.109 32.054 33.341 29.598 35.403 28.573 35.219 32.355 33.418 28.204 32.427

SSIM 0.949 0.975 0.974 0.937 0.942 0.902 0.969 0.951 0.916 0.924 0.944

SAM 0.098 0.043 0.091 0.100 0.129 0.205 0.071 0.099 0.200 0.113 0.115

NSSR-Net (ours)

PSNR 40.044 36.557 34.632 29.225 38.474 30.002 38.298 33.886 37.217 28.924 34.726

SSIM 0.988 0.989 0.972 0.953 0.984 0.944 0.985 0.966 0.987 0.937 0.971

SAM 0.055 0.027 0.073 0.114 0.081 0.198 0.046 0.075 0.123 0.107 0.090

Figure 6. The plot of PSNR and SSIM values of scene 10 as a function of the number of spectral bands.
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Figure 7. The plot of PSNR and SSIM values of scene 6 as a function of the number of spectral bands.

Figure 8. The snapshot measurement of scene 10 and the reconstructed spectral signatures. The first row shows one spectral
bands of the scene 10 and its snapshot measurement. The second row show the reconstructed spectral signatures of the two
patches indicated by the rectangles. The correlation coefficients are also shown in the legend to quantitatively compare the
accuracy of the spectral signatures that were reconstructed by the five methods.
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Figure 9. The snapshot measurement of scene 6 and the reconstructed spectral signatures. The first row shows one spectral
bands of the scene 6 and its snapshot measurement. The second row show the reconstructed spectral signatures of the two
patches indicated by the rectangles. The correlation coefficients are also shown in the legend to quantitatively compare the
accuracy of the spectral signatures reconstructed by the five methods.
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Figure 10. The visualization of four spectral bands of scene 10 (wavelength: 477.54 nm, 526.8 nm, 630.13 nm and 699.51 nm)
reconstructed by five methods. From the left column to the rightmost column correspond to Ground truth, TwIST (PSNR
18.921/SSIM 0.747), GAP-TV (21.502/0.796), DeSCI (23.331/0.834), λ-net (28.204/0.924) and ours (28.924/0.937).
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Figure 11. The visualization of four spectral bands of scene 6 (wavelength: 477.54 nm, 526.8 nm, 630.13 nm and 699.51 nm)
reconstructed by five methods. From the left column to the rightmost column correspond to Ground truth, TwIST (PSNR
20.579/SSIM 0.744), GAP-TV (23.090/0.802), DeSCI(25.814/0.906), λ-net (28.573/0.902), and ours (30.002/0.944).

5.5. Real Data Results

The real data used in our experiments is the Bird data captured by the hyperspectral
imaging camera (The Bird data is downloaded from [18]’s Github homepage https://github.
com/liuyang12/DeSCI.2019, accessed on 1 February 2020). Because of the complexity
of hardware in the real imaging system, the obtained snapshot measurement of Bird
hyperspectral data is troubled by noise, which makes reconstruction more difficult. The
spatial size of the original real Bird data is 1021× 703 and contains 24 spectral bands. We
cropped a 512× 512 sub-image for performance evaluation and comparison due to the
limitation of computational resource of hardware.

Figure 12 shows four reconstructed spectral bands of Bird data. The reconstruction of
GAP-TV still contains a lot of noise when compared with the Ground-truth, as can be seen
from Figure 12. Although DeSCI can smooth out the noise, its reconstructed images lack
texture details. Regarding the last spectral band (699.51 nm), only λ-net and our method
can reconstruct the main structures of this spectral band. λ-net and our method have the
similar visual quality. In terms of quantitative metric, our method has the best PSNR and
SSIM values. Figure 13 shows the spectral correlation between the reconstruction results of

https://github.com/liuyang12/DeSCI.2019
https://github.com/liuyang12/DeSCI.2019
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each method and the ground truth. It can be seen that our method has the superiority of
maintaining the fidelity of spectral signatures over the other methods.

Figure 12. Real data results: Four reconstructed spectral bands (wavelengths from top to bottom are
477.54 nm, 541.29 nm, 591.02 nm, and 699.51 nm). On the far left is the ground truth of Bird real data,
and to the right are the reconstruction results of GAP-TV (22.540/0.754), DeSCI (25.036/0.777), λ-net
(24.882/0.832), and ours (25.389/0.839). The numbers in the brackets are the PSNR and SSIM values
corresponding to each method.

Figure 13. Real data results: the reconstructed spectral signatures of the Bird hyperspectral data cap-
tured by the real CASSI system. The correlation coefficients of the reconstructed spectral signatures
and the ground-truth are shown in the legends.
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5.6. Time Complexity Analysis

In addition to the quantitative indicators of reconstruction quality, it is also necessary
to analyze the time complexity of the reconstruction methods. Therefore, we also compare
the running time (in seconds) that is consumed by each method in reconstructing 256×
256× 24 hyperspectral images. TwIST, GAP-TV, and DeSCI run on the CPU, while DeSCI
and the proposed method run on the GPU. Table 3 shows the running time results of each
algorithm. It can be seen that the reconstruction speed of the Network-Driven method is
faster than that of the Prior-Driven methods, because the Network-Driven methods do
not require iterative optimization. Because of the two stages of cascaded reconstruction in
λ-Net, its reconstruction process consumes more time than our method.

Table 3. The average run time for the reconstruction of a 256× 256× 24 hyperspectral image.

Methods TwIST GAP-TV DeSCI λ-Net NSSR-Net

Times (s) 70.96 25.8 3594.5 4.28 1.19

6. Conclusions

In this paper, we propose a novel network for HSI snapshot reconstruction from a
single measurement. First, we design the symmetric residual module to integrate the fusion
of local features. We propose a non-local spatial-spectral attention module to fully utilize
this prior structures to further consider the joint correlation of the spatial and spectral of
the HSI. Besides, the compound loss is designed to guide the network focus more on detail
reconstruction. The experiment results on both simulation and real data have verified that
our method has good performance, while maintaining a fast reconstruction time.
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