& emote sensing

Article

A New Method for Winter Wheat Mapping Based on Spectral
Reconstruction Technology

Shilei Li "2, Fangjie Li 12, Maofang Gao ->*{%, Zhaoliang Li '?3, Pei Leng 12, Sibo Duan !'? and Jianqiang Ren "

check for

updates
Citation: Li, S.; Li, F; Gao, M.; Li, Z;
Leng, P; Duan, S.; Ren, J. A New
Method for Winter Wheat Mapping
Based on Spectral Reconstruction
Technology. Remote Sens. 2021, 13,
1810. https://doi.org/
10.3390/rs13091810

Academic Editor: Sergii Skakun

Received: 7 April 2021
Accepted: 1 May 2021
Published: 6 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2

Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,
Beijing 100081, China; 82101182283@caas.cn (S.L.); 82101182282@caas.cn (F.L.); lizhaoliang@caas.cn (Z.L.);
lengpei@caas.cn (P.L.); duansibo@caas.cn (S.D.); renjianqiang@caas.cn (J.R.)

Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs,

Beijing 100081, China

College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
*  Correspondence: gaomaofang@caas.cn

Abstract: Timely and accurate estimation of the winter wheat planting area and its spatial distribution
is essential for the implementation of crop growth monitoring and yield estimation, and hence for
the development of national agricultural production and food security. In remotely sensed winter
wheat mapping based on spectral similarity, the reference curve is obtained by averaging multiple
standard curves, which limits mapping accuracy. We propose a spectral reconstruction method
based on singular value decomposition (SR-SVD) for winter wheat mapping based on the unique
growth characteristics of crops. Using Sentinel-2 A /B satellite data, we tested the SR-SVD method in
Puyang County, and Shenzhou City, China. Performance was increased, with the optimal overall
accuracy and the Kappa of Puyang County and Shenzhou City were 99.52% and 0.99, and 98.26%
and 0.97, respectively. We selected the spectral angle mapper (SAM) and Euclidean Distance (ED) as
the similarity measures. Compared to spectral similarity methods, the SR-SVD method significantly
improves mapping accuracy, as it avoids excessive extraction, can identify more detailed information,
and is advantageous in distinguishing non-winter wheat pixels. Three commonly used supervised
classification methods, support vector machine (SVM), maximum likelihood (ML), and minimum
distance (MD) were used for comparison. Results indicate that SR-SVD has the highest mapping
accuracy and greatly reduces the number of misidentified pixels. Therefore, the SR-SVD method can
achieve high-precision crop mapping and provide technical support for monitoring regional crop
planting structure information.

Keywords: Sentinel-2 satellite; NDVI time series; singular value decomposition (SVD); winter wheat
mapping; crop classification

1. Introduction

Wheat is one of the most important cereal crops worldwide, as well as a commercial
and strategic reserve grain [1,2]. The global wheat planting area exceeds 200 million
hectares, of which 80% is winter wheat [3,4]. In 2017, the wheat sowing area in China
reached 24,510 thousand hectares, ranking third, globally, with 98% of it being winter
wheat [5]. Wheat is an indispensable staple food in most of the world and provides about
20% of the energy consumed by humans [6,7]. Timely information on wheat planting
is not only essential for agricultural production and structure adjustments, but also for
monitoring the growth and yield of winter wheat and assessing food security [8-11].

Remote sensing provides an effective means for quick and accurate estimation of
the spatial distribution of crops [12,13]. The application of high-resolution satellite data
provides great possibilities for crop classification and crop distribution mapping. Many
studies have elaborated on the use of remote sensing for assessing the spatial distribution
of winter wheat [14-17]. Generally, remote sensing methods for mapping the area of
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winter wheat can be classified into three categories: single-phase, multi-phase, and spatial
sampling [18]. Studies have shown that the multi-phase method is effective for obtaining
the spatial distribution and quantity of crops with high accuracy and full coverage [19-21].
The multi-phase method uses the vegetation index of time series (such as NDVI and EVI)
to analyze the growth law and remote-sensing response characteristics of winter wheat and
achieves winter wheat mapping by formulating relevant dependencies. The multi-phase
method accurately reveals the spectral differences of crops in the same period, thereby
avoiding the shortcomings of single-phase remotely sensed images, where crop types
are indistinguishable [18]. Therefore, it has been widely used for remotely sensed crop
mapping and agricultural monitoring [19,22].

The multi-phase method distinguishes winter wheat according to time series of differ-
ent land cover types [23,24]. Generally, different crops have unique phenological character-
istics, which are manifested in time series of vegetation indexes. Many studies elaborating
on winter wheat identification adopted the spectral similarity method [13,21,25-30]. In
order to identify winter wheat, Sun et al. [27] used Euclidean Distance (ED) to evaluate
the EVI2 curve of each pixel against the reference EVI2 curve of wheat. Zhang et al. [30]
used Kullback-Leibler divergence (KLD) to map winter wheat in Luoyang, China. On the
basis of considering the variation within class, Yang et al. [24] employed Jeffries-Matusita
(JM) Distance to map winter wheat in Kansas, USA and in the North China Plain. Belgiu
and Csillik [31] adopted the time-weighted dynamic time warping (TWDTW) method
proposed by Maus et al. [32] to map winter wheat, although this method was developed
for land cover classification. Dong et al. [6] proposed a new spectral similarity method
called phenology-time weighted dynamic time warping (PT-DTW), which considers the
phenological characteristics of winter wheat and uses the normalized differential phenol-
ogy index (NDPI) instead of NDVI to extract spatial distribution information of winter
wheat. There are also other similarity-based crop identification methods, for instance, the
spectral angle mapper (SAM) [33], although it has been rarely applied on winter wheat
mapping.

The above methods are based on a specific spectral similarity metric to determine
the similarity between the target time series and the reference time series, and the objects
are categorized according to their similarity. However, a non-negligible problem is that
the selection of the reference curve is particularly critical when using spectral similarity
for crop identification. The earlier established reference curve was obtained by averaging
multiple standard curves, which made the reference curve susceptible to sequence shifts
and dislocations, and ultimately affected the accuracy of crop identification. To optimize
the reference curve selection, this paper proposes a spectral reconstruction method based
on singular value decomposition (SR-SVD) for winter wheat mapping.

The rest of this paper is organized as follows: Section 2 introduces the study area and
data; Section 3 describes the method in detail; Section 4 outlines the results; Sections 5 and 6
are concerned with the discussion and conclusions, respectively.

2. Study Area and Data
2.1. Study Area

In this study, we selected two representative agricultural regions in China, namely
Puyang County in Henan Province and Shenzhou City in Hebei Province (Figure 1). Puyang
County is in the northeastern Henan Province between 35.33-35.80°N and 114.86-115.42°E.
The total area of Puyang County is 138,200 hectares, 65% of which is cultivated land. The
main crop planting system in Puyang is two crops per year, wheat in winter and maize in
summer. Generally, winter wheat is sown in early to mid-October and harvested in late
May until early June. The growing season of corn is from June to September. Shenzhou
City is located in the southeast of Hebei Province between 37.71-38.19°N and 115.34—
115.82°E, which covers a total area of 125, 200 hectares and cultivated land accounts for
69%. Shenzhou is a traditional agricultural city and a production base for high-quality
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grain, cotton, peanuts, and fruits in China. The growing season of winter wheat is similar
to that of Puyang County.
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Figure 1. Location of Puyang County, Henan Province and Shenzhou, Hebei Province, China.

2.2. Data
2.2.1. Sentinel-2 Data

Sentinel-2 satellite is a multispectral high-resolution satellite mission consisting of two
polar orbiting satellites, namely 2A and 2B. The revisit time for one Sentinel-2 satellite is 10
days, while for both satellites it can be up to 5 days; hence, the mid-high latitude area can be
completely covered even within two to three days. The Sentinel-2 A /B mission is equipped
with a multispectral instrument (MSI) with swath width up to 290 km that covers 13 spectral
bands from visible light to short-wave infrared, and the corresponding resolution of each
band is 10, 20, and 60 m [34-36]. In this study, we selected 20 Sentinel-2 images for Puyang
County and 16 images for Shenzhou City between October 2017 and June 2018 based on
time interval consistency and low cloudiness, thereby covering the entire winter wheat
growth period (Table 1). The Sentinel-2 data (L1C-level images) were downloaded from
the United States Geological Survey (USGS; https://earthexplorer.usgs.gov/ (accessed on
6 February 2021)) and were further corrected for radiation and atmosphere.

2.2.2. Sample Data

We collected a large amount of reference data from high-resolution Google Earth
images, including training samples and test samples of winter wheat and non-winter
wheat. The training samples and test samples were randomly and evenly distributed in
the study areas, as shown in Figure 2a,b. The non-winter wheat sample contains buildings,
roads, water, and other vegetation pixels. The number of samples in the study areas is
shown in Table 2. As a supplement, non-winter wheat samples were applied to supervised
classification methods, and they were all implemented in ENVI version 5.3.
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Table 1. Sentinel-2 images used in this study.

. Scan Time . Scan Time
Study Area ID Satellite (YYYY-MM-DD) ID Satellite (YYYY-MM-DD)
1 S2B 2017-10-20 11 S2B 2018-03-09
2 S2A 2017-11-14 12 S2A 2018-03-14
3 S2A 2017-12-04 13 S2A 2018-03-24
4 S2B 2017-12-19 14 S2B 2018-04-08
Puyang Count 5 S2A 2017-12-24 15 S2B 2018-04-18
yang ¥ 6 S2B 2018-01-08 16 S2B 2018-04-28
7 S2A 2018-02-02 17 S2B 2018-05-08
8 S2B 2018-02-07 18 S2A 2018-05-13
9 S2A 2018-02-12 29 S2A 2018-05-23
10 S2A 2018-02-22 20 S2A 2018-06-12
1 S2B 2017-10-30 9 S2A 2018-02-22
2 S2A 2017-11-14 10 S2B 2018-03-09
3 S2A 2017-11-24 11 S2A 2018-03-24
Shenzhou Ci 4 S2A 2017-12-04 12 S2B 2018-04-08
ty 5 S2A 2017-12-24 13 S2B 2018-04-18
6 S2A 2018-01-13 14 S2B 2018-04-28
7 S2A 2018-02-02 15 S2B 2018-05-08
8 S2A 2018-02-12 16 S2A 2018-06-02
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Figure 2. Distribution of samples in Puyang County (a) and Shenzhou City (b).

Table 2. The number of samples in the study area.

Study Area Land Cover Type Training Samples Test Samples
Puyang Winter wheat 300 1060
County Non-winter wheat 285 1005

Shenzhou Winter wheat 295 1030
City Non-winter wheat 305 1010

2.2.3. Other Data

The auxiliary data of this study includes the administrative division vector of the
study areas, official statistical data of winter wheat, and crop phenology information. The
official statistical data used to verify the total amount of winter wheat mapping were
extracted from the statistical yearbook.
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3. Methodology

In this study, we proposed a winter wheat mapping method named SR-SVD based on
the Sentinel-2 NDVI time series. The workflow included the following steps: (a) selection
and preprocessing of Sentinel-2 A/B data; (b) construction of the NDVI time series; (c)
application of SVD on the winter wheat NDVI training dataset and the selection of the first
several singular vectors (SVs) for subsequent use; (d) reconstruction of the NDVI time series
pixel-by-pixel and calculation of the similarity between the reconstructed NDVI curve and
the original NDVI time series; (e) identification of winter wheat based on similarity and
evaluation of the mapping accuracy. We emphasize that, during winter wheat mapping, we
set an empirical rule based on a large number of observations to pre-identify non-winter
wheat pixels. The rule is that the maximum value of the NDVI time series is less than 0.45,
which is a non-winter wheat pixel. The simplified workflow is shown in Figure 3.
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Figure 3. The workflow of the spectral reconstruction method based on singular value decomposition (SR-SVD).

3.1. NDVI Time Series

In this study, NDVI time series data were selected to extract the spatial distribution of
winter wheat. The NDVI was calculated as follows:

NDVI = PNIR — PR )
PNIR T PR

where pyjr is the reflectance of the near-infrared band and pg is the reflectance of the
red band.
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The NDVI time series can be constructed by layer stacking NDVI images. In addition,
Savitzky-Golay (S-G) filtering was adopted to smooth the NDVI time series composed of
long-term remotely sensed images. Figure 4 depicts the NDVI time series of different land
cover types derived from Sentinel-2 images. Note that the NDVI time series for each land
cover are average values from multiple randomly selected time series.

0.0

——Road
Buildings
Vegetation

0.7 F —=Winter wheat

——Water

NDVI
)
-
NDVI (Water)

&=
—
Ll

Figure 4. Normalized difference vegetation index (NDVI) time series of different land cover.

3.2. Reconstruction of NDVI Time Series

The SR-S5VD method uses SVD technology to reconstruct NDVI time series and iden-
tifies crops by estimating the similarity between the reconstructed NDVI curve and the
original time series. SVD is a data-driven signal processing method [37]. Similar to princi-
pal component analysis, SVD is a powerful statistical analysis tool applied to linear systems;
its essence is to decompose a large set of related variables into a small set of unrelated
signals of SVs [38]. Generally, the SVD of m x n matrix A can be expressed as

A=UsvT (2)

where U is an m x m matrix and S is an m X n non-negative real diagonal matrix with the
elements on its diagonal being the singular values of matrix A arranged in descending
order. V is an n x n matrix and T refers to transpose.

The reconstruction of the NDVI time series can be formulated as follows:

n
NDVI, = Z w;0v; (3)
i=1

where NDV I, is the reconstructed NDVI time series, v is the singular vector (SV), w is the
weight of the SV, n represents the total number of SVs used, and i is the serial number.

3.3. Similarity Calculation

Two spectral similarity indicators are adopted in this study, namely SAM and ED,
based on the matching and distance metric, respectively. SAM is a curve similarity mea-
surement method based on shape characteristics; its basic idea is to regard the spectra as
space vectors with the same dimension and number of bands. Similarity can be assessed by
calculating the angle between the spectra: the smaller the spectral angle, the more similar
the two curves [39,40]. SAM is calculated as follows:

Y NDVI, - NDVI,,
/I NDVL2 -\ /S0, NDVI,?

Osam(NDVI, NDVI,) = arccos 4)
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where 64 represents the similarity, NDVI; is the original NDVI time series, NDV I, is
the reconstructed NDVI time series, i is the serial number, and 7 is the total number of time
series.

ED is a common similarity measurement method. The ED between two n-dimensional
vectors can be expressed as

n
Deuclidean = \/Z(NDVIti — NDVI,I.)Z (5)
i=1

where Drycjigean Tepresents the ED, NDVI; is the original NDVI time series, NDV I, is
the reconstructed NDVI time series, i is the serial number, and # is the total number of
time series.

3.4. Winter Wheat Identification and Accuracy Evaluation

The similarity between the original NDVI time series and the reconstructed NDVI
curve can be calculated by either SAM or ED, and the winter wheat mapping can be
achieved by setting an appropriate threshold. It should be noted that the threshold of the
spectral similarity methods used in this study was determined according to the maximum
similarity value in the winter wheat training samples. Additionally, the SAM-Mean [33],
ED-Mean [27], SVM-support vector machine [41], ML-maximum likelihood [25] and MD-
minimum distance [42] were also employed for comparison with SR-SVD-based winter
wheat mapping.

We evaluated the accuracy of winter wheat mapping by constructing a confusion
matrix. The confusion matrix is currently the most common method for evaluating classifi-
cation accuracy [43]; it reflects classification accuracy through overall accuracy (OA), Kappa,
producer accuracy (PA), and user accuracy (UA). OA represents the overall accuracy of
the classification, PA and UA indicate the classification accuracy of a single category, and
Kappa evaluates the stability of PA and UA, indicating the reliability of the classification
results. The calculation for each indicator is as follows:

n
0A = ==~ (6)
XY X — Y X X
K _ =1 “*u =1 k43 %1 7
“ppa X2 - ):?:1 Xi*X*i ( )
X..
pPA =2 8
X.. 8
X..
1

in (6)—(9), X is the total number of test samples, X;, and X,; are the total number of test
samples of type i and the total number of samples of type i in the classification results,
respectively. Xj; is the number of row i and column i of the confusion matrix, which
represents the number of correctly classified samples of type i, and n (=2, in this study) is
the number of classification categories.

We also considered the total accuracy (TA) of the mapping results, which can be
calculated by:

TA = (1 - ‘S;‘A )100% (10)

where TA is the total accuracy, S is the mapping area of winter wheat, and A is the official
statistical area.
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4. Results
4.1. Evaluation of SVs and Reconstruction Results

SVD was executed on the winter wheat NDVI time series training set, and the first
four SVs derived from Puyang County are shown in Figure 5. The first SV explains more
than 80% of the total information in the training set and represents the spectral shape
of the winter wheat NDVI time series. The first two SVs capture approximately 90% of
the variance, which is sufficient to reconstruct the NDVI time series. Besides, the SVs
derived from Shenzhou City elaborated similar information. In this study, we pursued
high-precision reconstruction of the NDVI time series, while ensuring enough difference
between the reconstructed curve and the original time series. Subsequently, we selected the
first two and the first three SVs for spectral reconstruction in Puyang County and Shenzhou
City based on a large number of experiments (see Section 5.3).

0.4
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(b)SV2,p =7.37%
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(c)SV3,p =3.15%

Singular vector

Figure 5. The first four singular vectors (SVs) derived from the winter wheat NDVI time series training set of Puyang
County. The percentages in the figures represent the relative amount of information captured by each SV.

Figure 6 shows a reconstruction example of a typical NDVI time series of winter wheat
and non-winter wheat pixels. The NDVI time series of winter wheat is in agreement with
the reconstructed curve, with SAM and ED being 0.011 and 0.114, respectively. In contrast,
the original and reconstructed NDVI time series of non-winter wheat differ greatly. The
corresponding SAM and ED are 0.501 and 0.623, respectively, which means that we can
easily identify winter wheat using the SR-SVD method.
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Figure 6. (a) Original and

reconstructed winter wheat normalized difference vegetation index (NDVI) time series. (b) Origi-

nal and reconstructed non-winter wheat NDVI time series.

4.2. Winter Wheat Mapping with SR-SVD

As mentioned above, the reference curve of earlier similarity-based crop identification
methods is the average value of a large number of standard curves, which might affect
the accuracy of crop identification. The SR-SVD method addresses efficiently this problem
from the perspective of spectral reconstruction. To verify the reliability of the SR-SVD
method, we selected SAM and ED as similarity indicators, and compared the mapping
results with and without spectral reconstruction. In detail, without spectral reconstruction,
the reference curve is obtained by averaging, while the use of spectral reconstruction
indicates that the reference curve is obtained by SR-SVD.

Figure 7 displays the distribution of winter wheat in the study areas based on the
SR-SVD method, using SAM as a similarity discrimination index. Winter wheat in Puyang
County is widely distributed, covering almost the entire administrative region. In con-
trast, the planting density of winter wheat in Shenzhou City has been relatively reduced,
especially in the northwest region, where winter wheat is rarely distributed. According to
Table 3, the SAM-SR-SVD method has the best mapping results in the two study areas, with
the highest OA, Kappa, and TA. The use of the SR-SVD method can significantly improve
the mapping and extraction accuracy of methods that are based on the principle of spectral
similarity. The misclassification of non-winter wheat pixels appears significantly reduced
and the PA of non-winter wheat pixels is greatly improved; hence, SR-SVD can effectively
identify non-winter wheat pixels. Additionally, the identification precision of winter wheat
pixels, which is reflected in UA, appears significantly improved.

Due to the large-scale planting of winter wheat in Puyang County and the easy
identification of test points, the OA and Kappa of using and not using the SR-SVD method
seem to be less different. However, in fact, the mapping results differ greatly (Figure 8).
In Shenzhou City, owing to the complex planting structure and the relative reduction
of winter wheat planting area, the mapping results using the SR-SVD method showed
obvious advantages (Table 3). Also, we selected four test areas in the two study areas
to compare the local differences of the mapping results of different methods in detail
(Figure 8). Many non-winter wheat pixels are incorrectly identified without considering
the spectral reconstruction, resulting in a much greater amount of winter wheat extracted
by SAM-Mean and ED-Mean than the official statistical data, i.e., an increase in Puyang
County of approximately 16% and 13%, respectively. A more severely overestimated
planting area was found in Shenzhou City when ED was used as a similarity indicator.
As can be seen from Figure 8, SR-SVD can accurately identify pixels such as roads and
buildings, which highlights the accuracy improvement of winter wheat mapping based on
the principle of spectral similarity.
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Figure 7. Winter wheat mapping results in Puyang County (a) and Shenzhou City (b) based on SAM-SR-SVD.

Table 3. Comparison of the accuracy of winter wheat mapping by different methods.

PA (%) UA (%)
Method OA (%) Kappa TA (%) Wheat‘/AIG g:le-;\linter Wheat‘lAIG 2:?\‘/\7inter
Wheat Wheat
SAM-Mean a3 97.63 0.953 83.79* 98.58/96.62 96.85/98.48
SAM-SR-SVD P 98.74 0.975 99.86 ** 97.74/99.80 99.81/97.66
ED-Mean ol 97.58 0.952 87.11* 98.68/96.42 96.67/98.58
ED-SR-SVD e 98.64 0.973 95.64 * 97.74/99.60 99.62/97.66
SAM-Mean X 93.09 0.862 89.46 ** 86.71/99.42 99.33/88.27
SAM-SR-SVD X 98.26 0.965 98.37 ** 96.70/99.81 99.80/96.82
ED-Mean P 86.36 0.727 79.50 * 89.72/83.03 84.01/89.04
ED-SR-SVD X 97.53 0.951 98.75 * 96.51/98.55 98.51/96.60

*” indicates the amount of extracted winter wheat is bigger than the statistical data, while **” is the opposite,

% .
and ‘/’ means ‘or’. ‘**’ represents the mapping result of Puyang County, and R represents the result of
Shenzhou City.

4.3. Comparison with Other Methods

For further comparison, we selected the commonly used supervised classification
methods, SVM, ML, and MD, to extract the area of winter wheat in the study areas. The
accuracies of the winter wheat mapping results of the different methods are shown in
Table 4. The OA of the four methods in Puyang County was greater than 95%, and the
Kappa was greater than 0.9, because, as explained earlier, the test samples are easy to
identify. It is encouraging that the accuracy of the SAM-SR-SVD method is still the highest.
As for Shenzhou City, there is a clear difference in accuracy between the four methods. The
SAM-SR-SVD method can achieve accurate winter wheat mapping, with the OA, Kappa,
and TA being 98.26%, 0.965, and 98.37% respectively. The accuracy of the other three
methods declines sequentially, and the MD method is the worst. Accordingly, the SR-SVD
method has obvious advantages in winter wheat mapping.
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Figure 8. Winter wheat mapping results and overlay analysis based on different methods. Test area 1-2 is selected
from Puyang County, and test area 3—4 is from Shenzhou City. (a) Sentinel-2 image (RGB: band 4, 3, 2, 8 April 2018),
(b) comparison of SAM-based mapping results, (c¢) comparison of ED-based mapping results.

We also selected four test areas from the study areas to compare the local mapping
differences of different methods. As shown in Figure 9, MD has more misclassifications for
non-winter wheat (test area 1 and 4). It misidentifies other vegetation and mixed pixels
as winter wheat, and does not extract narrow roads, so the OA is the worst (see Table 4).
SVM has a similar disadvantage as it incorrectly identifies other plants as winter wheat. In
particular, SVM is not effective in distinguishing mixed pixels, and may result in failure to
recognize narrow roads. In contrast, ML has better recognition of winter wheat and a clear
description of narrow roads, but its limitation is that it incorrectly identifies other vegetation
as winter wheat (marked in test area 2-3). SAM-SR-SVD has the highest mapping accuracy
for winter wheat, and its performance is also satisfactory. It can distinguish narrow roads
similarly to ML and can accurately identify winter wheat and non-winter wheat pixels.
Nevertheless, SAM-SR-SVD has also disadvantages: If the threshold is too small, it cannot
correctly identify a small number of winter wheat pixels with abnormal NDVI time series.
This phenomenon is captured in the missing winter wheat pixels in the field, as shown in
test area 1 in Figure 9 with a blue mark. For the threshold selection of the SAM-SR-SVD
method, see Section 5.1.
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Table 4. Comparison of the accuracy of winter wheat mapping by different methods.

PA (%) UA (%)
Method OA (%) Kappa TA (%) Wheat‘/AlG g:le-;\linter Wheat‘/ﬁ 2:1e-§Ninter
Wheat Wheat
SAM- SR-SVD ol 98.74 0.975 99.86 ** 97.74/99.80 99.81/97.66
SVM e 98.35 0.967 93.02 * 99.06/97.61 97.77/98.99
ML e 98.21 0.964 99.58 ** 98.58/97.81 97.94/98.50
MD o) 95.98 0.919 87.86 * 95.58/93.23 93.89/98.42
SAM-SR-SVD P 98.26 0.965 98.37 ** 96.70/99.81 99.80/96.82
SVM P 96.28 0.884 94.15* 95.66/99.04 99.77/83.74
ML X 93.27 0.804 91.20 ** 91.76/99.93 99.92/73.24
MD P 90.62 0.650 63.32* 97.40/60.58 91.63/84.00

* indicates the amount of extracted winter wheat is bigger than the statistical data, while **’ is the opposite,

% .
and ‘/’ means ‘or’. “**’ represents the mapping result of Puyang County, and xo represents the result of
Shenzhou City.

Test area 1 Test area 2 Test area 3 Test area 4

U pe—_

Figure 9. Comparison of local winter wheat mapping results using different methods. Test area 1-2 is selected from Puyang

County, and test area 3—4 is from Shenzhou City. The marked red lines are non-winter wheat pixels, and the orange lines are
winter wheat pixels.

5. Discussion
5.1. Selection of Training Set and Threshold
The selection of the training set and the reconstruction of the NDVI time series are

crucial for the SR-SVD method. The representativeness of the training set determines
the accuracy of the spectral reconstruction of the time series [44]. Here, we selected 300
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1.00
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and 295 evenly distributed winter wheat NDVI time series as the training set to derive
SVs. Subsequently, SR-SVD was applied to winter wheat mapping in the study areas.
The accuracy verification shows that SAM-SR-SVD is the best among all the methods
involved in this study; it also suggests that the training set we selected is sufficiently
representative of the study area. It is worth noting that because of the influence of self-
employment, farmland in China is highly dispersed, with a complex and irregular planting
pattern [7,23,24]. This results in a small or almost disappearing first peak of the NDVI time
series related to a small amount of winter wheat. In this case, an extremely small threshold
would lead to incorrect identification of winter wheat pixels when using methods based on
spectral similarity for winter wheat mapping [27].

In this study, all thresholds of the methods based on spectral similarity were set to the
maximum similarity in the winter wheat training set for uniformity and ease of comparison.
A small threshold cannot summarize the variability of all winter wheat NDVI time series
in the study area. Therefore, the selection of the threshold is an extremely important step,
which directly determines the accuracy of winter wheat mapping [45,46]. Note that the
original thresholds (used in Section 4) of Puyang County and Shenzhou City are 0.127 and
0.95, respectively. We selected several thresholds with a step of 0.01, to test the performance
of the SAM-SR-SVD method in the study areas. The mapping results of winter wheat
with different thresholds are provided in Figure 10. In Puyang County, as the threshold
increases, the OA and Kappa increase first and then decrease, whereas the TA continues
to fall. For Shenzhou City, the OA and Kappa showed the same trend as Puyang County.
However, the TA has a different performance, with a tendency to increase first and then
decrease. Considering that the original threshold of Shenzhou City is close to the optimal
threshold (the highest accuracy), we selected 0.17 as the new threshold and re-extracted
winter wheat from Puyang County. Table 5 shows that, with the exception of the TA, all
of the winter wheat mapping accuracy based on SAM-SR-SVD with a threshold of 0.17
was improved compared to other methods. Figure 11 also shows the result of partial
mapping. The application of the new threshold allows the winter wheat pixels that were
not extracted in the original results to be correctly identified (marked with blue in Figure
11b,c), making the winter wheat mapping more complete. Therefore, when SR-SVD is
applied to winter wheat mapping or crop classification, the threshold should be adjusted
reasonably to extract the target crops more completely, while ensuring the reliability of the
OA. The threshold can be adjusted according to the maximum similarity of the training
samples.

s Kappa OA —TA W Kappa OA —-TA
100.0% 1.00 (b) 100.0%
(a)
F 95.0%
el L 90.0%
0.90 A
F 90.0%
P &
= & E 80.0%
< g g
L 85006 © ™
0.80 A
70.0%
F 80.0%
- 75.0% 0.70 - 60.0%
A S D D SN D DS DS S e Q@ QOO B >N SO
w\'\' Q.\" Q.\’ S’.\% Q.\“ Q.\'\ Q.\q" Q.\°‘ “’.\9 Q’.\'\ Q'.\"\’ “’.\?’ Q‘.\r’ Q’.\? N wsa@ N w“q s'f’bw\ ST Y Y Y Y
Threshold Threshold

Figure 10. Winter wheat mapping accuracy under different thresholds in Puyang County (a) and Shenzhou City (b).
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- SAM-SR-SVD_0.17 - SAM-SR-SVD_0.127 - ML - SVM - MD

Figure 11. Local winter wheat mapping results based on different methods: (a) Sentinel-2 image (RGB: 432, 8 April 2018), (b)
result of spectral angle mapper with spectral reconstruction method based on singular value decomposition (SAM-SR-SVD)
with a threshold of 0.17, (c) result of SAM-SR-SVD with a threshold of 0.127, (d) result of maximum likelihood (ML), (e)
result of support vector machine (SVM), and (f) result of minimum distance (MD).

Table 5. Comparison of the accuracy of winter wheat mapping by different methods in

Puyang County.
PA (%) UA (%)
o o Winter Winter
Method OA (%) Kappa TA (%) Wheat/Non-Winter Wheat/Non-Winter
Wheat Wheat
SAM-SR-SVD_0.17 99.52 0.990 93.34 * 99.43/99.60 99.62/99.40
SAM-SR-SVD_0.127 98.74 0.975 99.86 ** 97.74/99.80 99.81/97.66
SVM 98.35 0.967 93.02 * 99.06/97.61 97.77/98.99
ML 98.21 0.964 99.58 ** 98.58/97.81 97.94/98.50
MD 95.98 0.919 87.86 * 95.58/93.23 93.89/98.42

*” indicates the amount of extracted winter wheat is bigger than the statistical data, while **’ is the opposite,
and ‘/’ means ‘or’. SAM-SR-SVD_0.17 means the threshold is 0.17, and SAM-SR-SVD_0.127 means the threshold
is 0.127.

5.2. Employment of Prior Knowledge

The use of prior knowledge can simplify the crop identification process and improve
the identification accuracy [24]. Here, we take Puyang County as an example. As mentioned
in Section 3, we determined the time series with the maximum NDVI value <0.45 as non-
winter wheat pixels to prevent excessive misidentification. Additionally, we selected SAM
and ED as similarity indicators. The reconstructed NDVI time series based on the SR-SVD
method is dominated by the original curve. If the value of the original NDVI time series
is small, then the reconstructed curve is still small. Since the ED simply evaluates the
difference in distance, many pixels will be incorrectly identified as winter wheat. The winter
wheat mapping result of ED-SR-SVD without considering prior knowledge (Figure 12a)
has significantly exceeded the real distribution of winter wheat, with a Kappa of 0.626 and
a TA of 77.11%. Moreover, pixels in villages are also identified as winter wheat. The winter
wheat mapping result with prior knowledge (Figure 12b) is significantly improved, with
the TA rising to 95.64%. The accuracy of winter wheat mapping using different methods
with or without prior knowledge is shown in Table 6.
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Figure 12. Winter wheat mapping results based on different methods. ‘#" indicates prior knowledge is not used, while ‘##

is the opposite.

Table 6. Comparison of winter wheat mapping results with different methods.

PA (%) Ua (%)
Winter Winter
Method OA (%) Kappa TA (%) Wheat/Non-Winter Wheat/Non-Winter
Wheat Wheat
ED-SR-SVD # 81.45 0.626 77.11* 97.83/64.18 74.23/96.56
ED-SR-SVD ## 98.64 0.973 95.64 * 97.74/99.60 99.62/97.66
SAM-Mean # 86.00 0.718 69.18 * 98.68/72.64 79.18/98.12
SAM-Mean ** 97.63 0.953 83.79 * 98.58/96.62 96.85/98.48

* indicates that the amount of extracted winter wheat is larger than the statistical data.

knowledge is not used, while ‘##'is the opposite.

7

# indicates prior

SAM measures the similarity by calculating the angle between two space vectors [40].
Similarly, if the shape of the NDVI time series of non-winter wheat is close to the curve
of winter wheat and the values differ greatly, it might be misidentified; however, this is
in the minority. Since the similarity measurement of SAM is relatively complicated, the
result of winter wheat mapping based on SAM-SR-SVD is almost unchanged before and
after using prior knowledge. However, the results of the SAM-Mean method are quite
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different. The difference in winter wheat mapping with and without prior knowledge is
shown in Figure 12c,d. The use of prior knowledge has greatly improved the winter wheat
mapping based on the SAM-Mean. Overall, the prior knowledge set in this study is helpful
for winter wheat mapping based on spectral similarity methods.

5.3. Selection of the Number of SVs

The SV is the main information for the reconstruction of the NDVI time series, and
the number of SVs determines the accuracy of the spectral reconstruction [47,48]. For
the NDVI time series, the greater the number of SVs selected, the higher the accuracy of
spectral reconstruction; however, high-precision reconstruction does not necessarily mean
higher discrimination. The accuracy of winter wheat mapping under different numbers
of SVs is shown in Figure 13. In this study, we selected the first two and the first three
SVs to reconstruct the NDVI time series in different study areas because they are the most
appropriate for distinguishing between winter wheat and non-winter wheat pixels.

mm Kappa —e—O0A TA mm Kappa —e—O0A TA
0.98 100.0% 1.00 100.0%
———— ——— ————— (b)
o/l
0.98 - " (a) \
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Figure 13. Accuracy of winter wheat mapping under different numbers of singular vectors (SVs), Puyang County (a) and

Shenzhou City (b).

The NDVI time series used in this study are composed of 20 and 16 different NDVI
periods, which have been proven to be sufficient to highlight the growth characteristics of
winter wheat. For some regions, it is difficult to obtain the complete NDVI time series for
the entire growth period of winter wheat, because remotely sensed data in the visible light
band are easily affected by clouds [30,49,50]. Therefore, it is feasible to use the NDVI time
series that includes part of the winter wheat growth period, while ensuring that the NDVI
time series of winter wheat is unique to other land cover types in the study area. Generally,
the first five SVs can provide sufficient reconstruction accuracy and discrimination to
identify winter wheat. The number of SVs should be determined according to specific
experiments.

5.4. Advantages and Limitations of the SR-SVD Method

Previous studies on extraction and mapping of crops based on spectral similarity
methods used high-resolution remotely sensed images [33,42,51], which greatly facilitated
crop classification. However, the reference curve of the traditional spectral similarity
method is obtained by averaging multiple curves, and it might lead to a misaligned
reference curve, thereby affecting the accuracy of crop mapping. In this study, the SR-SVD
method was proposed to improve the accuracy of winter wheat mapping by reconstructing
the reference curve. Compared with previous studies [6,46], the accuracy of winter wheat
mapping in this study was significantly improved. The OA and Kappa of the two study
areas reached 99.52% and 0.99, and 98.26% and 0.97, respectively. Besides, for Shenzhou
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City, after using the SR-SVD method with ED and SAM as the similarity indicators, the OA
increased by about 11% and 5% respectively, which directly proves the effectiveness of the
SR-SVD method.

The premise of the application of the SR-SVD method is that the winter wheat vegeta-
tion index time series in the study area, namely NDVI [31], EVI [27] and NDPI [6], have
unique characteristics. Spectral reconstruction technology can identify and map winter
wheat by capturing these characteristics. Accordingly, the SR-SVD method can not only
provide a reference for the extraction of high-precision crop spatial distribution in a large
area, but also can be applied to the mapping of other crops, such as soybeans and sugarcane,
thereby providing an important reference for the investigation and adjustment of regional
planting structures.

The SR-SVD method also has limitations. First, in terms of the similarity measurement,
SAM focuses on depicting the spectral shape similarity, which might lead to a small number
of pixels with similar NDVI time series shapes being misidentified as winter wheat. In
contrast, ED focuses on distance similarity, which might eventually cause most of the pixels
to be misclassified (see Figure 12a,b). This can be solved by adding prior knowledge or
using indicators that measure the shape and distance simultaneously. Second, increasing
the threshold might help identify winter wheat pixels with abnormal NDVI time series (i.e.,
the first peak not being obvious), but it might also result in a small number of non-winter
wheat pixels being misidentified. This can likely be solved by combining methods that do
not consider spectral similarity.

6. Conclusions

In this study, we proposed the SR-SVD method for improved selection of the reference
curve and accuracy of winter wheat mapping compared with earlier methods that are
based on the principle of spectral similarity. This new method uses SVD technology to
reconstruct the NDVI time series pixel by pixel and achieves winter wheat identification
by evaluating the similarity between the reconstructed curve and the original NDVI time
series. Based on high-resolution Sentinel-2 A /B data, the SR-SVD method was applied to
Puyang County and Shenzhou City China to achieve high-precision mapping of winter
wheat. Compared to earlier spectral similarity methods and supervised classification
methods, SR-SVD shows improved identification of non-winter wheat pixels and accuracy
of winter wheat mapping; it can not only avoid misidentification, but also extract more
local details.

We also proved that the application of prior knowledge can effectively improve the
accuracy of winter wheat mapping based on spectral similarity methods. In view of the
simple principle and the high accuracy of mapping, it is recommended that the SR-SVD
method be additionally applied to the mapping of other crops. This will help to understand
the planting structure of crops in time and provide a technical reference for agricultural
production management and sustainable agricultural development.
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