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Abstract: collision-avoidance is a crucial research topic in robotics. Designing a collision-avoidance
algorithm is still a challenging and open task, because of the requirements for navigating in unstruc-
tured and dynamic environments using limited payload and computing resources on board micro
aerial vehicles. This article presents a novel depth-based collision-avoidance method for aerial robots,
enabling high-speed flights in dynamic environments. First of all, a depth-based Euclidean distance
field mapping algorithm is generated. Then, the proposed Euclidean distance field mapping strategy
is integrated with a rapid-exploration random tree to construct a collision-avoidance system. The
experimental results show that the proposed collision-avoidance algorithm has a robust performance
at high flight speeds in challenging dynamic environments. The experimental results show that the
proposed collision-avoidance algorithm can perform faster collision-avoidance maneuvers when
compared to the state-of-art algorithms (the average computing time of the collision maneuver
is 25.4 ms, while the minimum computing time is 10.4 ms). The average computing time is six
times faster than one baseline algorithm. Additionally, fully autonomous flight experiments are also
conducted for validating the presented collision-avoidance approach.

Keywords: micro aerial vehicles; collision-avoidance; distance field; depth sensor

1. Introduction

collision-avoidance using onboard sensing is a key topic in the robotics field. The
challenge involves the robot being able to move in a totally unknown and dynamic envi-
ronment, without colliding and only with a limited field of view.

In order to overcome the aforementioned challenges, a robust and fast obstacle de-
tection and avoidance algorithm that can perform online localization and planning is
presented in this article. In our previous work, a laser-based collision-avoidance strategy
was proposed [1,2]. In this work, the previous algorithm has been improved so that it
only requires a depth camera. This is a better option for an unmanned aerial platform that
has limited payload and computing resources. Except for the algorithms of [1,2], the only
forward maneuver (OFM) is proposed in this article to enable collision-avoidance with
different yaw angles. In the OFM, the robot starts with a yaw angle that heads to the goal.
Thorough simulation and real flight experiments are also given to evaluate the proposed
collision-avoidance approach.

Several methods have been proposed during the last few decades to address the prob-
lem of collision-avoidance. The visual servoing approaches use the feedback information
extracted from vision sensors to plan the motion of robots. Penin et al. [3] developed a
vision-based controller and planner for aggressive collision-avoidance and tested it in a
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real environment. However, their path-planning approach required complete knowledge
of the environment and robot model.

Optical flow methods rely on the apparent motion of texture in the visual field relative
to the body of the robot. Optical flow-based strategies allow robots to operate collision-
avoidance by turning away from regions with high optical flow. An optical flow-based
approach was proposed by Simon Zingg et al. [4] for the navigation of micro aerial
vehicles in indoor corridors. They used a pyramidal lucas-kanade optical flow detector
to estimate the optical flow and compensated for the rotational effects using the inertial
measurement unit (IMU) data. In the same direction, Cho et al. [5] also presented a vision-
based obstacle avoidance strategy for micro aerial vehicles using the optical flow. Their
approach could avoid wall-like frontal obstacles, which was a general limitation in optical
flow-based methods. Overall optical flow-based methods have shortcomings in the sense
that they generate an artificial parallax that will yield low optic flow values for smaller
oncoming obstacles.

Artificial potential field (APF) methods [6,7] use gradient descent planning to find
the minimum artificial potential energy. They rely on the calculation of the attractive
potential to the goal and repulsive potential from the obstacles and find a trajectory that
is collision-free. However, the presence of local minima commonly causes problems in
these strategies.

Geometry-based approaches use the geometric relationship between the robot and
the obstacles to calculate a path for the robot. Lin et al. [8] presented a collision-avoidance
approach for unmanned aerial robots, which combined a collision-avoidance algorithm
using geometric primitives and an initial collision time selection algorithm based on
kinematic considerations, collision likelihood, and navigation constraints.

Velocity obstacle (VO) methods like [9] use a probabilistic velocity obstacle (PVO)
to predict the probability of the uncertainty in obstacles’ position, shape, and velocity.
However, it cannot guide the robot to the goal or respond to certain emergency conditions.
The work presented in [10] used the acceleration velocity obstacle (AVO) to help the robot
avoid obstacles in a dynamic environment while being subject to acceleration constraints.
VO-based approaches highly rely on the robot’s model and require accurate measurements
of the obstacle’s velocity.

Learning-based methods have also been proposed, such as the one presented in [11],
which developed a deep reinforcement learning-based collision-avoidance algorithm in-
spired by the encirclement behavior of dolphins to entrap the fishes. The work presented
in [1] uses a deep reinforcement learning approach to build a reactive navigation algorithm
by adopting an APF formulation in the reward function. In their experiments, the algorithm
provided appropriate reactive navigation behaviors in simulated and real indoor scenarios
with static and dynamic obstacles.

Planning based-algorithms will plan a collision-free trajectory based on the informa-
tion of obstacles extracted from perception sensors. Lopez et al. [12] presented a relaxed-
constraint triple integrator planner (R-TIP) for a collision-avoidance strategy with limited
field-of-view sensing. Tackling the problem of narrow field-of-view perception, their plan-
ner could choose a motion primitive from the past that made the planning algorithm more
efficient. Liu et al. [13] proposed a short-range planner to plan and replan a dynamic
feasible trajectory and achieve the obstacle avoidance maneuver in real-time. A real-time
mapping, re-localization, and planning approach was presented by Burri et al. [14]. This
approach can fly the aerial robot fully autonomouslly in unknown environments without
knowing any prior knowledge, and has good planning efficiency. Chen et al. [15] pre-
sented an online collision-free trajectory planner for micro aerial vehicles’ autonomous
flight in clutter environments. They added the constraints of a safe corridor to build a
convex optimization problem, and solved it by using the quadratic programming (QP)
approach. Their approach has good computing performance. However, this approach
needs to be replanned to make sure that the trajectory is inside the safe corridor that is
time-consuming. Tordesillas et al. [16] used a local planner and safe back-up trajectory to
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solve the safety and fast conflict in the UAV motion planning problem. The time alloca-
tion was optimized using a mixed integer quadratic program (MIQP) formulation. More
recently, Chen et al. [17] presented a computing efficient obstacle avoidance trajectory
planner using an heuristic angular search method and minimum acceleration optimiza-
tion. Ryll et al. [18] also introduced a receding horizon, sampling-based planner to achieve
high-speed collision-avoidance maneuver.

There are two main reasons why the proposed work can achieve a shorter comput-
ing time than the state-of-art algorithms. (1) The fast Euclidean distance field-mapping
approach that can build the Euclidean distance field directly from the depth input. (2) The
fast Euclidean distance field-based collision-checking approach that can reduce the points
for collision-checking in the path segment.

The proposed work presented in this paper uses a sampling-based strategy enhanced
by computing an Euclidean distance field-based collision-checking algorithm for the
collision-avoidance of multirotor aerial robots. The principal goal of this article is to
develop a collision-avoidance strategy that can help the aerial robot have a fast reaction to
suddenly appearing obstacles when flying at high speeds.

The main contributions of the proposed solution are:

(1) The presented collision-avoidance method only uses a depth sensor for collision-
avoidance and does not need any information about the geometry of the obstacles.

(2) By using the novel Euclidean distance field-mapping and collision-detection approach,
the computing time of the collision-avoidance maneuver can be reduced to a range
of 10.4 ms and 40.4 ms that is less than the computing time of the state-of-the-art
algorithms.

(3) In the simulation experiments, the proposed collision-avoidance strategy can fly the
robot at 2.4 m/s in challenging dynamic environments with an 82% success rate across
100 repetitive tests. The algorithm can also achieve a 95% success rate of 100 repetitive
tests in a challenging static environment with a flight speed of 1.96 m/s.

The remainder of the paper is organized as follows. In Section 2, the problem formula-
tion is introduced. The proposed Euclidean distance field mapping and collision-checking
algorithm are described in Sections 3 and 4. Section 5 calculates the algorithm complexity.
The experimental results and discussion are shown in Sections 6 and 7, respectively. Finally,
Section 8 concludes the paper and summarizes future research directions.

The definitions of acronyms used in this article are shown in Table 1.

Table 1. The definitions of acronyms used in this article.

Acronym Definition

MAV Micro Aerial Vehicle
EDF Euclidean Distance Field
OFM Only Forward Maneuver
IMU Inertial Measurement Unit
EDT Euclidean Distance Transform
RRT Rapid Random Tree
ROS Robot Operating System

DDPG Deep Deterministic Policy Gradient
NAF Normalized Advantage Function

2. Problem Statement

Recently, unmanned aerial vehicle-based remote-sensing technology has been widely
used in areas such as object detection and tracking [19], search and rescue [20], and indus-
trial inspection [21]. The presented collision-avoidance approach can help unmanned aerial
vehicles perform autonomous remote-sensing tasks without collision. In the proposed
method, the laser/depth camera-based sensing technology is also applied when extracting
the Euclidean distance field.
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This section firstly introduces the dynamic collision-avoidance problem and how
to solve it. The description of the obstacle is then explained. Figure 1 shows the aerial
robot used for the real flight experiments and Figure 2 shows the Euclidean distance
field-mapping algorithm process.

Figure 1. The real flight environment and the aerial robot used in the real flight experiments. On
the left of this figure is the workflow for calculating the Euclidean distance field. First, building the
obstacle field from the depth image, and then constructing the Euclidean distance field based on the
obstacle field.

(a) Building Euclidean distance
field using depth camera. (b) The Gazebo environment.

(c) Building an Euclidean distance
field using laser.

Figure 2. The Euclidean distance field generation process using the information provided by the depth sensors.

In the dynamic collision-avoidance problem herein proposed, the environment has
an initial point and a goal point, and the robot can only observe a limited part of the
environment. The environment has several static or/and moving obstacles. The position
and shape of the obstacles are totally unknown when the robot starts to move in the
environment. The obstacles can suddenly appear in the flight path of the robot. The robot
can move freely in the environment. The robot needs to start at an initial point Pinit and the
task is finished when the robot reaches a spherical region of arbitrary size centered on the
goal point Pgoal . The localization information can be provided by ground truth or onboard
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sensors. It is considered as a collision with an obstacle when the distance from the robot to
the surface of the obstacle is less than the radius of the robot.

The dynamic collision-avoidance problem can be solved using the following pro-
cess: (1) Constructing the Euclidean distance field from the sensor input; (2) planning a
collision-free trajectory based on the Euclidean distance field; and (3) replanning when new
obstacles are detected in the future flying trajectory. In the proposed approach, obstacles
are represented by the function Dist(x), which is used to compute the distance from any
point in the environment to the surface of the nearest obstacles. More detailed information
about the obstacle representation can be checked in [2].

3. Depth-Based Euclidean Distance Field Construction

In this section, firstly, the strategy about how to build the obstacle field from the depth
maps of the depth sensor is explained, and then the method for transforming the obstacle
field to the Euclidean distance field is presented. As depth cameras and LIDAR sensors are
widely used in the area of robot navigation, they are selected as examples to explain how
to obtain the Euclidean distance field from the depth map. Figure 2a,c show a diagram
with the steps to build an Euclidean distance field from a depth image and from a laser
scan, respectively.

Depth sensors can determine the distance from the robot to the objects. By using
distance information, the obstacle field can be built.

3.1. Building the Obstacle Field Using the Depth Sensor

As can be seen from Figure 2c, laser scan ranges can be obtained from the LIDAR
sensor. Based on the laser scan ranges, the position of the point at the end of every laser
scan range with respect to the position of the robot can be found. Then, these points are
marked as the obstacle region in the obstacle field. The position of the robot is the center
of the obstacle field, which represents a collection of the obstacle points. After obtaining
the previous obstacle field, the obstacle region is inflated in order to make sure that every
obstacle can be presented. The white region of the obstacle field in Figure 2c is the inflated
obstacle region. Equation (1) shows the formulations to get the position of obstacle points
from laser scan ranges and mark them in the obstacle field, respectively. Figure 3 introduces
the obstacle points mapping process of Equation (1):

~∆Xi =
Ri
res
× sin θi

~∆Yi =
Ri
res
× cos θi

xi =
wobs f

2
+~∆Xi

yi =
hobs f

2
+~∆Yi

θi = θinit + i× ∆θ

i ∈ (0, 1, · · ·, Rnum − 1, Rnum),

(1)

where res is the resolution of the obstacle field. The Ri, ∆θ, and Rnum are the length of the
range i, the increment of θ in the horizontal field of view and the amount of the ranges of
the laser, respectively. The θinit is the initial angle of the ranges of the laser scan, and the θi
is the angle i of the ranges of the laser scan. The ~∆Xi and ~∆Yi are the distances in X and Y
axes from the obstacle points (xi, yi) to the center of the obstacle field. The wobs f and hobs f
are the width and height of the obstacle field, respectively.
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Figure 3. Mapping the obstacle point in the obstacle field. The explanation of the notation in the
Figure can be found in Equation (1).

The strategy of building the obstacle field is similar to the one using the laser. The
difference is that the depth image should be transformed into a laser scan first. By
transforming the depth image to a laser scan, The ROS package depthimage_ to_ laserscan
(http://wiki.ros.org/depthimage_to_laserscan, accessed on 1 March 2021) has been used
to transform the depth image to a laser scan.

3.2. Transforming the Obstacle Field to the Euclidean Distance Field

After obtaining the obstacle field, it can be transformed into the Euclidean distance
field by the Euclidean distance transform [22]. In order to use the Euclidean distance field
for collision-checking, it should be changed from the world frame of reference to the image
frame. Equations (2)–(4) provide the formulation for transforming the obstacle field to an
Euclidean distance field. Equation (2) shows the Euclidean distance field is constructed
based on the obstacle field using Euclidean distance transformation. Equations (3) and (4)
shows the transformation of the point in the obstacle field when turning the yaw.

EDFimg(x, y, z) = EDT(OF(x, y, z)) (2)

(x, y, z) = T−1 × (X, Y, Z) (3)

T =

− sin(φ) cos(φ) 0
cos(φ) sin(φ) 0

0 0 1

 (4)

In Equations (2)–(4), OF is the obstacle field. The (x, y, z) and (X, Y, Z) are the coordi-
nates in the image frame and the world frame, respectively. The T is the transformation
from the world frame to the image frame. The φ is the yaw angle. The EDF means the
Euclidean distance field building, while the EDT is the Euclidean distance transformation.

4. Collision-Avoidance Using Euclidean Distance Fields and Rapidly-Exploring
Random Tree

In this section, the Euclidean distance field-based collision detection strategy and the
rapidly-exploring random tree (RRT)-based collision-avoidance are explained.

http://wiki.ros.org/depthimage_to_laserscan


Remote Sens. 2021, 13, 1796 7 of 14

4.1. Euclidean Distance Field-Based Collision Detection

The classic collision-checking approach splits the path segment into finite points and
then checks the collision status of every point. This method has shortcomings in the sense that
the numbers of path points should be manually determined due to different environments,
and it is also time-consuming because it checks unnecessary points. By using the Euclidean
distance field, these shortcomings can be overcome because using the Euclidean distance field
notation, the distance from path points to the nearest obstacle can be directly obtained. Thus,
this distance can be used to determine the path points for collision-checking. Equations (5)
and (6) show the formulation of the collision-checking algorithm.

xi+1 = xi +
Dist(xi)− Rrobot
||xinitxend||

· −−−−→xinitxend (5)

CollisionDetect(xi) =

{
1, Dist(xi) ≤ Rrobot
0, Dist(xi) > Rrobot

(6)

Rrobot is the radius of the robot. Dist(xi) is the function to calculate the distance from
xi to the nearest obstacle. xinit and xend are the initial and ending points of the path segment.
xi and xi+1 are the current and next points for collision-checking.

4.2. Collision-Avoidance Planning and Replanning

This section explains how to integrate the proposed collision detecting algorithm with
the RRT path planning algorithm to solve the collision-avoidance problem.

The proposed Euclidean distance field-based collision detection algorithm can be used to
check the collision of the line segment between the new state and the nearest state of the RRT.

For the path replanning, the Euclidean distance field collision-detecting algorithm is
applied for detecting the collision of the path segment between the current robot state and
next point in the planned path. In order to save computing resources and avoid changing
the flight path, the RRT path-planning algorithm will plan a new path from the current
robot state to the goal point only when a future collision is detected.

The planned path is then sent to the polynomial trajectory generation algorithm [23],
and the trajectory is then sent to the motion control system [24] to fly the robot.

5. Algorithm Complexity

The algorithm complexity is important when the computing resources of the agent are
limited. For every run of the collision-avoidance maneuver, firstly the Euclidean distance
field is constructed, then the collision-checking algorithm starts working, and finally, the
RRT algorithm is used to search the feasible path.

Euclidean distance field-building: Assuming the obstacle field is an image with the
size of w × h, the field of view can be split into k scans. The algorithm complexities of
the obstacle field build and the Euclidean distance transform are O(k) and O(2 × m × n),
respectively. The complexity of the Euclidean distance field building part is the sum of
them that is O(k) + O(2 × w × h).

Collision-checking: Assuming the number of future path points Pf and is n. There
are mi points required for collision-checking in i-th path segment. The path segment
connects the previous Pf and current Pf . The complexity of the collision-checking part is

∑n−1
i=1 O(mi).

Path-searching: Assuming the maximum iterations of RRT generation is num. In the
j-th iteration, there are aj nodes in the rapidly-exploring random tree and bj points needed
for collision-checking in the path segment from the nearest node to the new node. The
algorithm complexity of the path searching part is ∑num

j=1 O(aj) + O(bj).
The overall algorithm complexity is the sum of the algorithm complexity that is

O(k) + O(2 × w × h) + ∑n−1
i=1 O(mi) + ∑num

j=1 O(aj) + O(bj).
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6. Experiments and Results

A video description of the experiments is shown in: https://vimeo.com/474208476,
accessed on 1 March 2021.

6.1. Experimental Setup

In this subsection, the experimental setup for the simulation experiments and real
flights is introduced.

The simulation experiments are run on top of Ubuntu 18.04 using the Robot Operating
System (ROS) [25]. The Gazebo environment is used to provide the environment model,
and the RotorS [26] simulation is used to provide the real physical parameters of the robot.
All the experiments were run on a laptop with Intel Core i7-8750H at 2.2 GHz. The robot
in the simulation is a multirotor robot (AscTec Firefly) that has six degrees of freedom,
which was equipped with an RGB-D camera and an odometry sensor. The RGB-D camera
captures the information from the outside environment. The localization of the robot was
achieved with the odometry sensor. The horizontal and vertical field of view of the RGB-D
camera are 114◦ and 60◦. The maximum and minimum range of the RGB-D sensor are
0.15 m and 3 m, respectively. The resolution of the Euclidean distance field is 0.02 m.

The robot can fly in the 3D simulation environment, but the information used to
perform obstacle avoidance is 2D.

In order to provide different velocity modes, the closed-form trajectory-generation
method [23] is applied for generating trajectory commands within the maximum ve-
locity and acceleration. Finally, the trajectory command is sent to a model predictive
controller [24] to move the robot.

The real flight experiments are carried out using an aerial platform. As can be seen
from Figure 4, the aerial platform has an intel RealSense D435i depth camera to receive
the information from the environment and a Pixhawk module to serve as a flight control
unit. For the localization, the robot is equipped with Lazarus, a commercial visual-inertial
positioning system (VIPS) manufactured by the Spanish company Dronomy. It relies on
two front-looking cameras and a highly-stable, six-axis IMU. The Jetson TX2 with a dual-
core NVIDIA Denver 2 64-bit CPU and NVIDIA Pascal TM Architecture GPU is chosen as
the on-board computer. The weight of the aerial robot is 1860 g without batteries.

Figure 4. System architecture of the aerial platform used in real flight experiments.

A random shortcut algorithm [27] is used to optimize the path generated by the
planning module. All the real flight experiments were executed using on-board perception
and localization in a GPS-denied scenario.

https://vimeo.com/474208476
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6.2. Simulation Experimental Results

As can be seen from Figure 5a, in order to validate the proposed approach in challeng-
ing conditions, a dynamic Gazebo environment of 4.4× 8× 1.5 m was created. The Gazebo
environment contains four obstacles that have different movements (two static quadrilat-
eral obstacles, a quadrilateral obstacle that can suddenly appear in front of the robot, and
a cylindrical obstacle which has a sinusoidal trajectory). In the simulation environment,
the x coordinates of the centers of the static quadrilateral obstacles are −1.5 m and 1.5 m,
respectively, while their y coordinates are both 5.5 m. The x coordinate position of the
moving quadrilateral obstacle can change from (2.6 m, 2.64 m) and (3.7 m, 3.75 m). The
moving cylindrical obstacle starts moving from (2 m, 0 m). The initial and goal points are
randomly generated for each repetitive experiment. The size of the quadrilateral obstacle
is 0.5 × 0.5 × 2 m, while the cylindrical obstacle is a cylinder with a base radius of 0.3 m
and a height of 2 m. The random generation range for the initial and goal point are from
(1 m, 1 m) to (3 m, 1 m) and (1 m, 7 m) to (3 m, 7 m), respectively. Figure 5b shows a sample
result of the trajectory generated by the OFM of the collision-avoidance strategy.

Figure 6a shows the simulation environment used to evaluate the proposed collision
with different initial yaw angles. The value of the initial yaw angle is computed as
arctan(

ygoal
xgoal

). The initial point of this simulation is always (0 m, 0 m, 1.1 m). The goal
point can be generated randomly between the two red boxes in Figure 6a. The size of the
quadrilateral obstacle is 0.3 × 0.3 × 2 m, and the positions are shown in Figure 6b. The 95
success trails out of 100 trails of the proposed algorithm are shown in Figure 6b.

(a) Gazebo environment used for
the simulation experiments.

(b) Example result of the trajectory generated by
the only forward mode of the proposed collision-
avoidance method.

Figure 5. Simulation experiments. In (b), the dotted line represents the moving obstacles and the solid line represents the
static obstacles.

The objective of the robot is to reach the goal starting at the initial point. In Table 2,
the experiments are conducted using four different collision-avoidance algorithms. Two of
them are state-of-the-art learning-based strategies, which are the DDPG [1] and NAF [28].
The other two are the only forward maneuvers (OFM) of the presented algorithm. Among
them, the only forward maneuver with high velocity (OFM HIGH), and the only forward
maneuver with low velocity (OFM LOW) mean flying the robot with high velocity (maxi-
mum velocity is set as 2.5 m/s) and low velocity (maximum velocity is set as 2 m/s). In
Table 3, the maximum velocities for the OFM are 2 m/s. In order to provide representative
metrics, 100 runs were conducted for each algorithm in both simulation environments.
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(a) Gazebo environment used for the simula-
tion experiments. The goal can randomly gen-
erate in the area between these two red squares.

(b) Example results of the trajectory generated by the OFM
of the proposed collision-avoidance method with different
initial yaws.

Figure 6. Simulation experiments and example results of the OFM when applied in the case of different initial yaws.

The collision-checking time and the trajectory computing time in Table 4 was collected
from the 100 trails of the simulation experiments in Figure 6a. In these 100 trials, there
are 220 times replan due to the appearance of unknown obstacles. The average collision-
checking time and trajectory computing time with their standard deviations of these 100
trials are 9 ± 5 ms and 16.3 ± 10 ms, respectively.

Table 2. Comparison of the proposed collision-avoidance algorithm with a state-of-the-art learning-
based method. A set of 100 experiments were conducted for each algorithm. OFM HIGH,
OFM LOW mean Only Forward Maneuver with high velocity, Only Forward Maneuver with
low velocity, respectively. PL, TG, AV, MV, SR depict path length, time to goal, average velocity,
maximum velocity, and success rate, respectively. In the Table, the bold number means the best
performance of one parameter.

Algorithm PL (m) TG (s) AV (m/s) MV (m/s) SR (%)

OFM HIGH 10.20 ± 1.85 16.03 ± 5.81 0.62 ± 0.02 2.44 ± 0.19 82
OFM LOW 10.44 ± 2.22 17.53 ± 3.50 0.59 ± 0.01 1.72 ± 0.21 85
DDPG [1] 6.88 ± 0.81 16.3 ± 3.49 0.42 ± 0.007 1.06 ± 0.20 81
NAF [28] 7.57 ± 0.77 15.75 ± 2.88 0.48 ± 0.05 1.07 ± 0.06 87

Table 3. The experiment results of the proposed collision-avoidance algorithm. A set of 100 experi-
ments were conducted for the algorithm. OFM means the Only Forward Maneuver of the proposed
algorithm. PL, TG, AV, MV, SR depict path length, time to goal, average velocity, maximum velocity,
and success rate, respectively. These results obtained for the experiments of the scenario shown in
Figure 6b.

Algorithm PL (m) TG (s) AV (m/s) MV (m/s) SR (%)

OFM 4.8731± 1.1098 18.53 ± 11.78 0.28 ± 0.02 1.96 ± 0.05 95
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Table 4. Comparison with state-of-the-art algorithms on computing time of the collision-avoidance
maneuver. In the Table, the bold number means the best performance of the computing time. The data
used to calculate the computing time of the proposed maneuver are obtained from the experiments
of Table 3.

Authors Comp. Time (ms) Authors Comp. Time (ms)

Liu et al. [13] >160 Burri et al. [14] >40
Chen et al. [15] >34 Tordesillas et al. [16] >25
Chen et al. [17] ≥18 Ryll et al. [18] ≈30

This paper 25.4 ± 15 (>10.4)

6.3. Real Flight Experimental Results

There are two different cases designed for real flight experiments. One is a one-
cylinder case and the other is a three-cylinder case. The start points of these two scenarios
are (0, 0, 0), while the endpoints of one cylinder and three cylinders’ environments are
(0, 4, 0) and (0, 5, 0), respectively. The maximum velocities in the one cylinder and three
cylinders cases are 0.32 m/s and 0.44 m/s. Figure 7a,c show the trajectories of these two
experiments, while Figure 7b,d show how the velocities vary during the experiments.

(a) One-cylinder case. (b) The speeds variety in one-cylinder case.

(c) Three-cylinder case. (d) The speeds variety in three-cylinder case.

Figure 7. Real flight experiments. The green and blue lines are the speeds in the x and y direction while the red solid line is
the sum of the absolute speeds in the x and y directions.

The purpose of the real flight experiments was to confirm that the proposed collision-
avoidance algorithm can run in real-time with onboard computing and sensing.
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7. Discussions
7.1. Robustness of the Proposed Collision-Avoidance Algorithm

Figure 5b shows the strategy of the only forward maneuver, where the robot moves
from the initial point to trajectory point P1, then to trajectory point P2, and finally to
the goal point. For the OFM, the robot moves by keeping a yaw angle that heads to
the goal. In Table 2, it can be found that the proposed OFM approach can achieve a
relatively higher success rate while flying at a high velocity. Especially for the OFM HIGH,
this maneuver can achieve a success rate of 82% while flying at a maximum velocity of
2.4 m/s. The success rate of the OFM HIGH is better than the DDPG-based algorithm
even when flying at higher speeds. The results show that the performance of the presented
collision-avoidance strategy is robust at high flying velocity. The success rate of the
collision-avoidance method of this work is much higher when the velocity is reduced (the
OFM LOW can achieve better success rates than OFM HIGH). The path length generated
by the learning-based strategy is shorter than the proposed method, but the value of TG is
much closer (the TG value of OFM HIGH is better than DDPG). Table 3 shows the OFM
has a success rate of 95% in a challenging environment with different initial yaw. All in
all, the experimental results show that the algorithm has a high success rate and robust
performance in two different simulation environments.

7.2. Computing Efficiency of the Proposed Collision-Avoidance Algorithm

Table 4 shows that the proposed algorithm has an average computing time of 25.4 ms
with a minimum computing time of 10.4 ms. The average value is better than four of the
baseline algorithms, while the minimum value is better than all of them. The average
computing time is six times faster than the fastest case of Liu et al. [13]. There are
three parts in the presented algorithm that can help to reduce the computing time. (1) The
proposed algorithm has better performance in the computing efficiency because the efficient
Euclidean distance field-building algorithm only builds a local map of the environment
that is easy to update. (2) The number of the path points selected for collision detecting
is optimized by the Euclidean distance field. (3) The RRT path planner combined with a
polynomial trajectory generation is computing efficiently in the local map.

7.3. Flight Speeds in Real Flights vs. Flight Speeds in Simulations

As shown in Tables 2 and 3, the aerial robot can achieve a high-speed flight (up to
2.4 m/s in the dynamic environment and 1.96 m/s in the maze environment). However,
in the real flight, the maximum velocity only reaches 0.32 m/s and 0.44 m/s in the one-
cylinder and three-cylinder cases. The maximum velocity of the real flight experiments
is slower because the localization error is big when achieving high-speed flights that can
increase collision possibility.

7.4. Fail Cases in Simulation Experiments

As can be seen from Tables 2 and 3, there are fail cases which has a collision with the
obstacles. The reason for these failures is that the RRT planner can generate a path out of
the field of view of the onboard sensing and the robot can have a collision when following
the path which is out of the field of view at a high flight speed.

8. Conclusions and Future Works

In this work, a fast and robust collision-avoidance approach was introduced. This
approach is the combination of a depth-based Euclidean distance field-building method and
an RRT-based collision-avoidance path-generation strategy. The experimental results show
that the proposed collision-avoidance algorithm has a higher success rate when compared
with the DDPG-based learning approach [1] even when achieving high speeds (up to
2.4 m/s). Furthermore, it also has a higher computing efficiency when compared with the
state-of-the-art (the average computing time of the collision-avoidance maneuver is 25.4 ms,
while the minimum computing time can only be 10.4 ms). The average computing time
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is six times faster than the fastest case of the baseline algorithm [13]. Two state-of-the-art
learning-based algorithms have been used as a baseline for benchmarking the robustness,
and six state-of-art collision-avoidance algorithms have been applied for benchmarking
the computing efficiency.

As a future research direction, the authors are planning to integrate the proposed
method with an optimal trajectory planning algorithm to achieve aggressive collision-
avoidance maneuvers with a high success rate. An heuristic path planner, such as A*,
will also be considered to serve as the front-end of the future collision-avoidance ap-
proach. More real flight experiments will be conducted to evaluate the proposed collision-
avoidance algorithms.
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