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Abstract: A total of 120 rice plant samples were scanned by visible and thermal proximal sensing
systems under different water stress levels to evaluate the canopy water content (CWC). The oven-
drying method was employed for assessing the canopy’s water state. This CWC is of great importance
for irrigation management decisions. The proposed framework is to integrate visible and thermal
imaging data using an artificial neural network as a valuable promising implement for accurately
estimating the water content of the plant. The RGB-based features included 20 color vegetation indices
(VI) and 6 gray level co-occurrence matrix-based texture features (GLCMF). The thermal imaging
features were two thermal indicators (T), namely normalized relative canopy temperature (NRCT)
and the crop water stress index (CWSI), that were deliberated by plant temperatures. These features
were applied with a back-propagation neural network (BPNN) for training the samples with minimal
loss on a cross-validation set. Model behavior was affected by filtering high-level features and
optimizing hyperparameters of the model. The results indicated that feature-based modeling from
both visible and thermal images achieved better performance than features from the individual
visible or thermal image. The supreme prediction variables were 21 features: 14VI, 5GLCME,
and 2T. The fusion of color—texture-thermal features greatly improved the precision of water content
evaluation (99.40%). Its determination coefficient (R? = 0.983) was the most satisfied with an RMSE
of 0.599. Overall, the methodology of this work can support decision makers and water managers to
take effective and timely actions and achieve agricultural water sustainability.

Keywords: canopy water content; GLCM features; color vegetation indices; thermal indicators;
high-quality features; ANN; super predictive model

1. Introduction

About 70-90% of global water resources are consumed through agriculture [1]. Ex-
treme water use in the agricultural sector also causes water scarcity in semi-arid and arid
regions [2]. Rice is one of the most economical crops that requires large amounts of water.
Decreasing water availability for agriculture threatens the productivity of the irrigated
rice ecosystem and ways to save water and increase the water productivity of rice must
be found [3]. By optimizing the timing, duration, and amount of irrigation and drainage,
water-saving irrigation practice has been proven effective in saving water and increasing
rice yield [4]. To improve the water use efficiency of plants, it is important to accurately
and timely predict crop water status. Canopy water content (CWC) is a significant factor
in regard to the water use efficiency of plants [5], drought assessment [6], a key input
variable in irrigation management decisions, and crop ripening monitoring [7]. Moreover,
it is a vital parameter that reflects plant physiological status and health [8]. It is one of the
indicators widely used to evaluate a plant’s water condition [9]. Traditionally, there are
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various manners of observing the water state in a plant such as lab-based leaf water content
analysis [10], stomatal conductance [11], and sap flow measurement [12]. Despite the high
precision delivered by these ways, they are time consuming, destructive and laborious,
particularly in large-scale areas [13]. Moreover, the interest in monitoring the plant water
status has increased in the scientific community through remote sensing, which is very
widely used to reliably retrieve leaf water content [8].

We focused on modern procedures for estimation of the CWC from optical remote sens-
ing data, especially from visible (RGB: red-green-blue) and thermal imaging. These have
several benefits compared to hyperspectral sensors. Thermal sensing is useful since it is
cheap, non-destructive, convenient, and can be done remotely [14]. Digital imaging may
provide a low-cost and easy-to-use alternative [15]. The hyperspectral camera is heavy,
expensive, and requires professional imaging and data processing [16]. The superiority of
proximity sensing technology with regression algorithm relies on three major aspects: hand-
crafted feature selection, data fusion for different sensors, and selecting the best model
hyperparameters. Elsherbiny et al. [17] explained that the regression algorithms could be
upgraded for robust prediction of rice water status through some actions, including high-
level features nominating, hyperparameters optimization, providing various alternatives
for the most sensitive features, and integrating the model with the best-combined features.
Primary, common methods for extracting RGB-based features include color vegetation
indices (VI) and gray level co-occurrence matrix-established texture features (GLCMF).
Several studies have found that the crop water deficit will directly affect the biochemical
processes and morphology of crops, and this effect can be observed in the color changes of
the crop leaves. Digital images are composited by pixels, which are a combination of the
color channels RGB. The VI can be calculated from these channels [18]. Wang et al. [19]
generated regression models using the G-R parameter of the RGB color system with the
moisture content of cotton and the moisture content index. The prediction accuracies were
up to 90.7% and 91.0%, respectively. Zakaluk and Sri [20] checked the use of artificial neural
networks (ANN) for digital images, taken by a 5 megapixel RGB camera to predict the leaf
water potential of potato plants. Then, the relationship between leaf water potential and
image features was determined.

Another variant of GLCMF was derived from RGB images to estimate the water
situation in plants. Wenting et al. [21] concluded the relationship between GLCMEF of the
RGB image of crop leaves and leaf water content at heading-stage maize with an expected
R? value of 0.702 and the RMSE was within +2%. Shao et al. [22] indicated that GLCME-
based partial least square regression model can predict water content in grapevines with
better performance. The prediction R?> was 0.833 with an RMSE of 1.049. Additionally,
the thermal imaging system can provide an indication of the water condition in the plant.
Leaf temperature is an alternative measure that is a suitable indicator of a plant’s water
state [23]. Moller et al. [24] showed that thermal imagery can be used to accurately estimate
crop water status. Ballester et al. [25] used a handheld infrared thermal imager to study
leaf moisture content in citrus trees and persimmon trees.

The integration of different data sources was a vital component of this work to im-
prove the quality and robustness of the CWC prediction model. This has previously been
used to evaluate plant phenotypes. Moller et al. [24] elucidated that the fusion of visible
and thermal imaging could develop the accuracy of the crop water stress index (CWSI) com-
putation and provide accurate data on the crop water status of grapevines. Shao et al. [22]
clarified that the incorporation of both GLCMF and reflectance features could enable the
prediction of water content of grapevines and be beneficial for grapevine management and
achieved prediction R? of 0.900 with an RMSE of 0.826.

The hyperparameter optimization of the model is another factor that has a significant
impact on the efficiency of water content prediction. The performance of any machine
learning (ML) model is profoundly affected by hyperparameter selection, which has several
benefits: it can improve the performance of ML algorithms [26] and improve the repro-
ducibility and fairness of scientific studies [27]. Furthermore, it could perform a major role
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in improving the prediction model because of the direct control of the behaviors of training
algorithms [28]. In this research, the ANN building possibility was used as a tool to support
accurate irrigation management decision making by means of visible and thermal sensors.
Dawson et al. [29] developed an ANN model for predicting water content in leaves de-
pending on single leaf reflectance and transmittance, which are important input variables
to vegetation canopy reflectance models. The R? was defined as 0.86 with an RMSE of 1.3%.
Marti et al. [30] described the application of ANN to estimate stem water potential from soil
moisture at different depths and standard meteorological variables, such as temperature,
relative humidity, and solar radiation. The ANN presented high-performance accuracy
with an optimum R? of 0.926.

To maximize irrigation in rice fields, the plant’s water content should be explored
accurately via proximal sensing systems. Although visible and thermal imagery are widely
used to estimate water content in plants, the best performing algorithm has a high priority
in research interests. Based on our knowledge, no prior research has implemented the
hybrid methodology of BPNN with features extracted from thermal and RGB imaging to
develop a predictive model for accurate estimation of the water content status of rice under
different irrigation water treatments and climate change. Hence, the main objectives of
this study were (i) to create a well-structured CWC modeling of rice relying on high-level
features derived from RGB and thermal images, (ii) to define the superior variants of
thermal and RGB features for robust CWC prediction, and (iii) to evaluate the performance
of BPNN models using the best-combined features and to adopt the finest model that could
be recommended for precision irrigation in the future.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted on 120 potted plants of rice under natural conditions
at Zhejiang University (120°09'E, 30°14'N), Hangzhou City, Zhejiang Province, PR. China.
Often, a plastic cover was set up over the plants during precipitation to control the water
added for them, and to obtain the heterogeneous water condition from the tested leaves.
To prepare the germination, the rice seeds (Xiushui 134) were submerged in the water
for four days at a temperature of 28-30 °C, and the water was replaced twice a day.
Then, the 10 rice plants were sown into a single PVC (polyvinyl chloride) pot, which had
dimensions of 140 x 95 x 125 mm. Each pot was filled with 300 g of black peat moss
(HAWITA Gruppe GmbH, Germany) and was irrigated to achieve saturation during
the first growing month. The compound fertilizer treatment, N-P,O5-K,O (15-15-15),
with a rate of 100 kg ha~! was applied at 10-day intervals, produced by Qingdao SONEF
Chemical Company. Potted rice plants were transplanted on July 10, 2018 and divided into
3 groups, each with 40 pots. It was harvested on August 12, August 30, and September 21,
2018 for the 1st, 2nd, and 3rd groups, respectively. Table 1 shows the summary statistics
of air temperature, relative humidity, and vapor pressure deficit (VPD). The values of
VPD were determined from the formula stated by Abtew and Melesse [31]. In this work,
there were three different growth stages of the rice plants: tillering, stem elongation,
and panicle initiation. The water deficit was implemented within a period of 27-34 days,
34-52 days, and 52-74 days of plant life for the 1st, 2nd, and 3rd groups, respectively.
As declared in Figure 1, an experiment was carried out with a completely randomized
block design in a factorial experiment. The experimental design was divided into three
groups, each comprising four irrigation treatments: fully-irrigated (T1: 100%), mild (T5:
80-70%), moderate (T3: 60-50%), and severe water stress (T4: 40-30% field capacity),
respectively. The number of replicates (R, Ry, etc.) of treatment was 10 samples. Generally,
the gravimetric approach was used to measure the volume of water by manually weighing
pots twice a day, supplemented by replacing the transpiration of water to preserve the
respective moisture stress conditions. Gross water applied volumes were estimated for
each group, 1st stage values were 44.35, 41.65, 39.4, and 37.15 L (liter) for well-controlled,
mild, moderate, and severe stress conditions, respectively. Their corresponding values at
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the 2nd group were 60.35, 56.40, 53.29, and 49.25 L and at the 3rd group were 73.55, 69.15,
65.85, and 63.65 L, respectively.

Table 1. Brief measurements of climate factors.

Temperature (°C) Relative Humidity (%) VPD
Dat
ate Min. Max. Avg. Std. Min. Max. Avg. Std. (Kpa)
July 10 to August 12 24 38 31 5.29 41 95 68 20.10 1.44
August 13 to August 30 23 34 28.5 4.10 44 97 70.5 16.97 1.15
August 31 to September 21 18 35 26.5 5.14 41 96 68.5 17.79 1.09

Where min, max, avg, and std are the values of minimum, maximum, average, and standard deviation of the measured climate factors, respectively.
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Figure 1. An experimental design layout.

2.2. Digital Image Acquisition

A near-surface portable digital camera (PowerShot SX720 HS, Canon Inc., Tokyo,
Japan) was used to capture digital images of the rice plants. RGB images were acquired in
three different visions: elevation, side, and plan view, as displayed in Figure 2. For the plan
view, the camera was installed on a tripod and fixed perpendicular with a height of 1 m
above the plants. In other directions, the camera was mounted at a height of 0.95 m from the
ground level and kept a distance of 0.8 m from the crop canopy with an angle of view of 90°.
The pots were moved indoors with a fluorescent background light source for RGB image
acquisition, and the background color was a black cover. About 400 RGB images were
captured and saved in JPG image quality with a spatial resolution of 3888 x 5184 pixels.
We found 40 images with uneven illumination and noise that were excluded, while the
remaining 360 images were used to extract the features. The average value of the extracted
feature was calculated for each pot. Therefore, the total readings were 120 points that were
applied to the data analysis.

Figure 2. Experimental rice samples and three sections for each potted rice plant obtained by RGB
camera: (a) elevation view, (b) side view, and (c) plan view.
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2.3. Thermal Image Acquisition

The thermal infrared camera is Tau2-640 (FLIR systems, Inc., USA), which had a
resolution of 640 x 512 pixels, and a focal length of 19 mm. The sensitivity of the Tau2-640
camera is 0.05 °C (50 mK), and the accuracy of the measurement is 5% after calibration.
The thermal sensor has a spectral response in the range of 7.5-13.5 um. The thermal
camera was mounted on a tripod at a distance of 1 m above the crop, and the angular
field of view was perpendicular to the plants. The thermal images were taken from the
top view of the plant canopy. The water status measurements were conducted between
12:00 and 13:00 local standard time on all plants, when the crop plants had a maximum
daytime temperature, were in perfect sun, and with minimal wind movement. The crops
exhibit high emissivity as well as low reflectivity [32]. In the thermal images, a significant
difference in soil temperature was noticed, but when the soil was masked out, it was not
important when remaining focused on the crop. The thermal value obtained by thermal
infrared images was originally stored in the raw image in which each pixel is 14 bits.
The raw format can be converted to JPG file format to explain the temperature distribution
of plants in each part of the image. The following is the equation for calculating the
transformed temperature from the thermal raw image [33]:

Tem = [Thyaw x 0.04] — 273.15 1)

where Thy,w and Tem (°C) represent the thermal value and the corresponding pixel tem-
perature, respectively. The first constant (0.04) is to calibrate the thermal camera and obtain
the image pixel temperature (°K), and the second value (—273.15) is to convert Kelvin
to Celsius.

2.4. Image Segmentation

Various objects such as rice plants, soil, and pots were included in the thermal and
RGB images collected at the different growth stages of the rice plants. It was necessary
to separate the plants and backgrounds for the efficient computation of the canopy water
content. Firstly, for the RGB images, a thresholding technique was employed, which is a
process of image segmentation to convert the image to grayscale [34] and produce a binary
image [34], which has two possible pixel values, namely the intensity value of the image
that is more than or equal to the threshold value of 1 (white or foreground) and when
it is less than the threshold value or value 0 (black or background) that can be removed.
Each pixel in the binary image has a size of 1 bit. After separating the rice pixels from the
background objects, a set of candidate features, including color and texture, were extracted
for further analysis. Secondly, for the thermal images, python software was employed
to generate a code for segmenting the rice plants. The ground temperature was higher
than any parts in the image, despite the soil and pot being lower than others. Accordingly,
we can separate the temperature of the objects as either higher or lower than that of rice
plants. Average plant temperature was calculated for all pixels in each thermal image.
Figure 3 describes thermal image segmentation and canopy temperature distribution
during the different irrigation treatments in the three growth stages of the rice. At the 1st
stage, the canopy temperatures were observed in the ranges of 32-33.5 °C (well-watered),
33.8-35.4 °C (mild stress), 35.75-36.5 °C (moderate stress), and 36.9-37.55 °C (severe stress).
The canopy temperature ranges for such treatments at the 2nd stage were 37.5-39.1 °C,
39.22-41.72 °C, 42.39-45.8 °C, and 46.24-48 °C, respectively. Their corresponding values at
the 3rd stage were 22.85-24.5 °C, 25-27.7 °C, 28-30.1 °C, and 30.5-33 °C, respectively.
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Figure 3. Raw thermal images of the rice and image segmentation with temperature distribution during four irrigation
treatments: (a) 100%, (b) 80-70%, (c) 60-50%, and (d) 40-30% of field capacity at the three growth stages: tillering (1st stage),

stem elongation (2nd stage), and panicle initiation (3rd stage).

2.5. Feature Extraction from RGB Images

RGB images contain large amounts of data, thereby analyzing the image requires a
large volume of memory and leads to more time. Consequently, to decrease the volume of
data, an image is depicted using a series of features. The purpose is to capture the image’s
certain visual properties. Feature extraction has a crucial role in different image processing
systems. The most common ways to extract features from RGB images are RGB color space
percentage and GLCM-based texture features.
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2.5.1. RGB Color Space Percentage

The RGB imagery involves three bands of red, green, and blue, where each band has
a value of each pixel [35]. The rice plants modified the content of chlorophyll to balance
photosynthesis and transpiration under conditions of water stress. The RGB channel values
were affected, owing to different levels of canopy water content. The percentage values of

the RGB color space were determined as typical features using the following formulas:

1 Snum

R= S 21’:1 R; )
num
1 Snum

G=5—).""Gi (3)
num
1 SVIlU’Vl

B= ¢ " By 4)
num

where R;, G;, and B; are the pixel value for the red, green, and blue band in the digital
image, respectively; i and Sy, are the first pixel and the maximum number of pixels,
respectively; R, G, and B are mean values of RGB color space.

About 20 color vegetation indices for plant water status estimation were evaluated.
Table 2 reveals RGB-based vegetation indices as claimed by numerous previous studies.
In our study, these indices were examined to explore their feasibility for CWC modeling
and compared as input to the model for adoption of the best indices.

Table 2. Description of different RGB imagery indices tested in this study.

RGB Indices Formula References
Normalized red index (rn) R/(R+G +B) [36]
Normalized green index (gn) G/(R+G +B) [36]
Normalized blue index (bn) B/(R+G +B) [36]
Green red ratio index (GRRI) G/R [37]
Red blue ratio index (RBRI) R/B [38]
Green blue ratio index (GBRI) G/B [38]
Normalized difference index (NDI) (rn — gn)/(rn + gn + 0.01) [39]
Green-red vegetation index (GRVI) (G—-R)/(G+R) [40]
Kawashima index (IKAW) (R—-B)/(R+B) [36]
Woebbecke index (WI) (G—-B)/R-G) [18]
Green leaf index (GLI) 2xG—-R—-B)/2xG+R+B) [41]
Visible atmospherically index (VARI) (G-R)/(G+R—-B) [42]
Excess red vegetation index (EXR) 14 xrm —gn [43]
Excess blue vegetation index (EXB) 14 x bn — gn [43]
Excess green vegetation index (EXG) 2 X gn —rn —bn [43]
Excess green minus excess red index (EXGR) EXG — EXR [43]
Principal component analysis index (IPCA) 0994 x IR—BIl +0961 x |IG—BI +0.914 x |G —RI [44]
Color index of vegetation index (CIVE) 0.441 x R —0.881 x G + 0.385 x B + 18.78745 [45]
Vegetative index (VEG) G/(R? x B172) a =0.667 [45]
Combination index (COM) 0.25 x EXG + 0.3 x EXGR + 0.33 x CIVE + 0.12 x VEG [45]
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2.5.2. Gray Level Co-Occurrence Matrix-Based Texture Features (GLCMF)

Several studies related to assessing the water status of the plant have used GLCMEF:
Wenting et al. [21], to predict maize leaf moisture content, and Ushada et al. [46], to estimate
the moisture content and leaf water potential of moss. This is based on the fact that changes
in the textural appearance of a plant canopy due to the water status reflects tonal variations
over the community of plants [47]. The co-occurrence matrix is a statistical method for
examining the texture of a grayscale image [48]. The GLCMF analyzes the grayscale rela-
tionship between two pixels in the image space that are separated by a certain distance and
then randomly extracts the canopy texture feature information premised on probability
characteristics. There were six variants of GLCMF in this study such as contrast, dissimilar-
ity, homogeneity, angular second moment (ASM), energy, and correlation. The contrast
clearly represents the depth of the image and texture. Dissimilarity measures the distance
between pairs of pixels in the region of interest. Homogeneity estimates the closeness of
the distribution of elements in the GLCMF. ASM discovers the roughness distribution and
texture image. Energy measures textural uniformity. The correlation finds out the degree of
correlation in the local grayscale image. The RGB-based GLCMEF variables are explicated,
as shown in Table 3.

Table 3. Description of the GLCMF derived from digital images.

Variable Type Formula Reference
Contrast Con=yN_ yu o bt —j)?

Dissimilarity Dis =y N= =0 0Pili—jl

Homogeneity Hom = Zz] ! H(l pE

Angular second moment ASM = Zf\g 0P 2 [49]
Energy Ene = vVASM

Correlation Corr = ZII\; (1) oy [W]

Where P;; are probabilities calculated for values in GLCMF when i and j are row and column references,
respectively. y; and y; are the mean values. 0; and o; are the standard deviation of values. N is the number of
rows or columns.

2.6. Feature Extraction from Thermal Images

Thermal indicators (T) are features extracted from thermal images depending on the
rice plant temperatures, which consist of two indices in this study: the crop water stress
index (CWSI) and normalized relative canopy temperature (NRCT).

2.6.1. Canopy Temperature-Based Crop Water Stress Index (CWSI)

The CWSI deduced from canopy temperature for many crops has been widely nom-
inated as an instrument to elucidate plant water conditions and schedule irrigation [50].
The CWSI concept is linked to the standard in which the leaf surface is cooled during the
transpiration process, and as soil moisture in the root zone is also depleted, leaf temperature
increases and stomatal transpiration and conductance decrease. An empirical approach
was proposed to determine crop water stress as reported by Idso et al. [51]:

[(Te = Ta) = (Taws — Ta)]

W= {(Tdry - Ta) - (ans - Ta)}

©)

where Ty, Tc, Trnws, and Tgyy are air temperature (°C), canopy temperature (°C), non-water-
stressed canopy temperature (°C), and water-stressed canopy temperature (°C), respectively.
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2.6.2. Normalized Relative Canopy Temperature (NRCT)

To calculate the NRCT index, wet-bulb and dry-bulb temperatures were suggested by
Jackson et al. [23] as the lower and upper baseline, respectively. As stated in the formula
by Elsayed and Darwish [9], the NRCT was computed as follows:

NRCT = _Te = Tmin_

Tmax - Tmin

(6)

where T and Tmax are the lowest and highest temperatures measured in the experiment
(°C), respectively.

2.7. Canopy Water Content Computation

After scanning by the visible and thermal imaging system, the plants in each pot were
picked. The roots were removed and the rest was studied to provide a reference for data
analysis. Thus, the above-ground part of the plants in one pot was defined as one sample
in this study. To obtain the fresh weight (FW), the samples were weighed before drying.
Then, the dry weight (DW) was obtained after drying the samples for 24 h in an oven at
a temperature of 70 °C. The percentage of canopy water content was estimated by the
following formula:

FW — DW o

CWC (%) =~

100 ()

2.8. Dataset and Data Analysis Software

A total of 120 readings were split into training, validation, and testing, where 80%
(96 samples) were used for the training and validation process of the regression model,
while the other 20% (24 samples) were used to verify the model’s performance by com-
paring the expected CWC values with the calculated CWC values. A leave-one-out cross-
validation (LOOCYV) approach was utilized to train and validate the model. LOOCYV ex-
cludes one sample for validation and uses the rest of the samples for training in every trial.
This method can decrease over-fitting and permits a more accurate assessment of model
prediction strength [52]. The feature selection, model establishment, and data analysis were
implemented using Python 3.7.3. The ANN module from the Scikit-learn library version
0.20.2 was used for the regression task. The software was run on a PC with Intel Core
i7-3630QM, 2.4 GHz CPU, and 8 GB RAM.

2.9. Implementation of a Backpropagation Neural Network (BPNN)

The BPNN employs the multi-layer perceptrons (MLPs) as a supervised learning
algorithm that contains a flexible function to train a specific data set [53]. MLP is one of
the neural network models that has the same back-propagation structure for supervised
training. Typically, back-propagation is used for the training of feed-forward. The neural
network is structured from 3 types of layers: (1) the input layer is the primary data for the
neural network, (2) the hidden layer is an intermediate layer between the independent
inputs layer and dependent output layer, and (3) the output layer produces the results
of the specified inputs. Figure 4 displays the architecture of an artificial neural network,
which is a class of machine learning algorithms. It uses multiple layers to gradually
extract high-level features from the raw input. Five squares as input layers are noted
as vector I. The network contains two hidden layers, the number of nodes determined
according to regression accuracy. Four squares as hidden layers represent the “activation”
nodes and usually are noted as weight; W, Wy, and Wo are with layers 1-2, 2-3, and 34,
respectively. The final square represents the output layer that shows the predicted value
of canopy water content. The bias neuron (B) is a special neuron added to each layer in
the neural network, which is usually taken to be 1 [54]. The artificial neural networks
are generalized mathematical models that use a series of neurons or nodes interlinked by
weighted connections to simulate human cognition as it applies to pattern identification
and prediction [55].
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Figure 4. The architecture of an artificial neural network.

Input variants involve RGB-based features (color: 20VI and texture: 6GLCMF) and
thermal properties (2T). To facilitate the model training process, a transformation was
performed to rescale the features. Normalization is transformed across individual features
(f) to adjust for differences in magnitude between different features. Feature normalization
(form) is computed by subtracting the minimum image data (f,,;;;) and by dividing the
difference between the maximum (f;4y) and the minimum feature value as shown by the
following formula:

f - f min
fnorm fmax . fmm (8)

The neuron is the primary component of ANN, which involves its elementary math-
ematical functions. The neuron output (y) can be expressed by the following equation:
where W, indicates the nth weights of the combination that produces the output, 8 is the
unit step function, W is the weight related with the nth input, and y is the average.

n

Y (6) X j=1 (Wn - #) (9)

The generalized weight (W) can be realized using the equation below, where i is the
index for each covariate of x, o(x) is the predicted outcome probability by covariate vector,
and log-odds is a link function for the neural network.

dlog(22))

1—o(x)

124
axi

(10)

At training, the maximum number of neural network iterations was 1000 iterations.
A neural network can stop at exact iterations with the highest network performance.
To choose the number of neurons in the hidden layer, the cross-validation technique with
the LOOV method was performed on the training dataset. The parameter of limited
memory Broyden—Fletcher—-Goldfarb-Shanno (Ibfgs) was used as a weight optimizer to
implement the algorithm efficiently [56]. Otherwise, there are several methodologies to
select premium features depending on feature selection algorithms that have become an
obvious requirement for prediction and modeling [57]. Glorfeld [58] concluded that an
index, such as the following BPNN algorithm in this analysis, can be used to select the
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most important variables and improves the predictive capacity of the regression model.
This index is explicated in the following formula:

S [(1 106/ 540 1 1e, ) O]
p

- Zizl (Z7£1 [<| I |P,-J-/Zl;:i1 ‘ I |Pi,j,k>| o |]])

where M is the important measure for the input variable, 11, is the number of input variables,
ny is the number of hidden layer nodes, | I | P, is the absolute value of the hidden layer

(11)

weight corresponding to the pth input variable and the jth hidden layer, and | O | jis the
absolute value of the output layer weight corresponding to the jth hidden layer.

2.10. Hyperparameter Optimization and High-Level Variants Selection

One of the purposes of this research was to compare different features during training
the BPNN model. The three types of the dataset (samples x features) for analysis were
120 x 20, 120 x 6, and 120 x 2. These data were employed as input for the neural network.
We optimized the model by selecting the prominent hyperparameters. The parameters
were the number of neurons in two hidden layers (nr; and nr;) and activation function
(fun). The main steps of neural network training, appropriate hyperparameters estimation,
and feature arrangement are described in Figure 5. This figure illustrates the pseudo-code
for training a neural net with various variants. The number of features in each loop was
with color indices: 20, 19, 18, etc.; texture features: 6, 5, 4, etc.; and thermal indicators:
2, 1. Generally, the variants were fed to the model randomly in the 1st loop, the low-
level features were dropped during each loop, and the superb features were organized
in ascending order concerning the highest contribution. Then, the ANN outputs were
compared to decide high-ranking variants at minimum RMSECV.

Neural network training
Input: dataset with p* variables.
p < p%
whilep>1do
fun:= ["identity", "logistic", "tanh", "relu"];
fornri=1 to 20
fornr2=1 to 20
fork=0to3
fun:= fun [k];
BPNNjp « fit BPNN with nry, nr; and f values for the p variables;
calculate RMSECV with model parameters;
endfor;
endfor;
endfor;
Min.RMSECV « select the corresponding model parameters;

Fit the model again with selected parameters;

Evaluate model training;

Test model performance;

Rank.criteria p < the most important variables;
Save super variables;

p—pl;

endwhile;

Return (Ranki, Ranko....Rankp)

Figure 5. Pseudo-code to train a neural network and select the top variables.
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2.11. Statistical Analysis Methods

The performance of the artificial neural network was measured through the following
selected statistical indicators: mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), prediction accuracy (Acc), and coefficient of
determination (R?) [59]. All parameters are explicated as follows: CWC, is the actual
value that was estimated from laboratory calculations, CWC; is the predicted or simulated
value, CWC,y. is the average value, and NP is the total number of data points.

1 N 2
MSE= Np " (CWCat — CWGCp) (12)
R - 1 Np 2
MSE= Np Y P (CWCaet — CWG) (13)

2 L(CWCact — CWG,)? ”
Z(chact - CWCave)2

Np | (CWCaet — CWGy) |

1
MAPE = 100 x Np P CWCw (15)
CWCp — CWCqct
Acc=1-—abs (mean CWCt ) (16)

3. Results
3.1. Optimization Combinations of Independent Variables Selection

Various combinations of variables were examined to predict CWC, and the top neural
network architectures for hidden configurations were presented. The numbers of hidden
neurons were different due to the variations in the feature values extracted from the
visible and thermal images. The proposed features of color indices, texture characteristics,
and thermal indicators were evaluated to adopt the best-combined variants.

3.1.1. Color Vegetation Indices (VI)

The optimal VI identified in each loop during neural network training are clarified in
Figure 6. The neural network performance was estimated with different VI. As explained
in Table 4, model performance metrics (MSE, RMSE, and MAPE) were evaluated through
training, cross-validation, and a test set. Moreover, the prediction accuracy (Acc) was
calculated. The best hyperparameters such as hidden neurons, activation function, and the
maximum number of iterations of the neural network were chosen. Several architectures
of the BPNN model relying on VI were collected. The best neural network results were
attained by fusing data of 14VI at the 7th loop, as displayed in Figure 6. The finest
hyperparameters of activation function, hidden neurons, and maximum iterations were
logistic, (19,15), and 119 iterations, respectively. The RMSECV decreased to 2.291 vs. 2. 444
compared to 14VI vs. 20VI. The prediction ability of the BPNN-VI-14 model increased
equivalent to the model with full VI, with prediction R? (0.632 vs. 0.556), MAPE (2.832% vs.
3.273%), RMSE (2.788 vs. 3.065), MSE (7.776 vs. 9.394), and Acc (0.972 vs. 0.967).
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Figure 6. RGB-based color features identified during neural network training loops.

Table 4. Various architectures of the BPNN model based on VI calculated from RGB images: with MSE, RMSE, MAPE (%),
Acc, and R? in training, cross-validation, and test set.

MSE RMSE MAPE (%) R?
nf (arynry) fun Iter . . . : Acc
Train CV Test Train CV  Test Train CV  Test Train CV  Test
20 (14,10)  logistic ~ 47 6.89 5971 9394 2625 2444 3.065 2.853 3.304 3.273 0.693 0.613 0.556 0.967
19 (11,13)  logistic 45 7.017 6.150 8486 2649 2480 2913 2868 3.353 2948 0.687 0.577 0.599 0.971
18 (18,18)  logistic 54 7505 7.046 7.253 2739 2654 2693 3.078 3593 2.859 0.665 0.519 0.657 0.971
17 (2,5) logistic 140 9.846 5842 9.767 3.138 2417 3.125 3.631 3277 3.639 0561 0.620 0.538 0.964
16 (19,5) logistic 65 7689 6969 8.758 2773 2639 2959 3.104 3558 2979 0.657 0.525 0.586 0.970
15 (19,16) tanh 107 7179 7.019 8512 2679 2649 2918 3.002 3.549 2928 0.679 0.558 0.593 0.971
14*  (19,15) logistic 119 4521 5.247 7776 2126 2291 2783 2244 3.105 2832 0.798 0.625 0.632 0.972
13 (13,15)  logistic 70 6954 6524 8.776 2.637 2554 2963 2.874 3456 3.024 0.689 0.572 0.585 0.969
12 (3,3) logistic 174  11.201 5.609 11.499 3.347 2369 3.391 3.657 3.235 3.503 0.500 0.598 0.456 0.964
11 (11,6) logistic 69 7381 6.854 8397 2717 2618 2898 3.014 3534 2867 0.671 0.551 0.603 0.971
10 (6,14) logistic 63 7286 7347 8452 2699 2711 2907 2983 3.663 3.083 0.675 0.533 0.600 0.969
9 (8,15) logistic 104 6.729 6.722 8393 2594 2593 2897 2.858 3.496 2.861 0.699 0.531 0.603 0.971
8 (14,14) logistic 109 6.997 6.839 9511 2645 2615 3.084 2921 3.549 3.079 0.688 0.553 0.550 0.969
7 (17,14) tanh 270 6.774 6.068 9918 2.603 2463 3.149 2.811 3357 3.213 0.698 0.580 0.531 0.968
6 (7,10) logistic 86 7484 6364 8983 2736 2523 2997 3.0609 3403 3.059 0.666 0.565 0.575 0.969
5 (3,11) logistic 224 7149 6.237 7529 2674 2497 2744 2983 3378 2630 0.681 0.585 0.644 0.974
4 (10,17)  logistic 97 7680 7156 8.029 2771 2675 2834 3129 3.619 2737 0.657 0.514 0.620 0.973
3 (6,20) tanh 150 7.685 5961 8297 2772 2442 2881 3.065 3.311 2922 0.657 0.602 0.607 0.971
2 (5,15) logistic 215 7.358 5819 9.004 2713 2412 3.001 2983 3261 2892 0.672 0.613 0574 0.971
1 (8,17) logistic 511 9.894 8.199 12315 3.145 2.863 3.509 3.409 3.879 3.965 0559 0448 0417 0.960

Where nf is number of features, Iter is the maximum iteration of the neural network, CV is a cross-validation dataset, and * denotes
best-combined VI with the lowest RMSECV.

3.1.2. GLCM-Based Texture Features (GLCMF)

The highest variants of GLCMEF selected in each loop are exposed in Figure 7. The dif-
ferent configurations of the GLCMEF-based BPNN model and its performance output (MSE,
RMSE, and MAPE) with cross-validation, training, and test set are mentioned in Table 5.
The optimal neural network was polished by conjoining 5GLCMF at the 2nd loop. The best
GLCMEF were ASM, homogeneity, contrast, dissimilarity, and correlation, respectively.
The ideal parameters of activation function, hidden neurons, and maximum iterations
at the fewest value of RMSECYV (2.148) were hyperbolic tan, (6,10), and 175 repetitions,
respectively. The BPNN-GLCMF-5 model performed better than the BPNN-GLCMF-6
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model. The high-level model enhanced the R? from 0.641 to 0.679, MAPE from 3.151% to
2.938%, RMSE from 2.757 to 2.607, MSE from 7.599 to 6.794, and Acc from 0.968 to 0.971.

GLCMF
B AsM Hom
Dis Ene
Corr Con

- [l
]

an input to a neural network

L S I NV}

1 2 3 4 5 6

Neural network training loops

Ranking of the selected feature as

Figure 7. The texture features selected during neural network training loops.

Table 5. Various architectures of BPNN model based on GLCMF extracted from digital images with MSE, RMSE, MAPE (%),
Acc, and R? in training, cross-validation, and test set.

MSE RMSE MAPE (%) R?

nf. (nr;nry) fun Iter - . . . Ace
Train CV Test Train CV Test Train CV  Test Train CV  Test
6 (16,10) relu 297 5.837 5537 7599 2416 2353 2757 2582 3202 3.151 0.739 0.612 0.641 0.968
5* (6,10) tanh 175 6.056 4.614 6.794 2461 2148 2.607 2607 2917 2938 0.729 0.656 0.679 0.971
4 (19,6) relu 141 6.365 5.242 6.367 2523 2289 2523 2713 3124 2917 0.716 0.640 0.699 0.971
3 (7,13) relu 185 6.339 5335 6.127 2518 2309 2475 2671 3.133 2949 0.717 0.615 0.710 0.971
2 (15,3) tanh 192 7.169 5.034 10.249 2.677 2244 3201 3.026 3.048 3.689 0.680 0.644 0.515 0.963
1 (19,8) logistic 63 10442 7.777 10.337 3.231 2789 3.215 4.177 3.907 4.067 0534 0.443 0511 0.959

Where * refers to best-combined GLCMF at the smallest value of RMSCV.

3.1.3. Thermal Indicators (T)

The rice plants, at three growth stages, were grown with four levels of irrigation
under outdoor conditions. The temperature of the rice canopy was affected by the water
stress. The temperatures of non-water stressed and water-stressed canopy were 31 °C
and 38 °C at the 1st stage, 37 °C and 49.1 °C at the 2nd stage, and 22 °C and 34.07 °C at
the 3rd stage, respectively. We exploited the previous temperatures for computing the
two thermal indicators: CWSI and NRCT. The relationship of both CWSI and NRCT with
the CWC of rice at each growth stage is designated in Figure 8. It was observed to be
inversely related, and the R? at each stage independently was higher than the R? at three
stages. By applying ANN with thermal indicators, the prediction formula to compute the
CWC at any stage of rice growth was explored with high accuracy. The neural network
outputs with thermal indicators at the 1st and 2nd loop are illuminated in Table 6. It depicts
the optimal parameters of the T-based BPNN model and its outputs (R?, MAPE, RMSE,
MSE, and Acc) through cross-validation, training, and test set. The results approved
that the BPNN-CWSI-NRCT was a high-quality model for CWC computation (R? = 0.803,
MAPE = 1.989%, RMSE = 2.043, MSE = 4.172, and Acc = 0.980) as opposed to BPNN-CWSI
(R? = 0.505, MAPE = 3.782%, RMSE = 3.239, MSE = 10.473, and Acc = 0.962). The RMSECV
decreased from 2.549 to 1.116 against 1 and 2T, respectively. The model of BPNN-T-2
was excellent for estimating the CWC by (19,18) neurons in two hidden layers, logistic as
activation function, and 217 duplications.
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Figure 8. Relationship between two thermal indicators and water content of rice during the three growth stages; tillering
(1st stage), stem elongation (2nd stage), and panicle initiation (3rd stage): (a) CWSI-based CWC, and (b) NRCT-based CWC.

Table 6. Various architectures of BPNN model based on thermal features with MSE, RMSE, MAPE (%), Acc, and R? in
training, cross-validation, and test set.

MSE RMSE MAPE (%) R?
nf (nrynry) fun Iter - - - - Acc
Train CV Test Train CV Test Train CV  Test Train CV  Test

22 (19,18) logistic 217 2.008 1245 4.172 1417 1116 2043 1302 1472 1989 0910 0.851 0.803 0.980
1b 3,5) logistic 297  9.529 6.497 10473 3.087 2549 3.239 3424 3.459 3.782 0.575 0.566 0.505 0.962

Where @ is the best-combined variables of CWSI-NRCT, and P is the indicator of CWSL

3.1.4. Best-Combined Features Extracted from Visible and Thermal Imagery

The findings inferred that in comparison with the BPNN-GLCMF-5 and BPNN-VI-14
models, the BPNN-T-2 model had dependable foretelling. Further, the thermal indica-
tors (T) were joined with VI and GLCMF to improve the forecasting performance and
discover the unmatched model. The three approaches were espoused as a new expecta-
tion procedure of the rice water content, incorporating VI-T, GLCMF-T, and VI-GLCMF-T
features with the BPNN model. Their outputs (MSE, RMSE, and MAPE) and notable
parameters are disclosed in Table 7. The order of the models was defined by the smallest
RMSECV: the performance of BPNN-VI-GLCME-T-21>BPNN-GLCM-T-7>BPNN-VI-T-16.
Their corresponding values at cross-validation R? were 0.984 (RMSECV = 0.361), 0.982
(RMSECYV = 0.447), and 0.956 (RMSECV = 0.661), respectively. Their prediction outputs
with the RZ, MAPE, RMSE, MSE, and Acc were 0.983, 0.564%, 0.599, 0.359, and 0.994; 0.972,
0.668%, 0.764, 0.583, and 0.993; and 0.978, 0.682%, 0.674, 0.455, and 0.993, respectively.
The distinguishing parameters of the most robust model were with hidden layer neurons
(8,9), activation function (logistic), and maximum iterations (422). The BPNN-VI-GLCM-T-
21 model had quick predictive outcomes within 31.911 s for a single sample compared to the
oven-drying method [17,60]; a test time of 24 h is required to dry the sample. The findings
are in agreement with Meeradevi et al. [61] who used ANN as a fast tool with a prediction
time of 9.74 s. The results elucidated that the improvement in prediction accuracy of CWC
can be fulfilled if adequate neural network parameters and higher variables are assigned.
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Table 7. Various architectures of BPNN model depending on the best-combined features extracted from visible and thermal
imagery, with MSE, RMSE, MAPE (%), Acc, and R?in training, cross-validation, and test set.

nf

(nry,nrp) fun. Iter

MSE RMSE MAPE (%) R?
Train CV  Test Train CV Test Train CV Test Train CV  Test

Acc C.T.

7a
16P
21°¢

(18,9)
(7,12)
(8,9)

logistic 275
logistic 130
logistic 422

0119 0.199 0583 0.346 0.447 0.764 0366 0599 0.668 0.995 0982 0972 0.993 28.158
0355 0.437 0455 059 0.661 0.674 0.604 0.891 0.682 0984 0.956 0.978 0.993 29.977
0.063 0.130 0359 0.251 0361 0599 0251 0480 0564 0997 0984 0983 0994 31911

Where @ is 5 GLCMF and 2 T,? is 14 VIand 2 T, © is 14 VI and 5 GLCMF and 2 T, and C.T. is the consumption time required to analyze the
data across a single sample to predict the CWC (sec).

3.2. Neural Network Learning Curves with Super Features

The learning curve of the regression model was promoted in this study through the
following considerations: (1) number and characteristics of nominated features, (2) pick-
ing the supreme parameters, and (3) neural network definite iterations to avoid model
over-fitting. The first two points are discussed in the previous sections. The last factor
refers to the neural network stopping at specific iterations that can progress the network
performance, as indicated in Figure 9. These curves exhibit an evaluation of the model’s
behavior with the higher variants at training, cross-validation, and testing. As the number
of iterations increases, the accuracies of training, cross-validation, and testing increase
gradually to reach a point where the learning curves show a good model. As publicized
in Figure 9a—d, the optimal repetitions of the BPNN training process through the highest
variables (14VI, 5GLCME, 2T, and VI-GLCMEF-T-21) were 119, 175, 217, and 422 steps,
respectively. The learning curves of the innovative models reached a cross-validation
accuracy of 0.625, 0.656, 0.851, and 0.984, respectively. The learning outcomes verified that
the accuracy measure steadily increases over iterations of training. When the permissible
iterations of the neural network are exceeded, the model generally takes the form of making
an overly complex model. Moreover, training accuracy was usually higher than cross-
validation accuracy. The three-stage model of BPNN-VI-GLCMF-T was accomplished with
21 variables and 422 steps. Its prediction accuracy was 99.4% (R? = 0.983 with an RMSE
of 0.599), and the learning curve performance was impressive (Figure 9d). The expected
performance was improved as said by Thawornwong and Enke [62]; to avoid over-fitting,
the network was trained by the back-propagation algorithm with early stopping.

3.3. Neural Network Topology with Higher Variants

The neural network architectures after gathering senior features are introduced in
Figure 10. This figure showed the best neural network structure with the variants chosen.
Each network topology offers basic information such as the synaptic weights trained,
a range of hidden neuron layers, steps for converging, and the overall errors. The network
topology is constructed with a specific combination of input variables with a number of
hidden neuron layers. For instance, the model of BPNN-VI-14 had hidden neuron layers
(19,15), BPNN-GLCMEF-5 needed (6,10), BPNN-T-2 required (19,18), and BPNN-VI-GLCMEF-
T-21 desired (8,9). The layout presented in Figure 10a depicts the BPNN-VI-14 model;
the training process needed 119 steps to achieve a lower error function. The process has
an overall error of roughly 2.358. The learning process of the BPNN-GLCMEF-5 model
(Figure 10b) demands 175 steps, containing an overall error of about 3.130. At the BPNN-T-
2 model (Figure 10c), the training process obligated 217 steps with a total error of about
0.960. At the BPNN-VI-GLCME-T-21 model (Figure 10d), the learning process requested
422 steps, and the overall error was 0.0317.

3.4. Canopy Water Content Prediction and Validation

From the results, the thermal features had a high ranking for measuring the CWC of
rice in contrast to VI and GLCME. The super thermal variables were linked to acceptable-
level features as follows: VI-GLCMEF-T, VI-T, and GLCM-T. The VI-GLCMF-T features
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were the premium integration to filter the uppermost variables. The neural network
was trained with the previous features (independent variables) for predicting the CWC
(dependent variable). The expected CWC values were then compared with the reserved
values not implemented for the neural network. Figure 11 illustrates the scatter plots of
observed and predicted CWC in rice exploiting the proposed features. This study evaluated
multivariate methods and compared the results clearly, so the use of multivariate methods
greatly enhances predictability. Independent validation can also be considered the most
robust method for evaluating the accuracy of the regression model since validation data
are not involved in the model development process. The BPNN-VI-GLCMF-T-21 was
the first best predictive model as evidenced by the performance and showed a stronger
relationship between the superlative features and CWC. These features involved in this
model are of great significance for predicting water content. Its outputs with R? were
0.984 (cross-validation) and 0.983 (test set). The BPNN-GLCME-T-7 model ranked second
in performance. The R? value was 0.982 and 0.972 in the cross-validation and test set,
respectively. The BPNN-VI-T-16 was the third highest accurate model (R? = 0.956 and
0.978 for cross-validation and test set, respectively). Models constructed with individual
features of either VI or GLCMF had lower performance expectations, while these features
combined with 2T achieved robust forecasting. Otherwise, the residual value plays a vital
role to validate the obtained regression model. The difference between the actual CWC
and the predicted CWC value is the residual. We calculated the residual value with the
first three higher models. At BPNN-VI-GLCM-T-21, —1.223% and 1.916% were the lowest
and highest residuals for the CWC prediction, respectively. At BPNN-VI-T-16, the lowest
and highest residuals were —1.128% and 1.380%, while the lowest residuals of —0.583%
and highest of 2.859% were calculated with BPNN-GLCMF-T-7.
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Figure 9. Learning curves of the neural network based on the best-combined variables through
training, cross-validation, and testing using a different number of iterations: (a) 14VI, (b) 5GLCMF,
(c) 2T, (d) VI-GLCM-T-21.
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Figure 11. The relationship between expected and actual CWC values employing the best-combined
features: (a) VI-T-16, (b) GLCMF-T-7, and (c) VI-GLCMF-T-21.

4. Discussion

Color and texture are two important aspects in digital imagery. Plant temperature is
also a remarkable tool in thermal imaging, which can be used as an indicator to identify a
plant’s water condition. The plant color feature can be used for plant stress assessment [63].
Texture analysis is significant in many areas such as remote sensing and its common
applications include image classification and pattern recognition [64]. These features of VI
and GLCMF were applied with a neural network for CWC quantification in rice. The results
confirmed that the neural network behavior with GLCMF was superior to VI for predicting
the water status of plants. This is similar to applying classification in the following studies:
Jana et al. [65], to classify eight varieties of fruits, and Dubey and Jalal [66], to recognize
diseases in fruits. Texture features performed better than color features for classification
via support vector machine algorithm with accuracy, 32.29% and 69.79% and 83.5% and
88.56%, respectively. Moreover, the thermal analysis results agreed with the findings of
Jones [67], who identified that water content or transpiration has an inverse relationship
with leaf temperature. The CWC values were highly influenced owing to the loss of water
through transpiration; CWSI and NRCT reflected normalized temperature values for the
crop. These results are in agreement with Blum et al. [68], who indicated that the CWC
decreases with increasing canopy temperature as a result of increased water stress.

The current work has allowed a more accurate determination of the water conditions
in rice, using the best-combined features extracted from RGB and thermal images. The pro-
posed approaches use all of the sensitive features to changes in the CWC that greatly
increase the model performance. Our outcomes achieved greater accuracy than those of
Alchanatis et al. [69], who demonstrated that fusion of thermal and visible imaging can
provide precise data on the crop water status of grapevines, and the CWSI was highly
correlated with measured stomatal conductance with an R? value of 0.97. The developed
model outperformed Leinonen and Jones [70], who stated that the combination of thermal
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and visible imagery was a more accurate tool for estimating canopy temperature and
could be used to identify water deficit stress in a plant. They investigated the relation-
ship between the measured stomatal conductance and the calculated CWSI with an R? of
0.867. Likewise, the first-order model of the BPNN-VI-GLCM-T-21 was very precise in
contrast to that of Sun et al. [71], who referred to a reasonable model for computing CWC
in wheat based on the ratio vegetation index (RVI: 1605 and 1712 nm) and the normalized
difference vegetation index (NDVI: 1712 and 1605 nm), having the highest R? and lowest
RMSE in model calibration and validation (R?c = 0.74 and 0.73; RMSEC = 0.026 and 0.027;
R?v =0.72 and 0.71; RMSEV = 0.028 and 0.029). Furthermore, the proposed model is better
than Ge et al. [72], who concluded that leaf water content in maize at a pot-scale is success-
fully predicted with the hyperspectral images using the PLSR model for two genotypes
in model cross-validation (R? = 0.81 and 0.92; RMSE = 3.7 and 2.3; MAPE = 3.6 and 2.2).
The created model achieved high performance compared to Pandey et al. [73], who reported
that PLSR analysis can be performed to predict the leaf water content of pot-grown maize
and soybean plants with the highest accuracy (R? = 0.93, RMSE = 1.62, and MAPE = 1.6%)
for validation. In addition, this research is in agreement with the following study in that
the combination of color—GLCM-thermal features are high-quality variants in regression
or classification applications. Bhole et al. [74] used different features such as the color (CM:
color moments and CCV: color coherence vector), texture (GLCMF), and thermal (T) with a
random forest for classification of eleven categories of fruits. The results showed that the
model accuracies for integrating GLCM-T, CM-T, CCV-T, and CM-CCV-GLCM-T features
were 84.26%, 91.17%, 92.95%, and 93.4%, respectively.

Finally, remote and proximal sensing images acquired with high-resolution cameras,
mounted at ground level or on unmanned aerial vehicles (UAV), have spatial resolutions
of a few centimeters. These images can provide sufficient accurate information for both
assessing plant water status in the field and implementing appropriate irrigation man-
agement strategies [75]. Thus, this work can assist in improving inexpensive, effective
high-throughput phenotyping platforms for large numbers of breeding plants at different
levels of irrigation. A practical sharing of research may improve site-specific rice irrigation
management through designing an intelligent irrigation system based on the best-proposed
model. The methodology of this study that relied on ground-based cameras can be scaled
up to UAV-based applications to increase productivity [76] and monitor the water condition
of crops in large-scale areas.

5. Conclusions

Estimation of canopy water content (CWC) is highly important in precision plant
reproduction and agricultural development. Low-cost outdoor cameras, such as visible
and thermal imaging systems, would be an applicable implement for predicting water
content in the plant. Therefore, the present study explored the ability to incorporate top-
level features retrieved from visible and thermal imaging with a back-propagation neural
network (BPNN) to adopt a three-stage model of CWC for rice. Hand-crafted features,
including 20 vegetation indices (VI), 6 GLCM texture features (GLCMF), and 2 thermal
indicators (T), were identified for analysis. The experimental results showed that the
proposed model of BPNN-VI-GLCMEF-T provided effective recognition of CWC in the
rice crop. Expectation accuracy increased to 99.4% by conjoining 21 superlative features.
At hidden neuron layers (8,9), the R? raised to 0.983 with an RMSE of 0.599. The models
with separate features performed lower than the best built-in features. Their corresponding
values with prediction R? were 0.632 (RMSE = 2.788), 0.679 (RMSE = 2.607), and 0.803
(RMSE = 2.043) using 14VI, 5GLCM, and 2T, respectively. Ultimately, the superlative model
has a high level of confidence and reliable outcomes. In the future, this tool may open an
avenue for rapid, high-throughput assessments of the water condition of plants, as well as
being equally important for procedures related to agricultural water management.
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