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Abstract: Remote sensing-based ground fissure extraction techniques (e.g., image classification, im-
age segmentation, feature extraction) are widely used to monitor geological hazards and large-scale
artificial engineering projects such as bridges, dams, highways, and tunnels. However, conventional
technologies cannot be applied in loess areas due to their complex terrain, diverse textural informa-
tion, and diffuse ground target boundaries, leading to the extraction of many false ground fissure
targets. To rapidly and accurately acquire ground fissures in the loess areas, this study proposes a
data processing scheme to detect loess ground fissure spatial distributions using unmanned aerial
vehicle (UAV) images. Firstly, the matched filter (MF) algorithm and the first-order derivative of the
Gaussian (FDOG) algorithm were used for image convolution. A new method was then developed
to generate the response matrices of the convolution with normalization, instead of the sensitivity
correction parameter, which can effectively extract initial ground fissure candidates. Directions, the
number of MF/FDOG templates, and the efficiency of the algorithm are comprehensively considerate
to conclude the suitable scheme of parameters. The random forest (RF) algorithm was employed for
the step of the image classification to create mask files for removing non-ground-fissure features. In
the next step, the hit-or-miss transform algorithm and filtering algorithm in mathematical morphol-
ogy is used to connect discontinuous ground fissures and remove pixel sets with areas much smaller
than those of the ground fissures, resulting in a final binary ground fissure image. The experimental
results demonstrate that the proposed scheme can adequately address the inability of conventional
methods to accurately extract ground fissures due to plentiful edge information and diverse textures,
thereby obtaining precise results of small ground fissures from high-resolution images of loess areas.

Keywords: ground fissure extraction; loess landform; modified MF-FDOG algorithm; RF algorithm;
UAV image

1. Introduction

Loess is a yellow silt quaternary deposit transported by the wind; the most typical
loess area in the world is the Loess Plateau in China. Loess is well developed in the
He’nan, Shanxi, and Gansu provinces near the middle basin of the Yellow River, which
has been gradually transformed into representative loess landform areas by the power of
water, gravity, and the wind [1]. Loess landforms are typically divided into gully, erosion,
and valley landscapes, the latter of which are prone to major geohazards such as floods,
collapses, and landslides, which threaten human life [1,2]. Ground fissures are the most
typical representative of the instability of loess sediments. It may be caused by natural
or human-made factors, which will cause damage to buildings and other structures on
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the ground and endanger people’s lives [3]. In addition, it also seriously threatens the
safe operation of high-speed railways, highways and other transportation networks [4,5].
Therefore, it is necessary to monitor these geological dynamics effectively. As mentioned in
previous studies [6], a useful way to monitor such geohazards is to extract ground fissure
information from loess areas using unmanned aerial vehicle (UAV) images.

Ground fissures, which exhibit dark and linear characteristics in aerial images, are a
typical feature of loess areas. Many computer vision methods are used to extract linear
targets, such as pixel-oriented edge extraction [7,8], object-oriented feature extraction [9],
and LiDAR [10]. Edge extraction operators based on computer vision are particularly
popular. Methods based on edge extraction operators are typically divided into two
categories: first-order derivative methods and second-order derivative methods [11]. The
edge in the images is the pixel sets covering sharp grayscale changes, whose trend can
be represented by the first-order derivative function. The greater the value of the first-
order derivative function, the more likely the pixel is to be marked as an edge indicator.
Frequently used first-order derivative functions include the Roberts operator [12], Sobel
operator [13], Prewitt operator [14], and Canny operator [11]. With all these operators,
an appropriate threshold is selected after the convolution to the segment the image and
extract the edge information; however, the arbitrary threshold used in image segmentation
has a substantial impact on the final results of fissure extraction.

Therefore, second-order derivative methods were proposed to address this problem.
The essence of second-order derivative methods is to find the maximum position of local
gradient values calculated by the first-order derivative function (i.e., the local peak position
of the first-order derivative function); the value of this position in the second-order deriva-
tive function is zero. This position is therefore considered the ground fissure location of
interest. The Laplacian operator and LOG operator [15] are two typical second-order deriva-
tive strategies. Recently, the aforementioned edge detection operators, as well as other
improved operators [16,17], have been widely studied and applied to highway extraction,
bridge recognition, and tunnel and pipeline fissure detection [18–21].

Although edge extraction operators based on pixel grayscale change detection can
extract ground fissures from high-resolution UAV images, one primary limitation is their
applicability to different types of ground fissure. Firstly, these operators only detect the
outer edges of the ground fissure and not the fissure itself when the fissure is treated as
a planar target. Secondly, they are not sensitive to pixels with a small grayscale gradient.
Moreover, broken soil, pits, withered grass, snow, and ice (in winter) are often widely
distributed in loess areas [22], whose edges are commonly recognized as ground fissures
by the above methods because of their rich textural information.

In the medical field, blood vessels in retina images scanned by computed tomography
(CT) present a similar shape and hue to ground fissures. Using the spatial attributes of
blood vessels in CT images, Chaudhuri et al. [23] successfully recognized blood vessels
with the matched filter (MF) algorithm. When the vertical profile of a blood vessel is drawn
as a graph, its distribution curve is similar to that of an inverted Gaussian distribution.
Therefore, the use of a convolution operation with the available inverted Gaussian template
can enhance the contrast between the blood vessels and the background, enabling the
CT image to be segmented by setting an appropriate grayscale threshold. However, the
MF algorithm cannot accurately distinguish blood vessel targets and blood vessel edges.
After matched filtering, the response signals of blood vessels and their edges showed
similar patterns but different strengths. To address this issue, Zhang et al. [24] proposed the
combined matched filter and first-order derivative of the Gaussian (MF-FDOG) algorithm
to improve the accuracy of blood vessel extraction. In 2013, Stumpf et al. [25] successfully
applied the MF-FDOG algorithm to investigate ground fissures before landslides due to
the similarity of their vertical profile compared to blood vessels. By analyzing the results
of ground fissure extracted for different periods, they were able to predict the orientation
and extent of the landslide.
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Nevertheless, the scheme proposed by Stumpf et al. [25] has some limitations regard-
ing its practical application. In loess areas, vegetation often appears as linear targets in
images; i.e., its spectral curve does not always satisfy the normal spectral curve pattern
of green vegetation. As a result, traditional vegetation index methods are not capable
of removing vegetation that is incorrectly detected as ground fissures. Moreover, the
sensitivity correction parameter in the MF-FDOG algorithm is indeterminate and not in
the range from 3 to 4 for different UAV images. In addition, the optimal direction number
of the convolution template is not considered and it can reduce the accuracy and efficiency
of the algorithm. Therefore, to overcome these shortcomings of the MF-FDOG algorithm,
we propose an advanced processing scheme for ground fissure extraction using different
UAV images.

2. Methodology of Ground Fissure Extraction
2.1. Modified MF-FDOG Algorithm for Ground Fissure Extraction

The MF-FDOG algorithm comprises the MF algorithm and the FDOG algorithm. The
MF [26] algorithm was initially applied in the digital signal processing field to detect
whether a complex signal contains a simple known signal [27,28]. As a digital image is one
type of digital signal; thus, methods used in the digital signal field can be used for digital
image processing.

In terms of the structure (e.g., width, length, shape) of ground fissures in different
images, we can expand a one-dimensional template to two-dimensional space. Then, using
the two-dimensional template. The function of the template is as follows:

MF = g(x, y;σ) =


y1= − 1√

2πσ
exp

(
− |x|

2

2σ2

)
−m,

· · · · · ·

yn= − 1√
2πσ

exp
(
− |x|

2

2σ2

)
−m;

|x| ≤ 3σ,|y| ≤ L/2 (1)

where x and y denote variables along the horizontal and vertical directions of the two-
dimensional template, respectively; and σ denotes the standard deviation of the inverted
Gaussian distribution. In a Gaussian distribution, the probability that variable x lies in the
range of [−3σ, 3σ] is up to 99.7%, and the vertical profile of ground fissures is similar to an
inverted Gaussian distribution (Figure 1). Therefore, it is reasonable to select this interval
as the range of variable x. In other words, the width of the ground fissure is 6σ. Moreover,
L denotes the minimum length of the ground fissure and m denotes the mean template. In
computer memory, continuous digital image signals have a regular digital matrix format.
Therefore, m is represented by

m = ∑
i∈N

Ki(x, y)/N, (2)

where Ki represents the response after MF processing at position (x, y) and N represents
the size of the two-dimensional template.
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90°). 
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cess images with the optimal direction number of templates to ensure that all ground fis-
sures are detected. In experiments, the template direction number will have a strong effect 
on the sensitivity and accuracy of the modified MF-FDOG algorithm; however, ground 
fissures are a linear target, which means that they can be regarded as a straight line with 
an anti-parallel characteristic in a local area [29]. Therefore, we only need to create a tem-
plate with directions of 0°–180° in two-dimensional space. To create these templates with 
different directions, the central pixel of the templates is set as the origin (0, 0) of the coor-
dinate system. We must decide how many directions, N, we want in the 180° space. Then, 
the angular interval of direction 휃  is calculated using Equation (4). The rotation angle, 
휃 , between the direction of the template and the x axis (see Figure 3) and the rotation 
matrix 푟  are represented by Equations (5) and (6), respectively: 

θint=180°÷N, (4) 
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Figure 1. (a) Photograph and (b) pixel value distribution (red line shows the fitting curve) of ground
fissures in loess areas.

FDOG [24] refers to the first-order derivative function of the Gaussian function, then
expands it to a two-dimensional filter template. The template is established in the same
way as that of the MF template. The FDOG function is represented by

FDOG = g(x, y;σ) =


y1 = x√

2πσ3 exp
(
− |x|

2

2σ2

)
,

· · · · · ·

yn = x√
2πσ3 exp

(
− |x|

2

2σ2

)
;

|x| ≤ 3σ,|y| ≤ L/2, (3)

where all parameters are the same as those in Equation (1). Figure 2a,b show examples of
the three-dimensional diagram about the MF template and FDOG template, respectively.
The parameters of both templates are set to σ = 1.5, L = 9.0, and θ = 90◦ (i.e., the template is
along the vertical direction).
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Figure 2. (a,b) are templates of MF and FODG filters, respectively (parameters: σ = 1.5, L = 9.0,
θ = 90◦).

The orientation and distribution of ground fissures are arbitrary. Thus, we must
process images with the optimal direction number of templates to ensure that all ground
fissures are detected. In experiments, the template direction number will have a strong
effect on the sensitivity and accuracy of the modified MF-FDOG algorithm; however,
ground fissures are a linear target, which means that they can be regarded as a straight line
with an anti-parallel characteristic in a local area [29]. Therefore, we only need to create a
template with directions of 0◦–180◦ in two-dimensional space. To create these templates
with different directions, the central pixel of the templates is set as the origin (0, 0) of the
coordinate system. We must decide how many directions, N, we want in the 180◦ space.
Then, the angular interval of direction θint is calculated using Equation (4). The rotation
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angle, θi, between the direction of the template and the x axis (see Figure 3) and the rotation
matrix ri are represented by Equations (5) and (6), respectively:

θint= 180◦ ÷ N, (4)

θi= n× θint, (5)

ri =

[
cosθi −sinθi
sinθi cosθi

]
, (6)
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Figure 3. Illustration of the template direction.

Through rotation, we can obtain a group of MF and FDOG templates. The template
direction corresponding to the maximum response is taken as the direction of ground
fissures in the processed images. The derived maximum response represents the result of
the MF operation at the current pixel location. The angle corresponding to this response
represents the orientation angle of the ground fissures. The function for selecting the
template angle is defined as

θmax(x,y)= argmax
(

I(x,y)
⊗

MFθi

)
, 0 < θi ≤ π (7)

where θmax(x,y) denotes the angle corresponding to the maximum response obtained by
convolving an image with n MF templates processing different directions; I(x,y) represents
the UAV image; MFθi denotes the template with the rotation angle θi; and

⊗
denotes

convolution operation.
For ground fissure extraction, the difference between the MF response matrix and

the FDOG response matrix must be calculated. Before this step, to reduce the probability
of false ground fissure extraction, [25] suggested implementing some special procedures:
(1) after convolution by the MF template, all negative responses should be set to zero; (2)
for the FDOG response matrix, a mean filter should be performed before calculating the
absolute value for all responses. The two steps are represented by

R(x,y) =
(

I(x,y)
⊗

MFθmax(x,y)

)
> 0 (8)

D(x,y) =
∣∣∣I(x,y)

⊗
FDOGθmax(x,y)

⊗
M
∣∣∣ (9)

where R(x,y) and D(x,y) denote the response matrices obtained by convolution of the
MF and FDOG templates, respectively; MFθmax(x,y)

and FDOGθmax(x,y)
denote the template
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corresponding to the maximum response of the convolution operation in n different
directions, and M denotes the template of the mean filter, whose value is set to 6σ [24].
Additionally, the mean filter not only reduces noise and smooths the image, but also
expands the width of D(x,y). To do this, the differential signals are enhanced.

The results indicate that it is difficult to directly differentiate between R(x,y) and D(x,y)
matrices because their ranges are substantially different. Therefore, a sensitivity correction
parameter should be used to correct their ranges. In [25], the empirical ranges of the
parameter are between 3 and 4. However, the ranges of R(x,y) and D(x,y), do not satisfy the
linear relationship shown by ground fissure extraction experiments using different images.
Therefore, there is a limitation of using the sensitivity correction parameter to correct their
ranges. In this study, we propose a solution to normalize the range of R(x,y) and D(x,y) by a
linear stretching method. Their difference is then calculated as

R(x,y)= R′(x,y)−D′(x,y) (10)

where R′(x,y) and D′(x,y) indicate the response matrices of R(x,y) and D(x,y) stretched into
[0,1], respectively.

Figure 4 is the frequency histogram of the R(x,y) matrix, which exhibits a Gaussian
distribution. Generally, ground fissures are small targets in UAV images, whose area
is far less than that of the loess, vegetation, and other ground targets. Ground fissure
signals show a strong response after the modified MF-FDOG convolution operation. It is
reasonable to choose a threshold T, according to the mean and standard deviation of R(x,y)
to segment the image using (11) and (12). Then, pixels with values greater than T can be
considered ground fissure locations. Finally, ground fissure candidates can be extracted
from the images; i.e., locations with Fmap = 1:

T = µR + 2σR (11){
R(x,y) ≥ T, Fmap= 1

R(x,y)< T, Fmap= 0
(12)
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In Equations (11) and (12), µR denotes the mean of R(x,y); σR denotes the standard
deviation of R(x,y); T denotes the threshold selected for image segmentation; and Fmap
denotes the final result the ground fissure extraction.

For a better description of the modified MF-FDOG algorithm, we present a simulation
experiment. The simulated signals of the ground fissure and edges, as well as the results of
the modified MF-FDOG algorithm, are shown in Figure 5. Both the ground fissure and edge
signals are dramatically enhanced by the MF convolution operation. However, the ground
fissure information obtained by FDOG convolution shows the exact opposite response
from that of MF convolution. As the response signals of edges are stronger than those of
ground fissures, these two targets can be clearly distinguished by mean filter processing.
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Figure 5. Analog signals of ground fissures and edges (modified from Stumpf et al. 2013): (a) analog
signals of linear features; (b) response value of MF signals; (c) response value of FDOG signals; and
(d) differential value of MF-FDOG signals.

High-resolution UAV images contain copious features, representing complex and
diverse textures; this increases the difficulty of ground fissure identification, as these
textures can be mistaken for ground fissures. Therefore, it is inevitable that multiple false
ground fissure results will result from modified MF-FDOG processing. These false results
must be removed. In this study, a “non-ground fissure removal” method based on random
forest (RF) classification was introduced to improve the ground fissure results obtained
using the modified MF-FDOG algorithm.

2.2. RF Classification in Loess Landform Areas

In this study, the RF algorithm was utilized to identify different ground targets (e.g.,
withered vegetation, snow, and bare soil). Vegetation indexes are common methods for
extracting green vegetation from true color images [30,31]; however, they cannot extract
withered vegetation [32]. Feng et al. [33] proved that the RF algorithm using both gray
and texture information is better than other classification methods such as vegetation
indexes, the nearest distance method, and the object-oriented method in urban vegetation
cartography using true color images. In our experiment, the RF algorithm was used to
remove “non-ground fissure” targets, such as snow and vegetation.
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3. Post-Processing of Ground Fissure Extraction
3.1. Ground Fissure Connection

The modified MF-FDOG algorithm and the RF algorithm are operations based on
pixels instead of objects. The grayscale values of ground fissures in the image often change
unevenly at different positions. Linear targets (e.g., ground fissures) will inevitably become
discontinuous after template convolution, resulting in small gaps along the linear targets.
To eliminate small gaps distributed along the ground fissure candidates, the hit-or-miss
transform [34] was adopted in our experiment. This method can connect broken targets
within a small gap distance according to complementary templates M1 M1and M2, which
are termed the “hit template” and “miss template,”, respectively. The central pixel of a
patch that satisfies the conditions of both the “hit template” and “miss template” is used
for further processing.

For the UAV images used in our study, we propose that gaps of no more than one-pixel
length in a four-connected field (first sub-figure in Figure 6) should be connected. Therefore,
the 3× 3 template is built in the hit-or-miss transform. The pixel value for the foreground is
set to 1, whereas the pixel value for the background is set to 0 (third sub-figure in Figure 7).
Figure 7a (1)–(12) show cases with a pixel gap and (13)–(16) show cases that only satisfy the
diagonal condition in an eight-connected field (second sub-figure in Figure 6). All “miss
templates” are shown in Figure 7b. It should be noted that all “hit templates” and “miss
templates” follow a corresponding one-to-one relationship.

Remote Sens. 2021, 13, 1784 8 of 26 
 

 

For the UAV images used in our study, we propose that gaps of no more than one-
pixel length in a four-connected field (first sub-figure in Figure 6) should be connected. 
Therefore, the 3 × 3 template is built in the hit-or-miss transform. The pixel value for the 
foreground is set to 1, whereas the pixel value for the background is set to 0 (third sub-
figure in Figure 7). Figure 7a (1)–(12) show cases with a pixel gap and (13)–(16) show cases 
that only satisfy the diagonal condition in an eight-connected field (second sub-figure in 
Figure 6). All “miss templates” are shown in Figure 7b. It should be noted that all “hit 
templates” and “miss templates” follow a corresponding one-to-one relationship. 

 
Figure 6. Illustration of connected fields and hit templates. 

 
Figure 7. Hit templates and miss templates((a) and (b) represent all cases of hit template and miss 
template respectively). 

In the process of gap elimination, the “hit template” is used to match the images pixel 
by pixel. A case is determined as a “hit” if the distribution of pixels within the coverage 
of the “hit template” is the same as the “hit template” itself in the binary image. Similarly, 
a case is termed a “miss” when the distribution of pixels within the coverage of the “miss 
template” is the same as the “miss template.” “Hit” and “miss,” which detect the position 
of the pixels of interest, are the key points of this method. To improve the efficiency of the 
calculation, the procedures of hit-or-miss transform are changed according to the mathe-
matical morphology. The original binary image, I1, is eroded by the “hit” template. Mean-
while, the complementary binary image I2 caused by I1 is eroded by the “miss template.” 
The pixel intersection of I2 and I1 is the final result. The flow chart is shown in Figure 8. 
The results from the hit-or-miss transform are shown in Figure 9a,b. 

 

8 connected 
field

4 connected 
field

Central pixel
Value 1

Value 0

Hit template

(a) Hit templates (b) Miss templates

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 6. Illustration of connected fields and hit templates.

Remote Sens. 2021, 13, 1784 8 of 26 
 

 

For the UAV images used in our study, we propose that gaps of no more than one-
pixel length in a four-connected field (first sub-figure in Figure 6) should be connected. 
Therefore, the 3 × 3 template is built in the hit-or-miss transform. The pixel value for the 
foreground is set to 1, whereas the pixel value for the background is set to 0 (third sub-
figure in Figure 7). Figure 7a (1)–(12) show cases with a pixel gap and (13)–(16) show cases 
that only satisfy the diagonal condition in an eight-connected field (second sub-figure in 
Figure 6). All “miss templates” are shown in Figure 7b. It should be noted that all “hit 
templates” and “miss templates” follow a corresponding one-to-one relationship. 

 
Figure 6. Illustration of connected fields and hit templates. 

 
Figure 7. Hit templates and miss templates((a) and (b) represent all cases of hit template and miss 
template respectively). 

In the process of gap elimination, the “hit template” is used to match the images pixel 
by pixel. A case is determined as a “hit” if the distribution of pixels within the coverage 
of the “hit template” is the same as the “hit template” itself in the binary image. Similarly, 
a case is termed a “miss” when the distribution of pixels within the coverage of the “miss 
template” is the same as the “miss template.” “Hit” and “miss,” which detect the position 
of the pixels of interest, are the key points of this method. To improve the efficiency of the 
calculation, the procedures of hit-or-miss transform are changed according to the mathe-
matical morphology. The original binary image, I1, is eroded by the “hit” template. Mean-
while, the complementary binary image I2 caused by I1 is eroded by the “miss template.” 
The pixel intersection of I2 and I1 is the final result. The flow chart is shown in Figure 8. 
The results from the hit-or-miss transform are shown in Figure 9a,b. 

 

8 connected 
field

4 connected 
field

Central pixel
Value 1

Value 0

Hit template

(a) Hit templates (b) Miss templates

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 7. Hit templates and miss templates((a) and (b) represent all cases of hit template and miss
template respectively).

In the process of gap elimination, the “hit template” is used to match the images
pixel by pixel. A case is determined as a “hit” if the distribution of pixels within the
coverage of the “hit template” is the same as the “hit template” itself in the binary image.
Similarly, a case is termed a “miss” when the distribution of pixels within the coverage of
the “miss template” is the same as the “miss template.” “Hit” and “miss,” which detect
the position of the pixels of interest, are the key points of this method. To improve the
efficiency of the calculation, the procedures of hit-or-miss transform are changed according
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to the mathematical morphology. The original binary image, I1, is eroded by the “hit”
template. Meanwhile, the complementary binary image I2 caused by I1 is eroded by the
“miss template.” The pixel intersection of I2 and I1 is the final result. The flow chart is
shown in Figure 8. The results from the hit-or-miss transform are shown in Figure 9a,b.
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It is noted that the length of the used template is typically odd; thus, the central pixel
can be chosen as the target pixel. However, a non-central pixel can also be chosen as the
target pixel. In some special cases, the length of the template can be set as even. Moreover, it
is unnecessary that the “hit” template and “miss” template are completely complementary
for each pixel when they are built (see Figure 7a,b), provided that the pixels set to one do
not overlap each other.

3.2. Fragment Removal from the Ground Fissure Candidates

Among the ground fissure candidate sets, there are some discrete pixels (or small sets
of pixels), whose area is far less than the area of the ground fissure. To improve the results,
these small patches must be removed. After connecting the disconnected ground fissure
sections, these patches should be deleted if they contain three or fewer pixels that satisfy
the relationship of the eight-connected field in the range of 3 × 3 (Figure 9c,d).

4. Application of the Ground Fissure Extraction Scheme to the Study Area
4.1. Introduction of the Ground Fissure Extraction Scheme

In this study, we propose an advanced scheme of ground fissure extraction based
on UAV images according to typical feature information in loess areas, which involves
image acquisition, image preprocessing, ground fissure candidate extraction, removing
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“non-ground fissures” and accuracy assessment of linear targets. The principle procedures
are summarized in the following steps:

Step 1: Image acquisition. According to the survey results, the appropriate UAV is selected
to obtain the images of the study area. Before flight, the terrain, wind direction and
other factors should be considered, and the appropriate flight parameter and the
position of the control points should be set. After flight, RTK equipment is used
to obtain the coordinates of control points. If image quality is low in some areas,
much flight time is added in order to improve the image quality.

Step 2: Image pre-processing. Firstly, the lens parameters will be imported into PixelGrid
software to correct the distortion of the original image, in order to reduce the
systematic error caused by the lens. After importing the control point data, the
geometric correction of images will be processed by PixelGrid software, and the
resampling method of three convolutions is selected to ensure the image accuracy.
Then, the accuracy evaluation method of PixelGrid will be automatically carried
out. Finally, the appropriate filtering and histogram matching method is used to
enhance images for conveniently extracting ground fissure.

Step 3: Extraction of ground fissure candidates with the modified MF-FDOG algorithm.
According to information obtained from surveying and image analysis, the pro-
gram is run with suitable parameter settings (i.e., the optimal σ, L, and θ values) to
obtain ground fissure candidates.

Step 4: “Non-ground fissure” target removal. Banded vegetation, edges of remaining snow
and shadows from micro-topography will result in several “non-ground fissure”
targets in the candidates extracted by step 2. Additionally, UAV images only
include red, green, and blue bands. It is difficult to completely remove vegetation
targets with such limited spectral information from the candidates. However, the
inherent textural features of vegetation are valuable for vegetation information
extraction, which is used to eliminate vegetation-induced false ground fissures.
Therefore, the RF algorithm is used to classify the images based on both textural
and spectral information. Then, the different categories, such as vegetation, are
used to create mask files. Applying the mask files to the ground fissure candidate
image can exclude non-ground fissure targets and improve the accuracy of ground
fissure extraction. Finally, a binary image of the ground fissure is derived.

Step 5: Post-processing. The modified MF-FDOG algorithm is an image processing method
based on single pixels. Therefore, the obtained binary image of ground fissures
inevitably contains many small gaps and pixel sets whose areas are far less than
that of the corresponding true ground fissures. To achieve more accurate results,
mathematical morphology was employed to connect broken ground fissures and
remove these scattered pixels.

Step 6: Accuracy assessment. In our study, an image classification method was used to
identify non-ground fissure targets. The accuracy of image classification signifi-
cantly affects the final results; thus, the Kappa coefficient and confusion matrix
were used to evaluate RF classification accuracy in this study. In addition, the
receiver operating characteristic curve (ROC) was used to evaluate the results of
ground fissure extraction [35].

4.2. Study Area and Data Source

A mountain over a tunnel in Qinghai province and a mining area in Gansu province
were selected as the study areas to represent typical developing loess landforms (red
five-pointed stars in Figure 10). Due to the instability of loess units, as well as other natural
and anthropogenic factors, ground fissures are a very common geological phenomenon.
These two areas predominantly comprise very complex mountainous terrain. The exposed
loess surface is unstable because of its typical semi-arid climate and small forest coverage.
To prevent soil erosion, the local inhabitants have planted banded vegetation and trees on
the mountain.
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In our experiment, the computer with a CPU model Intel (R) Core (TM) i5-2450M 
was used for data processing. The frequency of the CPU is 2.5 GHz, and the memory of 
the computer is 4 GB. The modified MF-FDOG algorithm was developed by C/C++ pro-
gramming language based on Visual Studio 2013. PixelGrid software was used to prepro-
cess the raw images. For the RF algorithm, the EnMAP-Box2.1.1 software (Earth Observa-
tion Center of DLR. German: EnMap Box) was used. 

Figure 10. Image of the locations of the two study areas, accessed on 7 May 2018 (http://www.91
weitu.com/).

True color images of the tunnel area and mining area were obtained at approximately
13:00 on 25 March 2015, and 09:00 on 18 November 2016, respectively. The former was
acquired by a small fixed-wing UAV oblique photography platform (Figure 11a, come from
Third Aerial Survey and Remote Sensing Institute of the Ministry of Natural Resources,
Chengdu, China) and covers a larger area around the tunnel. The latter was acquired by
a small four-rotor UAV platform (Figure 11b) and covers a small area around the mining
area. The detailed attributes of the two platforms are listed in Table 1.

Remote Sens. 2021, 13, 1784 11 of 26 
 

 

 
Figure 10. Image of the locations of the two study areas, accessed on 7 May 2018 
(http://www.91weitu.com/). 

True color images of the tunnel area and mining area were obtained at approximately 
13:00 on 25 March 2015, and 09:00 on 18 November 2016, respectively. The former was 
acquired by a small fixed-wing UAV oblique photography platform (Figure 11a, come 
from Third Aerial Survey and Remote Sensing Institute of the Ministry of Natural Re-
sources, Chengdu, China) and covers a larger area around the tunnel. The latter was ac-
quired by a small four-rotor UAV platform (Figure 11b) and covers a small area around 
the mining area. The detailed attributes of the two platforms are listed in Table 1. 

 
Figure 11. Equipment used for image acquisition ((a) is a homemade UAV that comes from the 
Third Aerial Survey and Remote Sensing Institute of the Ministry of Natural Resources; (b) is 
Phantom 4 Pro comes from SZ DJI Technology Co., Ltd.). 

Table 1. Parameters of the UAV equipment. 

 Tunnel Area Mining Area 

Properties of 
sensor 

Model SONY DSC-RX1 PHANTOM4 
Resolution (dpi) 6000 × 4000 4000 × 2250 

Effective focal length (mm) 35 20 
Photoreceptor size (mm) 35.8 × 23.9 25.4 × 25.4 

UAV platform 
Flight height (m) 3000 150 

Flight speed (km/h) 90–120 72 
Payload (kg) 3–5 – 

In our experiment, the computer with a CPU model Intel (R) Core (TM) i5-2450M 
was used for data processing. The frequency of the CPU is 2.5 GHz, and the memory of 
the computer is 4 GB. The modified MF-FDOG algorithm was developed by C/C++ pro-
gramming language based on Visual Studio 2013. PixelGrid software was used to prepro-
cess the raw images. For the RF algorithm, the EnMAP-Box2.1.1 software (Earth Observa-
tion Center of DLR. German: EnMap Box) was used. 

Figure 11. Equipment used for image acquisition ((a) is a homemade UAV that comes from the Third Aerial Survey and
Remote Sensing Institute of the Ministry of Natural Resources; (b) is Phantom 4 Pro comes from SZ DJI Technology Co., Ltd.).

Table 1. Parameters of the UAV equipment.

Tunnel Area Mining Area

Properties of sensor

Model SONY DSC-RX1 PHANTOM4
Resolution (dpi) 6000 × 4000 4000 × 2250

Effective focal length (mm) 35 20
Photoreceptor size (mm) 35.8 × 23.9 25.4 × 25.4

UAV platform
Flight height (m) 3000 150

Flight speed (km/h) 90–120 72
Payload (kg) 3–5 –

In our experiment, the computer with a CPU model Intel (R) Core (TM) i5-2450M
was used for data processing. The frequency of the CPU is 2.5 GHz, and the memory
of the computer is 4 GB. The modified MF-FDOG algorithm was developed by C/C++

http://www.91weitu.com/
http://www.91weitu.com/
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programming language based on Visual Studio 2013. PixelGrid software was used to
preprocess the raw images. For the RF algorithm, the EnMAP-Box2.1.1 software (Earth
Observation Center of DLR. German: EnMap Box) was used.

For the tunnel area (Figure 12), the coverage of the image was 5 km × 2 km, with an
elevation of 1930–2500 m. According to the field investigation, there are a large number
of ground fissures, loess craters, remaining snow, and withered grasses in the mountain
areas. The maximum width of ground fissures is no more than 30 cm: however, the
depth is up to 120 cm. Some ground fissures are covered by broken soil after a period
of weathering and snow melting. The coverage of the mining area (Figure 13), which
is less than that of the tunnel area, is predominantly composed of bare soil, withered
grass, ground fissures, and artificial structures. As shown in Table 1, the flight altitude of
PHANTOM4 is approximately 150 m. Therefore, we can obtain high-resolution images in
which the ground fissures can be clearly recognized.

Remote Sens. 2021, 13, 1784 12 of 26 
 

 

For the tunnel area (Figure 12), the coverage of the image was 5 km × 2 km, with an 
elevation of 1930–2500 m. According to the field investigation, there are a large number 
of ground fissures, loess craters, remaining snow, and withered grasses in the mountain 
areas. The maximum width of ground fissures is no more than 30 cm: however, the depth 
is up to 120 cm. Some ground fissures are covered by broken soil after a period of weath-
ering and snow melting. The coverage of the mining area (Figure 13), which is less than 
that of the tunnel area, is predominantly composed of bare soil, withered grass, ground 
fissures, and artificial structures. As shown in Table 1, the flight altitude of PHANTOM4 
is approximately 150 m. Therefore, we can obtain high-resolution images in which the 
ground fissures can be clearly recognized. 

 
Figure 12. Experimental images of mountains covering the tunnel (the two local areas marked by 
the rectangles I–II were selected for ground fissure extraction). 

 
Figure 13. Experimental images of the mining area (the two local areas marked by the rectangles 
III–IV were selected for ground fissure extraction). 

To improve the efficiency of the data processing, we selected and cropped small sub-
sections from the complete images (I,II,III, and IV in Figures 12 and 13). All previously 
described typical objects were found in these patches; thus, they were deemed highly rep-
resentative for testing the proposed ground fissure extraction scheme. 

  

Figure 12. Experimental images of mountains covering the tunnel (the two local areas marked by the
rectangles I–II were selected for ground fissure extraction).

Remote Sens. 2021, 13, 1784 12 of 26 
 

 

For the tunnel area (Figure 12), the coverage of the image was 5 km × 2 km, with an 
elevation of 1930–2500 m. According to the field investigation, there are a large number 
of ground fissures, loess craters, remaining snow, and withered grasses in the mountain 
areas. The maximum width of ground fissures is no more than 30 cm: however, the depth 
is up to 120 cm. Some ground fissures are covered by broken soil after a period of weath-
ering and snow melting. The coverage of the mining area (Figure 13), which is less than 
that of the tunnel area, is predominantly composed of bare soil, withered grass, ground 
fissures, and artificial structures. As shown in Table 1, the flight altitude of PHANTOM4 
is approximately 150 m. Therefore, we can obtain high-resolution images in which the 
ground fissures can be clearly recognized. 

 
Figure 12. Experimental images of mountains covering the tunnel (the two local areas marked by 
the rectangles I–II were selected for ground fissure extraction). 

 
Figure 13. Experimental images of the mining area (the two local areas marked by the rectangles 
III–IV were selected for ground fissure extraction). 

To improve the efficiency of the data processing, we selected and cropped small sub-
sections from the complete images (I,II,III, and IV in Figures 12 and 13). All previously 
described typical objects were found in these patches; thus, they were deemed highly rep-
resentative for testing the proposed ground fissure extraction scheme. 

  

Figure 13. Experimental images of the mining area (the two local areas marked by the rectangles
III–IV were selected for ground fissure extraction).

To improve the efficiency of the data processing, we selected and cropped small sub-
sections from the complete images (I,II,III, and IV in Figures 12 and 13). All previously



Remote Sens. 2021, 13, 1784 13 of 25

described typical objects were found in these patches; thus, they were deemed highly
representative for testing the proposed ground fissure extraction scheme.

5. Ground Fissure Extraction Results and Analysis in a Loess Area
5.1. Selection of Parameter σ and Direction Number in the Template

As described in Section 2.1, the key aspect of the modified MF-FDOG algorithm is
the convolution operation using specific templates that are similar to the vertical profile of
ground fissures. After convolution, the contrast between ground fissures and other targets
will be enhanced. Thus, it is crucial to select an appropriate parameter, σ, for fitting the
vertical profile of ground fissures. A previous study [25] noted that: (1) the parameter σ
should increase as the image resolution is enhanced; (2) for a ground fissure in a single
image, the value of the detectable width will be larger as σ increases. Additionally, σ
maintains good sensitivity to five times the optimal width of a ground fissure. Therefore,
parameter σ can be improved using the image resolution and the width of ground fissures
in the real scene, which is selected according to Table 2.

Table 2. Relationship between the image resolution and parameter σ.

Resolution (m) 0.1 0.08 0.5
σ (px) 0.67 0.75 1.34

Additionally, the template of the convolution operation is related to parameter σ and
the minimum length of the ground fissure, L. The two parameters define the width and
length of the template, respectively. An appropriate template can achieve a better effect
when the minimum length of the ground fissure is greater than or equal to L. Therefore, it
is necessary to select an optimal value of L according to the actual minimum length of the
ground fissure and effectively reduce the possibility of “non-ground fissure” targets in the
ground fissure extraction results.

Another important parameter of the modified MF-FDOG algorithm is the template
direction number. The direction of the ground fissure is arbitrary; thus, it is necessary to
process the entire image using a group of templates with different directions for detecting
ground fissures with unknown positions and directions. Multiple template directions
can be obtained by setting different angular intervals. For example, if six is selected as
the template direction number in the algorithm, the angular interval will be computed
by Equation (4). Generally, the larger the template direction number, the more accurate
the results.

The template direction number, N, is a crucial parameter that affects the performance
of the modified MF-FDOG algorithm in ground fissure extraction from two major aspects:
(1) the template direction number, which is related to the sensitivity of direction detection,
and the accuracy of ground fissure extraction. A larger direction number not only does
fail to improve the accuracy of ground fissure extraction, but also increases the redundancy.
Increasing N can even reduce the accuracy of ground fissure extraction. (2) Time consumed
in the modified MF-FDOG algorithm has a positive correlation with an increase of N. If we
reduce the template direction number, the efficiency of the algorithm will increase linearly.
However, the performance of sensitivity in the direction detection will decrease. Therefore, to
maintain high accuracy in ground fissure extraction, the template direction number should be
reduced as much as possible to improve the efficiency of the modified MF-FDOG algorithm.

To determine the relationship between the accuracy of the modified MF-FDOG algo-
rithm and the direction number of the template, we designed a specific experiment, which
can provide important insights into selecting the template direction number. Firstly, only
one group of templates is used to extract ground fissures with different widths from the
UAV image. To determine whether the template has the same directionality characteristics
as the ground fissures of different width, it is necessary to simulate two ground fissures
with different widths covering the full direction of 360◦ (Figure 14). The length and width
of the simulated images are 295 pixels. Secondly, we created eight groups of templates with
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different direction numbers, which have the same values of parameters σ and L. Finally,
the modified MF-FDOG convolution operation results are shown in Figures 15 and 16.
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To evaluate the accuracy of the results of the modified MF-FDOG algorithm, the results
of the visual interpretation were considered as accurate results of the ground fissures (i.e.,
expert maps). Following a comparison of the results of ground fissure extraction and the
expert maps, the number of ground fissure pixels that were correctly extracted is shown in
Table 3, where TP indicates true pixels, i.e., correctly extracted pixels. The statistical results
indicate that TP reaches a maximum when the direction number is 10. Furthermore, data
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fitting was conducted using the two result sets in Table 3 to demonstrate the relationship
between the accuracy of ground fissure extraction and the direction number of the template
(Figure 17a,b). The two fitted curves exhibit the same trend and achieve a peak value
around the position associated with direction number 10. It can be inferred that ground
fissures with different widths have no effect on the selection of template direction numbers.
In addition, the templates with 10 directions can achieve optimal results. It should be
noted that the direction in the modified MF-FDOG algorithm only uses even numbers;
therefore, 10 is selected to be the optimal direction number in our study. The relevant
angular interval is 18◦.

Table 3. Statistics of true pixels for analog images.

Direction

TP 2 4 6 8 10 12 14 16
Small 908 1667 1708 1854 1979 1679 1788 1880
Large 1154 1938 2155 2267 2331 2054 2186 2132
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5.2. Results of Ground Fissure Extraction Based on Modified MF-FDOG Algorithm

Figure 12 (I and II) and Figure 13 (III and IV) show the original experimental images
of this study. After processing using the modified MF-FDOG algorithm, the results from
each step are shown in Figure 18a–c. The ground fissure candidates are presented as bright
white against a black background (Figure 18a). The candidate sets include “non-ground
fissure” targets, e.g., the edges of snow cover and withered grass.

The RF algorithm was used to identify these targets. The spectral information of
snow is most obvious due to its bright white spectral signature. However, it is difficult for
the RF algorithm to distinguish ground fissures and the boundaries between snow and
loess because they have similar vertical profiles. The use of a dilation operation in the
mathematical morphology for the boundaries can eliminate the effect of this phenomenon.
Specifically, we combined six types of textural information (mean, variance, homogeneity,
entropy, and second moment), which were created by a 7 × 7 co-occurrence matrix, as
well as the spectral information, to calculate the required parameters of the RF algorithm
by sample training. The samples should be a small polygon shape [36]. The results of
extracted vegetation and snow by the RF algorithm are shown in Figure 19 I–IV. Then, the
vegetation and snow-induced “false ground fissures” were excluded by mask files. The RF
algorithm was integrated into the EnMAP-Box software.
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For the RF classification results, overall accuracy [37] and Kappa coefficient [38] are
typically employed for the accuracy assessment. The assessment results for image patches
I, II, III, and IV are listed in Table 4. According to the accuracy indices, all four groups
of RF classification results exhibit good precision. Moreover, the Kappa coefficients for
image patches II and III are higher than 90%, which further demonstrates the accuracy and
reliability of the RF algorithm. The accuracy of image patch I is lower because of the more
complex spectral and textural information in this area.

Table 4. User accuracy and producer accuracy.

I II III IV

Overall accuracy/% 79.81 93.10 94.98 97.22
Kappa accuracy/% 73.55 90.89 89.57 96.01

Finally, the post-processing procedure introduced in Section 3 was conducted, and
the final results of ground fissure extraction were derived (Figure 18c I–IV). According to
the original image, the ground fissures in Figure 18a I do not satisfy the characteristics
of a linear distribution due to their complex and broken shape. Therefore, only a small
fraction of ground fissures with a discrete distribution were extracted. After applying the
RF algorithm, many error targets caused by shadows remain in the lower right corner of
Figure 18b II, along with correct ground fissures. In comparison, Figure 18b III,IV clearly
shows the distribution and shape of ground fissures. In order to better demonstrate the
effect of the modified MF-FDOG algorithm, the results of ground fissure extraction are
superposed on the original experimental image in Figure 18c.

5.3. Accuracy Analysis of the Modified MF-FDOG Algorithm

To evaluate the effectiveness and accuracy of the modified MF-FDOG algorithm
used in ground fissure extraction based on UAV images in a loess area, expert images
(Figure 20) of ground fissures were obtained by visual interpretation according to surveys
and previous experience. These expert images have sufficient precision for use as reference
images. Furthermore, three other traditional algorithms (e.g., Canny operator, image
segmentation, and SVM (support vector machine) algorithm) were used to extract ground
fissures. The results of these algorithms are shown in Figures 21–24, in which (a), (b),
(c) and (d) represent the results of the Canny operator, image segmentation, and the
SVM algorithm, respectively. The accuracy of the shapes marked A–H was analyzed in
this study.
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The Canny operator, which is only sensitive to edge information in the image, can
extract many edge targets. However, it also contains many “non-ground fissures” (e.g., the
snow marked by shape B in Figure 21a and the shadow marked by shape D in Figure 22a.
In addition, the Canny operator cannot efficiently extract ground fissures with blurred
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edges (e.g., the ground fissures marked by shapes A in Figure 21a and C in Figure 22a). A
key characteristic of the Canny operator for ground fissure extraction is that the majority of
ground fissure edges are not completely closed; therefore, it is difficult to extract complete
ground fissures.

A crucial aspect of the image segmentation method is dividing the image grayscale
into many levels, which can be set to the same range or not. To do this, some objects in the
same grayscale level, such as shadows, are considered as ground fissures (as shown by the
area marked by shape B in Figure 21b and shape D in Figure 22b). Moreover, the ground
fissure results do not retain their clear linear features (see Figure 24b).

Grayscale information and textural information are the main classification bases of
the SVM algorithm, which exhibits a good ground fissure extraction result (as shown by
the area marked by shapes A–H in Figure 21c to Figure 24c). However, withered grass (see
shape B in Figure 21c), shadows caused by micro topography (see shape D in Figure 22c),
loess pits (see shape H in Figure 24c), and even loess close to ground fissures (see shape
A in Figure 21c) are wrongly extracted by the SVM algorithm without considering the
geometric information of ground fissures. For ground fissures with large variations in
width, the SVM algorithm exhibits good adaptability during extraction (as shown by the
areas marked by shape E in Figure 23c and shape G in Figure 24c).

In contrast to the above algorithms, the modified MF-FDOG algorithm is sensitive to
ground fissures with small and narrow features. The extraction results retain good ground
fissure geometry (as shown by shape A in Figure 21d, shape C in Figure 22d, and shape G
in Figure 24d). However, the modified MF-FDOG algorithm does not obtain a good result
if the ground fissures do not exhibit a linear distribution in the local area (see shape E in
Figure 23d).

5.4. Accuracy Assessment of the Different Ground Fissure Extraction Algorithms
5.4.1. Self-Assessment of the Modified MF-FDOG Algorithm

To evaluate the results of ground fissure extraction, the ROC was used for the accuracy
assessment. The ROC was initially applied in the medical field to evaluate the performance
of feature extraction methods. The first application of the ROC in machine learning was
in 1889 [35]. For the accuracy assessment of linear targets extractions, Tveite et al. [39]
suggested that the buffer zone of the result of the modified MF-FDOG algorithm should
be increased step by step and overlaid on an expert map. Accordingly, we selected the
horizontal distance between the central point of two adjacent pixels as the single unit of
the buffer zone. and then increased the buffer zone from one to ten units. Subsequently,
the different buffer zones of each ground fissure were used for the overlay analysis.

By searching each ground fissure pixel after buffer processing, ground fissure pixels
were deemed to be correctly extracted if the pixels of the expert map in the same position
are also ground fissure pixels. On the contrary, pixels are incorrectly extracted if the pixels
of the expert map in the same position are not ground fissure pixels. If the pixels in the
raw image corresponding to ground fissure pixels in the expert map are not recognized
by the algorithm, the ground fissure pixels are missed. We count the number of instances
of the above three cases and calculate the TPR (true positive rate) and FPR (false positive
rate) according to Equations (13) and (14), which express the ratio of correct and incorrect
extraction, respectively. The results are shown in Table 5:

TPR =
TN

Mtotal
(13)

FPR =
FN

Ntotal−Mtotal
(14)
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Table 5. Buffer analysis of the tunnel area and mining area.

-
Tunnel Area Mining Area

Subset I Subset II Subset III Subset IV
TPR FPR TPR FPR TPR FPR TPR FPR

Buffer 1 0.1195 0.0022 0.2938 0.0080 0.2490 0.0005 0.3387 0.0027
Buffer 2 0.2489 0.0058 0.4276 0.0177 0.4081 0.0017 0.5165 0.0075
Buffer 3 0.4323 0.0144 0.6472 0.0357 0.5638 0.0046 0.6537 0.0184
Buffer 4 0.5338 0.0223 0.7253 0.0513 0.6312 0.0074 0.7090 0.0282
Buffer 5 0.6150 0.0331 0.7821 0.0710 0.6853 0.0108 0.7547 0.0405
Buffer 6 0.6767 0.0468 0.8181 0.0936 0.7270 0.0144 0.7872 0.0526
Buffer 7 0.7135 0.0574 0.8399 0.1104 0.7579 0.0182 0.8141 0.0652
Buffer 8 0.7534 0.0725 0.8635 0.1330 0.7823 0.0223 0.8384 0.0795
Buffer 9 0.7895 0.0895 0.8744 0.1444 0.8038 0.0270 0.8581 0.0947

Buffer 10 0.8218 0.1063 0.8957 0.1803 0.8180 0.0315 0.8750 0.1087

Here, TN and FN denote the correctly extracted pixel number and incorrectly extracted
pixel number, respectively; Ntotal represents the total pixel number of an image; and Mtotal
represents the pixel number of the expert maps derived by visual interpretation. The range
of TPR and FPR is [0, 1].

The ROCs were drawn using Table 5 and are shown in Figure 25. The vertical axis
represents the TPR, and the horizontal axis represents the FPR. As the FPRs for part I, II,
and IV are close to 10%, their TPRs all exceed 80%. The FPR for patch III is only 2.6% when
the TPR exceeds 80%, demonstrating that the ground fissure extraction accuracy for patch
III is the highest among all four image patches.
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Figure 25. ROCs of the ground fissure extraction results.

5.4.2. Accuracy Comparison of the Different Ground Fissure Extractions Algorithms

Ground fissures can be extracted by the Canny algorithm in the form of edges, which
cannot be compared with the SVM algorithm, grayscale threshold algorithm, or modified
MF-FDOG algorithm. Therefore, we compared and analyzed the latter three algorithms.
The overall accuracy [37] is calculated using Equation (15), and results are shown in Table 6:

ε =
TN+TN

Nsum
(15)
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where ε denotes the overall accuracy and TN denotes the number of correctly extracted
background pixels. As shown by the results (Table 6 and Figure 26), the modified MF-
FDOG algorithm is better than both the SVM algorithm and the grayscale threshold
segmentation algorithm.

Table 6. Comparison of the overall accuracy of three ground fissure extraction algorithms.

Subset SVM Algorithm Grayscale Threshold Algorithm The Modified MF-FDOG Algorithm

I 0.9462 0.9782 0.9836
II 0.9217 0.9758 0.9806
III 0.9826 0.9869 0.9871
IV 0.9587 0.9754 0.9749
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6. Conclusions and Future Works

The image of the loess region contains rich texture information, which makes it
difficult for traditional edge extraction operators to accurately distinguish ground cracks
and other linear objects, resulting in limited extraction accuracy. In order to improve
the accuracy of ground fissure extraction, this study proposes an improved MF-FDOG
algorithm. Experimental results show that this method has high accuracy and robustness.

In this study, the normalization was used to generate the response matrices of the con-
volution, which solves the instability of the sensitivity correction parameter and effectively
extract initial ground fissure candidates. At the same time, the automatic evaluation of
optimal directions and the number of the MF/FDOG template can effectively improve the
efficiency of the algorithm. In addition, using the sum of the mean value and two times the
mean square error in the Gaussian curve as the threshold instead of an arbitrary threshold
can achieve an adaptive threshold parameter, which effectively avoids the influence of
uncertainty in image segmentation.

In future work, our research will focus on the improvement of the efficiency of data
processing and the accuracy of ground fissure extraction. Firstly, the parallel processing
technology based on graphics processing unit (GPU) [40] calculations and the development
of multiple programming languages (such as CUDA and OpenCL [41]) can greatly improve
the efficiency of data processing; secondly, although the vertical photography image has
the advantage that the image data can be processed quickly, for areas with large slope
fluctuations, the ground crack target will be deformed. Therefore, the images of different
spatial resolutions or different types of images can be combined to improve the accuracy of
fracture extraction, thereby further ensuring the robustness of the proposed method.



Remote Sens. 2021, 13, 1784 24 of 25

Author Contributions: Conceptualization, G.L. and H.J.; methodology, B.W.; validation, R.Z.; formal
analysis, B.Y.; investigation, S.W.; data curation, R.Z.; writing—original draft preparation, B.W.;
writing—review and editing, H.J. and G.L.; supervision, G.L.; project administration, G.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant
2017YFB0502700, the National Natural Science Foundation of China under Grant 41701535 and Grant
41771402 and the Sichuan Science and Technology Program under Grant 2019YJ0224.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request.

Acknowledgments: The authors would like to thank the Third Aerial Survey and Remote Sensing
Institute of the Ministry of Natural Resources for providing the UAV images.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, S.; Dong, Y.G.L. Geology and Geomorphology; China Agricultural University Press: Beijin, China, 2013; pp. 257–267.
2. Chai, H.X.; Cheng, W.M.; Qiao, Y.L. Classification system of 1:1000,000 digital loess geomorphology in China Geo-information.

Science 2006, 8, 6–13.
3. Wang, X.Y.; Mao, S.H.; Zhang, Y.J. Differential Settlement due to Ground Fissures in Xi’an. Adv. Mater. Res. 2015, 1065–1069,

410–413. [CrossRef]
4. Li, Q.C.; Ye, P.; Shao, G.Z.; Luo, W.B. Integrated Geophysical Detection on Ground Fissure in Shanxi Jingyang Seismostation of

National Highway 211. Chin. J. Eng. Geophys. 2014, 11, 106–111.
5. Wang, Z.F.; Shen, S.L.; Cheng, W.C.; Xu, Y.S. Ground fissures in Xi’an and measures to prevent damage to the Metro tunnel

system due to geohazards. Environ. Earth Sci. 2016, 75, 511. [CrossRef]
6. Stumpf, A.; Niethhammer, U.; Rothmund, S.; Mathieu, A.; Malet, J.P.; Kerle, N.; Joswing, M. Advanced image analysis for

automated mapping of landslide surface fissures. Landslide Sci. Pract. 2013, 2, 357–363.
7. Giuseppe, P.; Nicolai, P. Edge and line oriented contour detection: State of the art. Image Vis. Comput. 2011, 29, 79–103.
8. Quackenbush, L.J. A review of techniques for extracting linear features from imagery. Photogramm. Eng. Remote Sens. 2004, 70,

1383–1392. [CrossRef]
9. Shruthi, B.V.; Kerle, N.; Jetten, V.G. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology

2011, 134, 260–268. [CrossRef]
10. Baruch, A.; Filin, S. Detection of gullies in roughly textured terrain using airborne laser scanning data. J. Photogramm. Remote

Sens. 2011, 66, 564–578. [CrossRef]
11. Jain, R.; Kasturi, R.; Schunck, B.G. Machine Vision; McGraw-Hill: New York, NY, USA, 1995.
12. Lawrence, G.R. Machine Perception of Three-Dimensional Solids; Institute of Technology: Boston, MA, USA, 1963.
13. Sobel, I. Camera Models and Machine Perception; California Department of Computer Science, Stanford University: Stanford, CA,

USA, 1970.
14. Prewitt, J.M.S. Object Enhancement and Extraction. Picture Processing and Psychopictorics; Academic Press: Cambridge, MA,

USA, 1970.
15. Koenderink, J.J. Theory of “Edge-Detection”. Anal. Sci. Eng. Beyond 2012, 6, 35–49.
16. Gonzalez, C.I.; Melin, P.; Castro, J.R.; Mendoza, O.; Castillo, O. An improved sobel edge detection method based on generalized

type-2 fuzzy logic. Soft Computing—A Fusion of Foundations. Methodol. Appl. 2016, 20, 773–784.
17. Manasa, N.; Mounica, G. Brain tumor detection based on canny edge detection algorithm and its area calculation. Int. Comput.

Math. Sci. 2016, 5, 10–13.
18. Hu, X. Research on Subway Tunnel Crack Detection Technology Based on Image Processing; Beijing Jiaotong University: Beijing,

China, 2014.
19. Alam, M.A.; Ali, M.M.N.; Syed, M.A.A.; Sorif, N.; Rahaman, M.A. An algorithm to detect and identify defects of industrial pipes

using image processing. In Proceedings of the 8th International Conference on Software, Knowledge, Information Management
and Applications (SKIMA), Dhaka, Bangladesh, 18–20 December 2014; pp. 1–6.

20. Khalifa, I.; Aboutabl, A.E.; Barakat, G.S.A. A New Image-Based Model for Predicting Cracks in Sewer Pipes. Int. J. Adv. Comput.
Sci. Appl. 2013, 4, 65–71. [CrossRef]

21. Kirstein, S.; Muller, K.; Walecki, M.N.; Desemo, T.M. Robust adaptive flow line detection in sewer pipes. Autom. Constr. 2012, 21,
24–31. [CrossRef]

22. Li, Z.; Liu, X.L. Geomorphic regionalization and agricultural evaluation of geomorphic featuresin Gansu. J. Gansu Agric. Univ.
1994, 30, 444–449.

http://doi.org/10.4028/www.scientific.net/AMR.1065-1069.410
http://doi.org/10.1007/s12665-015-5169-x
http://doi.org/10.14358/PERS.70.12.1383
http://doi.org/10.1016/j.geomorph.2011.07.003
http://doi.org/10.1016/j.isprsjprs.2011.03.001
http://doi.org/10.14569/IJACSA.2013.041210
http://doi.org/10.1016/j.autcon.2011.05.009


Remote Sens. 2021, 13, 1784 25 of 25

23. Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-
dimensional matched filters. IEEE Trans. Med Imaging 1989, 8, 263–269.

24. Zhang, B.; Zhang, L.; Zhang, L.; Karray, F. Retinal vessel extraction by matched filter with first-order derivative Gaussian. Comput.
Biol. Med. 2010, 40, 438–445. [CrossRef] [PubMed]

25. Stumpf, A.; Malet, J.P.; Kerle, N.; Niethammer, U.; Rothmund, S. Image-based mapping of surface fissures for the investigation of
landslide dynamics. Geomorphology 2013, 186, 12–27. [CrossRef]

26. Breimal, L. Random Forests. Machine Learning; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45, pp. 5–32.
27. Turin, G. An introduction to matched filters. IRE Trans. Inf. Theory 1960, 6, 311–329. [CrossRef]
28. Woodward, P.M. Probability and Information Theory with Applications to Radar; Pergamon Press Ltd.: New York, NY, USA, 1953;

Volume 41, pp. 59–68.
29. Nevatla, R.; Babu, K.R. Linear feature extraction and description. Comput. Graph. Image Process. 1980, 13, 257–269. [CrossRef]
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