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Abstract: We evaluated the use of airborne hyperspectral imaging and non-imaging sensors in the
Vis—NIR—SWIR spectral region to assess particle size and soil organic matter in the surface layer
of tropical soils (Oxisols, Ultisols, Entisols). The study area is near Piracicaba municipality, São
Paulo state, Brazil, in a sugarcane cultivation area of 135 hectares. The study area, with bare soil,
was imaged in April 2016 by the AisaFENIX aerotransported hyperspectral sensor, with spectral
resolution of 3.5 nm between 380 and 970 nm, and 12 nm between 970 and 2500 nm. We collected
66 surface soil samples. The samples were analyzed for particle size and soil organic matter content.
Laboratory spectral measurements were performed using a non-imaging spectroradiometer (ASD
FieldSpec 3 Jr). Partial Least Square Regression (PLSR) was used to predict clay, silt, sand and soil
organic matter (SOM). The PLSR functions developed were applied to the hyperspectral image of the
study area, allowing development of a prediction map of clay, sand, and SOM. The developed PLSR
models demonstrated the relationship between the predictor variables at the cross-validation step,
both for the non-imaging and imaging sensors, when the highest r and R2 values were obtained for
clay, sand, and SOM, with R2 over 0.67. We did not obtain a satisfactory model for silt content. For
the non-imaging sensor at the prediction step, R2 values for clay and SOM were over 0.7 and sand
was lower than 0.54. The imaging sensor yielded models for clay, sand, and SOM with R2 values
of 0.62, 0.66, and 0.67, respectively. Pearson correlation between sensors was greater than 0.849 for
the prediction of clay, sand, and SOM. Our study successfully generated, from the imaging sensor, a
large-scale and detailed predicted soil maps for particle size and SOM, which are important in the
management of tropical soils.

Keywords: PLSR; proximal sensing; remote sensing; soil attributes

1. Introduction

Brazil has a great soil diversity due to a range of topography, biota, climate, and
parent materials among the soil-forming factors. Agriculture is the main economic activity
in Brazil and, therefore, the knowledge of pedogenetic processes and the capacity to
differentiate soil classes are essential to improve soil management and productivity [1].

However, detailed, or even semi-detailed, soil use maps are rare in Brazil and, accord-
ing to Mendonça-Santos [2] and Santos et al. [3], only 0.25–1% of available soil maps are
plotted on an adequate scale. Furthermore, soil map production requires numerous on-the-
ground observations and sample collection. The use of mathematical models obtained via
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hyperspectral sensors is an alternative technique to traditional soil maps that can derive
quantified soil information. Digital soil mapping (DSM) produces adequate information
quickly and economically but must be linked to measured soil attributes.

Clay content and soil organic matter (SOM) are two attributes that reflect and influence
soil fertility. This is due to their strong relationship with other soil properties and functions
such as ion exchange dynamics, preservation of organic C [4], water retention, structure
and chemistry [5]. Agricultural areas require soil quality assessment for their best use
and management. Most soils available for cultivation in Brazil are in the Oxisol or Ultisol
soil Order. These soils have limited natural fertility due to pedogenesis under a hot and
humid climate. Soil mineralogy, granulometry, and soil organic matter content affect soil
management decision and are key properties for digital modeling [6].

Soil properties including clay and SOM are conventionally determined by laboratory
analysis. The results are reliable, but are expensive, sample destructive, time- consuming,
and require reagents that may be harmful to the environment [7]. Clay content is a primary
attribute that has a physical relationship with electromagnetic radiation [6]. For this
reason, remote sensing techniques, e.g., diffuse reflectance spectroscopy (DRS), have been
evaluated for rapid estimation of soil texture in a non-destructive and low cost, providing
rapid response compared to conventional laboratory analyses [7–11].

Numerous studies have been carried out using Vis—NIR—SWIR reflectance spec-
troscopy to differentiate soil types [12] and to predict soil attributes, such as granulome-
try [13] and organic matter [14–16]. Vasques et al. [17] combined spectral data at different
depth intervals and predicted soil classification in the Brazilian Soil Classification System.

Initially, this technique was limited to laboratory studies because of sensors charac-
teristics. However, the use of field and airborne sensors has increased considerably [18],
and has been used to detect soil color, clay content, and mineral composition [11]; estimate
soil organic C content [19]; and selected soil biochemical, physical, and mineralogical
properties [20] with in situ measurements. Soil data collected by airborne hyperspectral
sensors has shown to be a promising technique for understanding soil attributes and spatial
patterns [18,21,22]. The use of this technique for prediction of the soil characteristics and
properties has demonstrated challenges such as large datasets, spectral instability effects,
and atmospheric interference [23–26].

Thus, the appropriate interpretation of spectral data both in the laboratory and field
using different sensors is not clearly understood. This diminishes the practical value
of Vis—NIR—SWIR spectroscopy even as its use has expanded, requiring, thus, further
scientific investigations. Our hypothesis is that predicting particle size and soil organic
matter through hyperspectral imaging and non-imaging sensors will yield comparable
results to traditional analytical techniques. This study evaluates use of hyperspectral
imaging and non-imaging sensors for predicting particle size and soil organic matter in a
selected soil landscape.

2. Materials and Methods
2.1. The Study Area

The study area (Figure 1) is located between the municipalities of Piracicaba and
Santa Bárbara d’Oeste, in the Tupi district, state of São Paulo (SP), Brazil, (22◦42′39.16”S,
47◦30′59.3”W). The area is in a sugarcane cultivation of 135 hectares near the Piracicaba
River (Figure 1). The climate is Cwa-humid subtropical (Köppen), with an average annual
temperature of 21.6 ◦C and annual rainfall of 1278 mm (ESALQ/USP weather station).
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Figure 1. Location of the study site and sampling points (+). 

Oxisols predominate on gentle, planar slopes and summits in the higher portions of 

the landscape. Ultisols occur on steeper slopes and Entisols occupy floodplains or low 

stream terraces (Figure 2). Soil texture varies from sandy to clayey. Both the clayey and 

sandy soils are derived from parent materials from members of the Permian age Irati, 

Tatuí, and Itararé formations [27–33]. 

 

Figure 2. Topography of the study area and location of the collected samples. 

A total of 66 soil samples (0–20 cm depth–Figure 2) was uniformly distributed over 

the area and collected in July 2017. The soil samples were analyzed for particle size by the 

pipette method and wet sieving using 0.1 mol L−1 NaOH as a dispersing agent. Soil organic 

matter was obtained by determining the organic carbon content (Walkley-Black method) 

and subsequent multiplication by the 1.724 factor according to Teixeira et al. [34]. The 

Figure 1. Location of the study site and sampling points (+).

The soil landscape is characterized by rolling hills with rounded summits and smooth
slopes with lengths varying from 200 to 1500 m. Narrow valleys are cut into and separate
the hillslopes. Elevation ranges between 532 to 570 m. Three soil orders Oxisols, Entisols,
and Ultisols occur in the area.

Oxisols predominate on gentle, planar slopes and summits in the higher portions of
the landscape. Ultisols occur on steeper slopes and Entisols occupy floodplains or low
stream terraces (Figure 2). Soil texture varies from sandy to clayey. Both the clayey and
sandy soils are derived from parent materials from members of the Permian age Irati, Tatuí,
and Itararé formations [27–33].
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A total of 66 soil samples (0–20 cm depth–Figure 2) was uniformly distributed over
the area and collected in July 2017. The soil samples were analyzed for particle size by
the pipette method and wet sieving using 0.1 mol L−1 NaOH as a dispersing agent. Soil
organic matter was obtained by determining the organic carbon content (Walkley-Black
method) and subsequent multiplication by the 1.724 factor according to Teixeira et al. [34].
The descriptive analysis was carried out with the STATISTICA v. 12 software (StatSoft,
Tulsa, OK, USA).

2.2. Non-Imaging Sensor Data Acquisition and Processing

For the spectral analysis in the laboratory, the samples were previously dried at 45 ◦C
for 48 h, sieved in mesh with 2 mm to homogenize particles and to reduce humidity and
sampling effects [35]. Afterward each sample was put on a Petri dish (with a diameter
of 9 cm and 1.5 cm in height) and samples were subjected to spectral measurements.
Reflectance curves were obtained by a ASD Fieldspec 3 Jr spectroradiometer (ASD, Boulder,
CO, USA), with a spectral resolution of 3 nm between 350 and 1400 nm and 30 nm between
1400 and 2500 nm. Before obtaining spectral readings, the calibration in the non-imaging
sensor (standard equipment) was performed using the Spectralon standard white plate
as the maximum reflectance reference, according to Labsphere Reflectance Calibration
Laboratory [36]. The optical fiber was attached to the pistol grip and placed on a support
platform in a vertical position, at a distance of 8 cm from the samples. A 650 W halogen
lamp with a non-collimated beam, located 35 cm from the platform and an angle of 30◦ to
the horizontal plane, was used as light source. The spectroradiometer was programmed to
take 30 readings for each sample, thus leading to an average spectral curve, according to
the Cezar et al. [13].

The spectral readings were carried out with three replicates for each sample while
the Petri dish was successively replaced at 120◦ clockwise, therefore analyzing the entire
sample. Afterward a simple arithmetic mean of the three measurements was calculated, as
described by Nanni and Demattê [37].

2.3. Imaging Sensor Data Acquisition and Processing

To compare the results of the data obtained by the spectroradiometer, considered
standard equipment for obtaining spectral information when working with remote sens-
ing [13,38,39], hyperspectral aerial images were obtained by the AisaFENIX hyperspectral
image sensor, with the Vis-NIR–SWIR spectral range, and spectral resolution of 3.5 nm
between 380 and 970 nm and 12 nm between 970 and 2500 nm.

A PA-34-200T Seneca II model twin-engined plane flew over the study area, on
30 April 2016, with the AisaFENIX imaging sensor and the GPS/IMU unit (OXTS–RT3050
model) installed on it, to collect the hyperspectral images and data related to the geometric
correction of the image. The flight was performed at 14:35 p.m. (GMT) under open-sky
conditions, fully sunny at an altitude of 660 m, resulting in a spatial resolution of about
1 m. Even though it is a sugar-growing region, the study area had bare soil, previously
plowed and prepared for planting a new crop cycle.

The collected images by the sensor during the aerial assessment were pre-processed
for geometric and radiometric correction through the CaliGeo PRO® software [40]. The
input data files were the raw data (.raw) generated by the AisaFENIX sensor, the sensor
calibration file (.cal and the LUT), and the dark reference file (.hdr) to optimize spectral
radiation data quality. This resulted in radiance and radiometrically corrected images.

After atmospheric correction, the images were transformed from radiance to re-
flectance, standardizing the differences of lighting and sensors. To perform image process-
ing (atmospheric/topographic correction), the ATCOR-4 software, based in MODTRAM
algorithm [41] was used. This computational packet receives the input data, which is the
images in the radiance unit and converts it into a reflectance unit.

Then, from the AisaFENIX hyperspectral image, spectral curves were collected at
the correspondent location of each soil sample through the Z-profile tool, software ENVI
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5.1 [42]. The file was exported in txt format, then opened by the Excel software and the
spectral curves were plotted, as well as the reflectance values of the points. Subsequently,
the data was imported into The Unscrambler® software (CAMO Software, Oslo, Norway)
for statistical analysis.

Wavelengths between 1350 and 1400 nm and between 1800 and 2000 nm were ex-
cluded due to the interference in their reflectance values (greater absorption) caused by
atmospheric water vapor [43]. In addition, the Savitzky-Golay filtering and smoothing
algorithm (2nd order polynomial) [44] was applied to the data using the ENVI 5.1 software.

2.4. Multivariate Statistical Analysis and Mapping

The statistical analyses were carried out by both sensors. Initially, the marginal
wavelengths (350–399 and 2361–2500 nm for the FieldSpec) and (380–467 and 2128–2500 nm
for the AisaFENIX), have been removed due to noise [18,19].

For the non-imaging sensor, each spectral curve was submitted to baseline and light
scattering correction by first and second derivatives (Savitzky-Golay), standard normal
variate (SNV) and multiplicative scatter correction (MSC). Based on the best results, it was
chosen the multiplicative scatter correction (MSC) method, according to Buddenbaum and
Steffens [45]. This process was necessary to mathematically reduce the noise and to prevent
the negative influence on the quality of the adjusted models [46].

The Unscrambler® software (CAMO Software) was used to analyze major components
to group samples and to identify possible atypical data for curves called outliers. Four
samples that presented results not representative soils types of the area of interest and
spectrally vastly different were excluded from the dataset to achieve better results not only
in the calibration of the models but also in their validation.

Then prediction models of clay, silt, sand and organic matter contents were adjusted
through partial least squares regression (PLSR) of data from AisaFENIX hyperspectral
imaging sensor and from FieldSpec. To develop the statistical models, the 66 samples
were randomly divided in two sets, independent of the soil orders. One set, composed
of 46 samples (the calibration set), was used to calibrate the models and cross-validation
testing, while the other set, composed of 20 samples (prediction set), was used to validate
the calibrated models, according to Nanni et al. [47].

In the calibration step, matrices X and Y are modeled simultaneously to find the latent
variables (PLS factors) in the wavelengths (X) that best predict the measured parameter
(Y), thus, the data set is reduced to some factors, which are used in data prediction and
construction of the statistical model [48]. The factor is characterized by the main changes
observed in X, and, when this factor cannot explain any variation in the sample set, a
second factor perpendicular to the first one will be used, and so on [49].

After data calibration, a cross-validation process was carried out, in which each sample
used to build the model is tested. A leave-one-out cross-validation procedure was adopted
to verify the prediction capability of the PLSR model for the calibration set. After the
cross-validation step, the model was tested by assessing the ability to predict new samples
from data that did not participate in the construction of the PLSR model.

The R2 was used for prior assessment of calibration (c) models. RMSEc (calibration
root mean square error) was the subsequent parameter for analyzing the model adjustment.
However, the best estimate of the calibration model future performance is the RMSEcv
(which is obtained during the cross-validation phase), producing more realistic and in-
dependent results for the data used in the construction of models [50]. Systematic error
(BIAS) was also used as an evaluation parameter. Finally, the PLSR regression coefficients
were used to study the significant wavelengths used in PLSR.

In order to obtain qualitative visual information, maps of the clay, sand and SOM
content estimated by PLSR were also drawn up over the study area. For this purpose,
the mathematical model generated by PLSR in the calibration step from the hyperspectral
image, was inserted in the raster calculator of the QGIS software (QGIS Development Team),
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which from the original image, calculated the estimate of each attribute over the entire area
of the study. This process was carried out individually for each attribute mentioned.

3. Results and Discussions
3.1. Descriptive Analysis of Soil Attributes

Table 1 presents the results of the granulometric analysis and the SOM content of the
66 samples collected in the study area. The results confirm the contrasting aspect of the
parent materials (siltstone and sandstone) observed in Figure 2. The measured data of
particle-size of the samples were plotted in a USDA textural triangle (Figure 3).

Table 1. Soil samples evaluated in the study area and their respective levels of sand, silt, clay and SOM.

Samples
Sand Silt Clay SOM 1

Samples
Sand Silt Clay SOM 1

g kg−1 g dm−3 g kg−1 g kg−3

A1 830.00 40.00 130.00 4.52 A34 780.00 30.00 190.00 7.11
A2 740.00 30.00 230.00 5.20 A35 730.00 40.00 230.00 4.06
A3 770.00 40.00 190.00 6.20 A36 590.00 80.00 330.00 15.26
A4 810.00 40.00 150.00 5.91 A37 470.00 40.00 490.00 10.07
A5 800.00 20.00 180.00 8.50 A38 410.00 30.00 560.00 9.50
A6 720.00 40.00 220.00 12.00 A39 450.00 100.00 450.00 13.13
A7 650.00 40.00 310.00 7.02 A40 430.00 40.00 530.00 14.15
A8 460.00 60.00 480.00 14.80 A41 410.00 40.00 550.00 12.85
A9 490.00 100.00 410.00 12.76 A42 390.00 80.00 530.00 9.52
A10 540.00 40.00 420.00 9.06 A43 550.00 40.00 410.00 6.28
A11 630.00 20.00 350.00 4.15 A44 570.00 40.00 390.00 5.07
A12 790.00 40.00 170.00 5.35 A45 500.00 20.00 480.00 4.06
A13 730.00 100.00 170.00 6.74 A46 360.00 30.00 610.00 8.50
A14 860.00 30.00 110.00 2.94 A47 400.00 60.00 550.00 10.81
A15 740.00 70.00 190.00 8.13 A48 380.00 40.00 580.00 11.09
A16 800.00 30.00 170.00 5.07 A49 490.00 50.00 460.00 12.20
A17 650.00 30.00 320.00 6.46 A50 510.00 80.00 410.00 11.00
A18 730.00 40.00 230.00 6.46 A51 460.00 30.00 510.00 14.80
A19 460.00 50.00 490.00 13.41 A52 750.00 20.00 230.00 2.57
A20 420.00 40.00 540.00 12.48 A53 430.00 60.00 510.00 6.00
A21 470.00 40.00 490.00 12.39 A54 430.00 180.00 390.00 11.37
A22 530.00 20.00 450.00 9.40 A55 530.00 80.00 390.00 8.22
A23 490.00 40.00 470.00 8.31 A56 550.00 40.00 410.00 3.50
A24 700.00 20.00 280.00 4.50 A57 800.00 20.00 180.00 9.52
A25 630.00 40.00 330.00 4.89 A58 770.00 30.00 200.00 3.22
A26 500.00 20.00 480.00 9.80 A59 730.00 50.00 220.00 7.02
A27 450.00 80.00 470.00 13.96 A60 620.00 50.00 330.00 7.76
A28 470.00 40.00 490.00 13.13 A61 640.00 90.00 270.00 4.06
A29 450.00 80.00 470.00 12.11 A62 730.00 50.00 220.00 6.28
A30 450.00 60.00 490.00 15.07 A63 610.00 120.00 270.00 6.37
A31 550.00 40.00 410.00 10.17 A64 630.00 120.00 250.00 5.63
A32 590.00 60.00 350.00 10.07 A65 760.00 40.00 200.00 4.61
A33 680.00 30.00 290.00 9.24 A66 490.00 40.00 470.00 7.39

1 Soil organic matter.
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Figure 3. Particle-size of the samples plotted in a USDA textural triangle.

Table 2 presents the results from descriptive statistics of clay, silt, sand, and soil organic
matter attributes. The coefficients of variation (CV) showed high values for all evaluated
attributes. According to Harr [51], the CV below 10% are considered “low”, between 15%
and 30% “moderate”, and greater than 30% “high”. Thus, the CVs were high for SOM, clay
and silt and moderate to sand. The high variability for particle size fraction is explained
by the influence of different parent materials on soils of the region, such as sandstone and
siltstone [52], which presents varied mineralogical formation, consisting mainly of Fe/Al
oxides and Kaolinite, as reported by Vidal-Torrado and Lepsch [33].

Table 2. Descriptive statistic of particle size fraction and content of soil organic matter (SOM) from
study area.

Attributes Minimum Mean Median Maximum SD 1 CV 2(%)

Sand (g kg−1) 360.00 589.85 560.00 860.00 14.12 23.94
Silt (g kg−1) 20.00 50.45 40.00 180.00 2.93 58.01

Clay (g kg−1) 110.00 359.55 390.00 610.00 13.72 58.01
SOM (g dm−3) 2.57 8.53 8.26 15.26 0.35 41.28

1 SD = Standard deviation; 2 CV = coefficients of variation.

For SOM, the high CV value is due to the high variation of the particle size fraction
in the study area, since SOM is directly linked to the clay content for tropical soils [53], as
observed in Table 3. Moreover, the agricultural use and management in the study area
is also a determining factor [13], as there were places with and without the practice of
removing crop residues from sugarcane cultivation.
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Table 3. Matrix of Pearson correlation coefficients between the soil attributes.

Attributes Sand Silt Clay SOM

Sand 1.00 * −0.26 −0.98 * −0.65 *
Silt −0.26 1.00 * 0.04 0.27 *

Clay −0.98 * 0.04 1.00 * 0.62 *
SOM −0.65 * 0.27 * 0.62 * 1.00 *

*. Correlation is significant at the 0.05 level.

3.2. Spectral Description of Soils

Figure 4a,b demonstrate great variability in the reflectance of the evaluated soils,
due to the difference in reflectance between soils developed from sandstone and siltstone
formations, which can be seen in Figure 4c,d. In fact, this result was expected because
sandy soils tend to have much higher reflectance due to their mineralogical formation (rich
in quartz) and due to their low levels of SOM [54] and opaque minerals [55]. In the case of
the curves obtained by the airborne imaging sensor (Figure 4b), a higher concentration is
observed among the curves, with a lower amplitude of the reflectance factor. This fact is
probably due to the natural moisture of the soil (not collected at the time of imaging) which
ends up reducing the albedo of sandy and silty soils, making them closer to the clayey
portions of the area. When the samples are dried in the laboratory and the standardized
humidity is maintained, as in the case of the non-imager sensor (Figure 4a), there is a gap
between the curves of the sandy spots (higher reflectance across spectral range) and the
clayey ones (lower reflectance). In addition, for this sensor, concavities can be observed at
450 and 2200 nm due to iron oxides and kaolinite, respectively [55].
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Figure 4. Spectral curves of soil samples. Curves of the 66 samples obtained by the AisaFENIX Sensor (a) and ASD FieldSpec
3 JR Sensor (b); average of spectral data from sandstone and siltstone obtained by the AisaFENIX Sensor (c) and ASD
FieldSpec 3 JR Sensor (d). The gap in the curves of the AisaFENIX sensor is due to the absorption of EMR by the atmosphere.
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3.3. Prediction Models Generated for Particle-Size Fraction and SOM from Spectral Data Obtained
by ASD FieldSpec 3 Jr and AisaFENIX Sensors

Table 4 presents model parameters and performance indicators for soil attributes
obtained through data modeling using the PLSR technique for both sensors. During the
process for obtaining the PLSR models (Table 4), the relationship between the predictor
variables (reflectance) and the predicted (attributes) were better explained for the non-
imaging sensor by using the models containing: 10 factors for clay, five factors for silt, four
factors for sand and eight factors for SOM. For the imaging sensor, the model presented
five factors for clay, four factors for sand and three factors for SOM.

Table 4. Statistical parameters of PLSR models to the FieldSpec 3 Jr and AisaFENIX sensor.

Sensor Attributes PLS
Factors PLSR r R2 RMSE SE Bias

Non-imaging
Clay (g kg−1)

10 Cross-
Validation 0.902 0.817 61.131cv 61.304cv 0.817

Prediction 0.921 0.720 66.332p 67.532p 1.038

Imaging 5
Cross-

Validation 0.839 0.703 81.001cv 82.183cv 0.564

Prediction 0.799 0.621 81.613p 82.195p 1.562

Non-imaging
Silt (g kg−1)

5 Cross-
Validation 0.444 0.211 15.533cv 15.722cv 0.013

Prediction 0.491 0.175 27.082p 27.701p −0.291

Imaging 1 Cross-
Validation −0.463 0.05 24.991cv 25.261cv 0.040

Prediction −0.187 0.06 39.722p 40.303p −0.586

Non-imaging
Sand (g kg−1)

4 Cross-
Validation 0.844 0.726 77.233cv 78.164 cv 0.056

Prediction 0.842 0.544 76.041p 75.612p 2.004

Imaging 4 Cross-
Validation 0.837 0.690 71.482cv 72.484cv −0.664

Prediction 0.818 0.663 81.851p 83.882p −0.575

Non-imaging
SOM (g dm−3)

8 Cross-
Validation 0.893 0.805 1.613cv 1.627cv 0.126

Prediction 0.845 0.700 1.743p 1.795p 0.068

Imaging 3 Cross-
Validation 0.802 0.672 1.778cv 1.796cv 0.255

Prediction 0.845 0.672 2.158p 2.209p −0.221

cv = cross-validation; p = prediction.

For silt, it was not possible to establish a satisfactory model due to the low relation
between reflectance obtained for this attribute, as demonstrated by Demattê et al. [56],
Nanni and Demattê [57] and Nanni et al. [47].

It was observed that, for cross-validation, both in the imaging sensor and non imaging
sensor, the values of R2 varied from 0.70 to 0.81 for clay, from 0.69 to 0.72 for sand, and
0.67 to 0.80 for SOM (Table 4), which, according to Minasny and McBratney [58], are values
considered satisfactory. Furthermore, these results corroborate the findings obtained by
Paz-Kagan et al. [18], who studied the ability of an imager sensor to estimate attributes of
an Israeli soil and found R2 values for clay, sand, silt above 0.61. Nanni et al. [47], using a
non-imaging sensor, found for clay and sand an R2 of 0.89 and 0.92, respectively. But the
authors found R2 for SOM equal to 0.44, a very low value compared to the results obtained
in the present study.

For silt, as expected, the cross-validation models presented low values possibly be-
cause of this fraction, in weathered soils, has many different minerals, which confused
with clay, Fe and Al oxides, and that can make aggregates with organic matters [47,59].
Furthermore, the difficulty to estimate the silt content occurs because the fraction does
not have linear relation with the soil reflectance, but a curvilinear one (hyperbolic), as
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described by Cezar et al. [60]. For both sensors, the bias of cross-validation for clay, sand
and SOM was close to zero, indicating that there was a random point distribution on the
regression line, showing no tendency of the values obtained [13]. The standard error (SE)
close to the RMSE indicates the good fit of the obtained models [61,62].

The error in the prediction value (RMSEp), for both sensors, in most cases, had a
small increase in relation to the cross-validation step (RMSEcv) for all studied attributes
(Figure 5). This is due to the reduction in precision between processes due to the decrease
in the number of samples used in each step. Even so, the obtained results are satisfactory
since no significant error variations were observed, indicating the good prediction capacity
of the models [63]. However, the bias value was low, showing that there was no bias in the
validation of prediction models. Even with the increase, these values can still suggest good
performance for the content estimate of clay, sand and SOM [64]. These results demonstrate
that Vis—NIR—SWIR spectroscopy is suitable for the multidimensional evaluation of soil
attributes, just as reported by Paz-Kagan et al. [18] and Nanni et al. [47].
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Figure 5. RMSE values of the PLSR model obtained by the imaging and non-imaging sensors in the cross-validation and
prediction phases.

The statistical metrics show that the imaging sensor presented (in the prediction step),
except for the silt variable, results similar to that of the non-imaging sensor. This is very
promising, since the use of an imaging sensor allows a greater possibility of collecting
information from an area, since with this type of sensor it is possible to obtain a spectral
curve in each pixel of the image.

Furthermore, the generated models demonstrate the potential to be applied in areas
with similar geological and edaphoclimatic characteristics, and further investigations are
necessary to evaluate the applicability of this method in areas with different characteristics.
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During the prediction step (non-imaging sensor), values of r and R2 for clay and SOM
remained high (above 0.70). For clay, silt, sand and SOM, the results of R2 found in the
present work had different results in relation to those practiced by Martins et al. [65], For
those same attributes, the results obtained were lower than those found by Paz-Kagan
et al. [18], who, studying the use of image spectroscopy to evaluate the soil attributes,
found R2 values of 0.87, 0.73, 0.67 and 0.95 for clay, silt, sand and SOM determination
models, respectively. Although the model has presented very consistent metrics, mainly
for the silt attribute, the low number of samples evaluated to create the PLSR model
(prediction set = 20 samples) may have limited the creation of models with higher R2

p-values, for example.
According to Hair Jr et al. [66], for multivariate analysis, the recommended sample

size is at least 20 samples for each group. The authors stated that larger number of samples
generally reduces the sampling error and increases the sensitivity (power) of the test.
The set of cross-validation (n = 46) and prediction (n = 20) of this work are within the
aforementioned guideline (although at the limit) and the values of R2 in general were
satisfactory. However, it is recommended, for future work, to carry out tests with a larger
sample size and to verify the real influence.

For the imaging sensor, in accordance to the error estimates, the models for clay, sand
and SOM presented relevant capacity of prediction, with R2 p of 0.62, 0.66 and 0.67 in the
prediction respectively. These results were slightly lower than those obtained by Gomez
et al. [67] (clay-R2 p = 0.75), Selige et al. [68] (sand-R2 p = 0.87) and Schwanghart and
Jarmer [69] (SOM-R2 p = 0.77).

The RMSEp, standard error (SEp) and biasp parameters, in all evaluated attributes in
the prediction, presented low values. The observed low RMSEp values indicate that the
model presents high prediction capacity [70]. For biasp, the low values indicate that the
model is unbiased [71].

The results of the statistical parameters of the models (R2, RMSE, bias etc.), are similar
between the two sensors. These results demonstrate that the use of the imaging sensor
in a tropical environment for clay, sand and SOM determinations, can be as useful as the
use of the non-imaging sensor (considered as a standard). In addition, the ability of the
imaging sensor to carry out the simultaneous analysis of large areas is an important factor,
which can greatly contribute to the generation of soil attribute maps, assisting the decision
making of the production process, such as the choice of more suitable crops to the area in
question, and even the rational use of correctives and fertilizers. Furthermore, these results
are corroborated by other studies using image spectroscopy to determine the particle size
and SOM, such as those by Hbirkou et al. [72] and Franceschini et al. [73].

By PLSR definition, all wavelengths participate, in different proportions or weights, in
the construction of the model. In this regard, Figure 6 illustrates the regression coefficients
for PLSR models of clay, silt, sand and SOM for both sensors, which are considered
important to the prediction of these attributes through its determination coefficients (R2).

For clay and sand, Vis (400 to 700 nm) and SWIR (2100 to 2400 nm) regions presented
high values of regression coefficients for the both sensors (Figure 6), indicating that these
regions of the electromagnetic spectrum presents characteristics to predict these attributes.
These results were expected for clay, since the Vis wavelengths (around to 600 nm) are
mainly associated to minerals that have iron, e.g., hematite and goethite, which are frequent
in Brazilian highly weathered soils [74–76], and the absorption in the SWIR range is
due to soil clay minerals [23,77]. More specifically, in the SWIR region, at 2189 and
2260 nm, the highest values of regression coefficients were due to kaolinite and gibbsite,
respectively, which are typical minerals of clay fraction in the tropical soils [78,79]. Around
1400 and 1900 nm, the highest values of regression coefficients were possibly obtained
as a result from OH- groups of silicate clays, which are present in the samples [80]. For
sand, at 1453 and 1910 nm, may be associated with minerals 2:1 covering over the quartz
particles [79]. For silt attribute, the regression coefficients for the non-imaging sensor
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(Figure 6) and imaging sensor do not explain the PLSR model due to low r and R2 values
(Table 4).
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Figure 6. Regression coefficients of PLSR models for imaging and non-imaging sensors for prediction of clay, sand, SOM
and silt.

The highest values of regression coefficients for SOM for the imaging sensor (Figure 6)
were found in the wavelengths between 400 and 600 nm, and between 1700 and 1900 nm,
in agreement with Nawar et al. [81]. For the non-imaging sensor (SOM), observed high
values of regression coefficients in wavelengths around 580, 1401, 1900–1940, 2180 and
2220 nm, agreeing with Chen et al. [8], Viscarra Rossel and Hicks [82] and Yang and Li [83].
These results were possibly found because of the interaction between organic matter and
iron oxides (580 nm) and kaolinite (2220 nm) [84]. On the order hand, for both sensors, the
high values of regression coefficients in wavelengths around 1401 and 1900–1940 nm come
from water molecules vibrations and OH- associated with the SOM [52].

Pearson’s correlation was performed between the estimated contents of clay, sand, and
SOM by the imaging and non-imaging sensors through PLSR models, as shown in Figure 7.
Significant positive correlations were observed, with an alpha significance level of 5% and
p value lower than 0.0001, among the contents estimated of clay (0.858), sand (0.849), and
SOM (0.897) by the PLSR models for the imaging and non-imaging sensors. This high
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correlation is due to the similarity between the curves, which provided similarity between
the PLSR models of the sensors. These results are corroborated by the study of Franceschini
et al. [73], who, evaluating the ability to predict SOM, clay and sand from an imaging and
another non-imaging sensor, found similar relationships between these sensors.
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Figure 7. Pearson’s correlation (with an alpha significance level of 5% and p value lower than (0.0001)
between the contents predicted of clay (a), sand (b), and SOM (c) by PLSR models for imaging and
non-imaging sensors.
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3.4. Attributes Mapping Using PLSR Models

Pixel based spatial distribution maps for each soil attribute are shown in Figure 8
using the best cross validated regression models from the airborne imaging sensor.
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Figure 8. Estimated map of contents of (top) clay, (middle) sand, and (bottom) SOM of study area
soils obtained using an airborne imaging sensor.

The mathematical model generated by PLSR in the calibration step for clay, sand
and SOM were applied to all pixels from the image. The result was a quantification map
for each pixel, divided into classes for better representation and visualization. As the
soil attributes presented a strong correlation with the image sensor data (Table 4), it was
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possible to quantify the estimates of interest. Similarly, Pullanagari et al. [85], mapped
nutrients in pasture using classification algorithms.

It can be seen in Figure 8 that the highest levels of clay were found in the highest
(and flat) portions of the landscape and the areas of the lowest (and steepest) portions
have higher levels of sand. These results are in agreement with the results found in the
samples analyzed in the laboratory and are also in agreement with Vidal-Torrado and
Lepsch [33], working in the same area, who found clay contents in horizon A ranging from
16 to 58%. In addition, it is noted that it was possible to identify, through the map, areas
with higher levels of clay on the terrace (marked with waypoints). These results were due
to the exposure of the clayey horizon, typical of the Ultisols present in the area.

The highest levels of organic matter were found in portions of the landscape with the
highest levels of clay. In fact, it is expected that the levels of organic matter are related to
the texture of the soil. Lepsch [86] found a high correlation between the carbon and clay
contents of the superficial horizon. Indeed, due to soil management for sugarcane, the
soil is plowed and harrowed. With soil mobilization, the decomposition of SOM increases
through its greater exposure to microbial attack. In portions with higher clay levels, the
process is minimized, due to the higher humidity and lower temperature. On the other
hand, as with more sandy portions, the opposite occurs. Lower water absorption increases
the temperature of the soil and, therefore, greater decomposition of sound in these areas.
In addition, higher levels of SOM can be observed within the terrace, possibly caused by
the accumulation of this attribute through an erosive process.

The spatial distribution maps of content of soil attributes are information that becomes
important for decision making at the time of planting, since physical attributes and organic
matter are essential for a relevant crop. Moreover, this study contributes to understand the
optimum analysis methods when mapping soil attributes at a regional, national or global
scale using spaceborne imaging spectrometers.

4. Conclusions

The prediction of particle size and soil organic matter through hyperspectral imaging
and non-imaging sensors yielded comparable results to traditional analytical techniques.
It was possible to carry out the quantification of the clay (R2 > 0.62), sand (R2 > 0.54) and
SOM (R2 > 0.67) attributes through the use of data obtained by the hyperspectral imaging
and non-imaging sensors.

Furthermore, highly significant positive correlations were observed among the esti-
mated contents of clay (0.858), sand (0.849), and SOM (0.897) by the PLSR models for the
imaging and non-imaging sensors.

Our study successfully generated large-scale and detailed soil prediction maps by the
imaging sensor for particle size and SOM. Considering that Brazil is mainly occupied by
large agricultural areas, the possibility of generating large-scale soil attributes prediction
maps allows better knowledge about soil attributes (particle size and SOM) important to
the management of tropical agricultural production.
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