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Abstract: A catastrophic tailings dam failure disaster occurred in Brumadinho, Brazil on 25 January
2019, which resulted in over 270 casualties, 24,000 residents evacuated, and a huge economic loss.
Environmental concerns were raised for the potential pollution of water due to tailings waste entering
the Paraopeba River. In this paper, a detailed analysis has been carried out to investigate the disaster
conditions of the Brumadinho dam failure using satellite images with different spatial resolutions.
Our in-depth analysis reveals that the hazard chain caused by this failure contained three stages,
namely dam failure, mudflow, and the hyperconcentrated flow in the Paraopeba River. The variation
characteristics of turbidity of the Rio Paraopeba River after the disaster have also been investigated
using high-resolution remote sensing images, followed by a qualitative analysis of the impacts
on the downstream reservoir of the Retiro Baixo Plant that was over 300 km away from the dam
failure origin. It is believed that, on the one hand, the lack of dam stability management at the
maintenance stage was the main cause of this disaster. On the other hand, the abundant antecedent
precipitation caused by extreme weather events should be a critical triggering factor. Furthermore,
the spatiotemporal pattern mining of global tailings dam failures revealed that the Brumadinho dam
disaster belonged to a Consecutive Hot Spot area, suggesting that the regular drainage inspection,
risk assessment, monitoring, and early warning of tailings dam in Consecutive Hot Spot areas still
need to be strengthened for disaster mitigation.

Keywords: hazard chain; turbidity; suspended sediment detection; extreme climate events; tailing
dam risk management; spatiotemporal pattern mining; El Niño

1. Introduction

Tailings are the material left after the valuable parts have been separated from the
uneconomic or low-economic ore. A tailings dam is typically an earth-fill embankment
dam which is usually designed for permanent containment by intercepting valleys or
enclosing lands in order to form a tailings pond used to store metal or non-metal ore-
separation and discharging tailings or other industrial waste residues. Consequently, the
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tailings dam is a dangerous source of man-made mudflow with high potential energy. The
failure of the tailings dam is one of the most dangerous disasters causing serious accidents.
Tailings dams are considered more vulnerable than hydraulic dams due to the lack of
regulations on specific design criteria, stability requirements regarding monitoring during
the construction and maintenance process, and high potential of pollution due to its filled
material (solid waste) [1].

The mining byproducts collected in tailings dams may damage the environment by re-
leasing toxic metals and poisoning the aquatic wildlife that relies on clear water [2]. In past
decades, many researchers have investigated tailings dam failures using different research
methods, e.g., site investigation, numerical simulation, and remote sensing technology. A
field investigation has been proven to be a good method to obtain first-hand data when ac-
cessibility is possible to the disaster site. For example, Macklin et al. [3] collected sediment
samples affected by tailings dam failures to assess the long-term fate and environmental
significance of contaminant metals. Porsani et al. [4] used Ground-Penetrating Radar (GPR)
on an iron mining area after the collapse of the tailings dam I at the Córrego do Feijão Mine
in Brumadinho-MG, Brazil to map bodies, structural buildings, and equipment buried in
the mud. A numerical simulation is another effective means, which can help us understand
the tailing flow characteristics and assess the possible extents of the affected areas [5,6].
With the advance in remote sensing technology, remote sensing has been becoming a more
and more important means of information acquisition in disaster investigation [7–10].
Many scholars have applied remote sensing technology to the study of tailings dam failure
disasters. For example, Silveira et al. [11] used semivariogram indices derived from NDVI
images to obtain an object-based change detection caused by the Mariana dam disaster.
Grenerczy and Wegmüller [12] performed a Persistent Scatterer InSAR (PSI) analysis to
examine the embankment failure of a red mud reservoir. The tailings dam failure is a kind
of disaster which could affect wide areas, especially those along rivers, and different dis-
aster characteristics often appear in different regions. Therefore, different remote sensing
techniques are usually requested to be employed to analyze a series of remote sensing
images to reflect the whole disaster process. In this study, we attempt to make full use of
the available remote sensing images to examine the Brumadinho tailings failure disaster in
order to make people realize the great harm of tailings dam failures. In addition, this paper
demonstrates how RS techniques can be used to characterize and monitor the evolution of
such complex processes, which provides a reference for disaster prevention and mitigation.

2. Background of the Brumadinho Tailings Dam Failure Disaster

Brumadinho is a Brazilian municipality, located near the Paraopeba River at an altitude
of 880 m. It belongs to the microregion of Belo Horizonte, Metropolitana de Belo Horizonte,
Minas Gerais, Brazil (Figure 1). Just after noon on 25 January 2019, the Brumadinho dam
disaster occurred when Dam I (Figures 2 and 3), a tailings dam at the Córrego do Feijão
iron ore mine owned by Vale, 9 km (5.6 mi) east of Brumadinho (Figure 1b), suffered a
catastrophic failure [13].
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Figure 1. Location of Brumadinho dam disaster. (a) Location of the disaster in Brazil; (b) relative 
relationship between the disaster location and two reservoirs. Note that in Figure 1b, the position of 
two reservoirs were marked using a red box whose extent corresponds to Figure 9a. 

Figure 1. Location of Brumadinho dam disaster. (a) Location of the disaster in Brazil; (b) relative
relationship between the disaster location and two reservoirs. Note that in Figure 1b, the position of
two reservoirs were marked using a red box whose extent corresponds to Figure 9a.
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Figure 2. Video screenshots of the Brumadinho tailings dam failure [14]; (a) 25 January 2019, 
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(local time). 

In this disaster, at least 248 people were confirmed dead, and 22 missing. Most of 
the victims were Vale's employees. At a railroad branch, in the Córrego do Feijão region, 
three locomotives and 132 wagons were buried, and four railway men were missing. 
Two sections of the railway bridge (Figure 3) and about 100 m of railway track were also 
struck and destroyed by the mud [15]. Due to the potential hazards, about 24,000 resi-
dents from several districts of Brumadinho were evacuated [16]. Many agricultural areas 
were affected or totally destroyed, and the local livestock industry suffered damages 
due to the loss of animals such as cattle and poultry [17]. In addition, the tailings dam 
failure spilt about 12 million cubic meters of mud and sludge [18] and some came into 
and ran along the Paraopeba River. The metals in the tailings may be adsorbed by the 

Figure 2. Video screenshots of the Brumadinho tailings dam failure [14]; (a) 25 January 2019, 12:28:21;
(b) 25 January 2019, 12:28:36; (c) 25 January 2019, 12:28:43; (d) 25 January 2019, 12:28:52 (local time).

In this disaster, at least 248 people were confirmed dead, and 22 missing. Most of
the victims were Vale’s employees. At a railroad branch, in the Córrego do Feijão region,
three locomotives and 132 wagons were buried, and four railway men were missing. Two
sections of the railway bridge (Figure 3) and about 100 m of railway track were also struck
and destroyed by the mud [15]. Due to the potential hazards, about 24,000 residents from
several districts of Brumadinho were evacuated [16]. Many agricultural areas were affected
or totally destroyed, and the local livestock industry suffered damages due to the loss of
animals such as cattle and poultry [17]. In addition, the tailings dam failure spilt about
12 million cubic meters of mud and sludge [18] and some came into and ran along the
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Paraopeba River. The metals in the tailings may be adsorbed by the river sediments or may
pollute the soil in the floodplain, and would end up affecting the region’s ecosystem.
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Figure 3. Disaster pictures. (a) Aerial view of Brumadinho dam disaster taken at 11:46 on 27 January
2019 [19]; (b) video screenshot of the destroyed railway bridge, 3 km downstream from the collapsed
dam, on 26 January 2019 from YouTube [20]; (c) picture of iron ore railway bridge destroyed by
mudflow taken on 26 January 2019 [21]. Note that the yellow line represents the extents of the areas
affected by the mudflow, the red line represents the railway bridge which was damaged, and the
brown arrow indicates the movement direction of the mudflow.

3. Materials and Methods
3.1. Materials
3.1.1. High-Resolution Remote Sensing Images

Freely available remote sensing (RS) imagery can be used to investigate natural
hazards such as landslides [9,22], debris flows [8,9] and mountain fires [23]. Google Earth is
an important open source of high-resolution remote sensing imagery, and more importantly,
it can provide multi-temporal remote sensing datasets [24–26]. In this study, seven high-
resolution remote sensing images from Google Earth were used to track the movement of
sediment in the channel after the tailings entered the Paraopeba River: Three images at the
confluence of the debris flow gully and the Paraopeba River (collected at different times),
one image at the stage of sediment transport in the river, and three others covering the area
where the river enters the Retiro Baixo reservoir (different times).

3.1.2. Medium-Resolution Remote Sensing Images

Landsat satellite images of National Aeronautics and Space Administration (NASA)
are important medium-resolution image datasets that can be used to investigate natural
hazards. Landsat 8, as an American Earth observation satellite, is the eighth satellite
launched on 11 February 2013 in the Landsat program. It has two sensors including the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI consists
of 8 bands with a spatial resolution of 30 m, and a 15-m panchromatic band. The TIRS can
provide 100-m thermal infrared images.

In this study, Landsat 8 images were used to investigate the hazard chain. They were
true color synthesized images of the pre- and post-disaster and released by the researchers
of NASA without copyright protection [27,28]. Landsat 8 images were also used to examine
the sediment concentration of pre- and post-disaster in the reservoirs. Three Landsat 8
images of the pre- and post-disaster (Table 1) were downloaded from the USGS Global
Visualization Viewer (GloVis) website [29], and used to examine the diffusion of waste in
the reservoirs of two hydroelectric plants.
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Table 1. Landsat 8 remote sensing images used for the examination of sediment concentration [29].

Type File Name Resolution Date

Pre-disaster LC08_L1TP_219073_20181220_20181227_01_T1 15/30/100 m (panchro-
matic/multispectral/thermal) 20 December 2018

Post-disaster
LC08_L1TP_219073_20190222_20190222_01_RT 15/30/100 m (panchro-

matic/multispectral/thermal) 22 February 2019

LC08_L1TP_219073_20190427_20190508_01_T1 15/30/100 m (panchro-
matic/multispectral/thermal) 27 April 2019

3.1.3. Global Tailings Dam Failures Database

There are about 3500 active tailings ponds in the world, among which 2000 experience
about two to five known “major” failures, and 35 “minor” failures annually [30]. During
the period from 2007 to 2017, there were at least 10 very serious mine tailings dam failures
involving multiple loss of life, with approximately 20 lives per incident, a release of at least
1 million cubic meters of waste each time, and a travel of 20 km or longer every waste
movement [31]. Based on the world mine tailings failure data with more than 300 records
during the period from 1915 to 2019 [14], a global spatial geographic database of tailings
dam failure was made using ArcGIS. Using the “Natural Break” classification method, the
tailings dam failure records could be divided into five categories (Figure 4).
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3.2. Methods
3.2.1. FLAASH Atmospheric Correction and Remote Sensing Image Fusion

Solar radiation needs to pass through the atmosphere before it is collected by satel-
lites [32]. Due to this, remote sensing images include complex information derived from
the atmosphere and the Earth’s surface. As this research is focused on the quantitative
analysis of surface reflectance, we need to mitigate the influence from the atmosphere.
Using the Atmospheric Correction Module, we can compensate for atmospheric effects.

Atmospheric correction can be realized using many available software tools. For
example, the Atmospheric Correction Module in the ENVI software [33] provides two
atmospheric correction modeling tools for retrieving spectral reflectance from multispectral
and hyperspectral radiance images: Quick Atmospheric Correction (QUAC) and Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The accuracy of
FLAASH model is higher than that of QUAC model. The application of QUAC model
is simpler than that of FLAASH, and it has less dependence on input parameters and
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calibration accuracy of instruments [34,35]. FLAASH is a first-principle atmospheric
correction tool that corrects wavelengths in the visible through near-infrared and shortwave
infrared regions. In this study, the atmospheric correction of Landsat images was carried
out using the FLAASH tool within the ENVI software [36].

Image fusion in remote sensing has several application domains. An important do-
main is multi-resolution image fusion [37]. Many different multi-resolution image fusion
methods are available with different characteristics [38], including Gram–Schmidt Pan
Sharpening [39], HSV Transformation [40], and Brovey Transformation [41]. Using these im-
age fusion methods, important information from multiple images can be gathered together
to form a new image with both high spatial resolution and multispectral characteristics.
The OLI has two types of images including panchromatic images and multispectral images.
On the basis of comparing different methods, we selected the Gram–Schmidt Pan Sharpen-
ing method to fuse images due to its superiority to maintain spatial texture information,
especially to keep spectral features with high fidelity [42].

3.2.2. Waterbody Extraction

In order to carry out the research of suspended sediment information in the reservoirs,
it is necessary to obtain an accurate extent of the reservoirs. Due to the water spectral
characteristics of the near-infrared band absorbing strongly, but reflecting highly in the
green band (Figure 5), the Normalized Difference Water Index (NDWI) was proposed by
Mcfeeters [43] as follows:

NDWI = (Green − NIR)/(Green + NIR) (1)

where Green and NIR are reflectance factors in green and near-infrared bands, correspond-
ing to Bands 3 and 5 of Landsat 8 imagery. After calculating the NDWI, we used 0 as the
segmentation threshold to extract the water body, and the water body boundaries were
manually extracted in the ArcGIS software.
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3.2.3. Suspended Sediment Detection

Remote sensing techniques have been widely used to measure qualitative parameters
of water bodies [45], including turbidity [46], chlorophyll-a [47], Colored Dissolved Organic
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matters (CDOM) [48], Secchi disk depth [49], and water temperature [50]. Here, the
concentration of suspended sediment is chosen to examine the degree of waste pollution of
Paraopeba River after the Brumadinho dam disaster. The suspended sediment is one of the
most important water quality parameters, which directly affects the optical properties of
water, such as transparency, turbidity, watercolor, and aquatic ecological conditions [51].
In particular, the level of water turbidity is dependent on the concentration of suspended
sediment in the water body. With the increase of suspended particles, it is more difficult
for light to travel through the water, and as a result the turbidity of the water increases
accordingly. To date, many remote sensing quantitative models have been developed to
monitor suspended sediments in water bodies, and several researchers used both the single
and double band algorithms to calculate the concentration of suspended sediment of the
water body [52–54]. The reflectivity of suspended sediment water is higher in the green
and red bands (Figure 5). According to the above band reflectance characteristics, Wang
et al. [55] proposed the concept of sediment index as follows:

SI = (Green + Red)/(Green/Red) (2)

where SI is the sediment parameter, Green and Red are the reflectance in green and red
bands, corresponding to 30 m resolution bands 3 and 4 of the Landsat 8 OLI image.
Compared with the field-measured data, the correlation coefficient between the measured
data and SI value is 0.89 [55], which shows that this method can directly and quantitatively
reflect the relative concentration distribution of suspended sediments. The following
indicators (Table 2) were used as the criteria to divide different suspended sediment water
bodies (M represents the average, D represents the standard deviation, and MIN represents
the minimum value):

Table 2. Level of sediment concentration in water bodies.

Indicator Criteria Level of Sediment Concentration

SI > M + D High suspended sediments
M < SI ≤ M + D Medium suspended sediments
M − D < SI ≤ M Low suspended sediments

MIN < SI ≤ M − D Clean water

3.2.4. Spatiotemporal Pattern Mining

Spatiotemporal pattern mining is often used to analyze data distribution and patterns
in space and time. The emerging spatiotemporal hot spot analysis regards data cubes as
input and identifies statistically significant hot and cold point trends over time. Using this
method, the spatiotemporal hot spots of tailings dam failure database were analyzed. In
this study, five main hot spots including New Hot Spot, Consecutive Hot Spot, Sporadic
Hot Spot, Oscillating Hot Spot, and No Pattern were detected. Their definitions are listed
in Table 3.

3.3. Technical Route

In order to make the structure of the article clearer, the technical route is shown
in Figure 6. In this study, we made full use of the available remote sensing images to
examine the Brumadinho tailings dam failure disaster. Firstly, we collected different remote
sensing data from different data sources. Secondly, we used the true color remote sensing
images from NASA to investigate the hazard chain along the gully where the dam failure
occurred. Thirdly, considering that the river width is narrow and the medium resolution
remote sensing image cannot meet the needs, we used the multi-temporal high-resolution
remote sensing images from Google Earth to interpret the transport process of waste along
the Paraopeba River. Fourthly, we used the original Landsat 8 images to carry out the
analysis of waste diffusion in the reservoirs. Through the above procedure, the whole
disaster process was clearly recovered using RS techniques. Last but not least, we used
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the global tailings dam failures database to examine tailings-dam-failure trends based on
spatiotemporal pattern mining, and found that this area where the Brumadinho tailings
dam failure occurred belonged to the Consecutive Hot Spot area with a relatively high risk.

Table 3. Definitions of different hot spots [56].

Name Meaning

New Hot Spot
A location that is a statistically significant hot spot for the final
time step, and has never been a statistically significant hot spot

before.

Consecutive Hot Spot A location that is a single uninterrupted run of statistically
significant hot spot in the final time-step intervals.

Sporadic Hot Spot A location that is an on-again then off-again hot spot.

Oscillating Hot Spot
A location that is a statistically significant hot spot for the final

time-step interval with a history of also being a statistically
significant cold spot during a prior time step.

No Pattern Detected A location that does not fall into any of the hot or cold spot
patterns defined above.
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4. Results
4.1. Hazard Chain Caused by This Event

Hazard chains are the hot topic in the broader realm of natural hazards [57] (e.g.,
earthquake-induced chains [58], glacial-outburst-induced chains [59], and volcano-eruption-
induced chains [60]). In this disaster, the dam released a mudflow of tailings after the
dam failure (Figure 7b-A). The high-speed mudflow struck the mine’s administrative area
(Figure 7b-C) [61], destroyed the railway bridge (Figure 3b,c and Figure 7b-D), and contin-
ued to move downstream. At about 3:50 pm on 25 January 2019, the mud reached and
came into the Paraopeba River (Figure 7b-E). On 27 January 2019, around 5:30 am, sirens
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were sounded for the stability of the mine’s adjacent Dam VI [16] (Figure 7b-B), where
increased water levels were observed.

This hazard chain contained three stages including dam failure, mudflow, and hyper-
concentrated flow with tailings waste (Figure 7b). The occurrence of this hazard chain is
the result of a combination of many factors. Since the tailings contained a certain amount
of water, it created conditions for the mudflow after the tailings dam failure. The tailings
waste entered the river following the original branch channel, which in turn enlarged
the impact of this disaster with extremely high turbidity and metal concentrations, lower
dissolved oxygen, and change of microbial communities which would impact the growth
and reproduction of aquatic creatures [62,63].
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creased and eroded a new channel.  

Figure 8B-1 shows the location of the waste as of 2 February 2019. It can be ob-
served that the color of the right river section is vermeil, compared with the left section 
(red circle). The length of AB reach is 131.48 km with a height difference of about 60 m. It 
took less than a week for the waste to transport from A to B. After the waste entered the 
Paraopeba River, the transport speed of waste in the water was affected by many factors, 
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sensing images of Google Earth, it appears that the barrier of some small river dams in 
the Paraopeba River might also slow down the movement of the waste. Figure 8B-1 is a 

Figure 7. Comparison of pre- and post-disaster Landsat 8 images [64]. (a) Pre-disaster remote
sensing image (14 January 2019) [27]; (b) post-disaster remote sensing image (30 January 2019) [28].
A = location of the destroyed tailings dam and the tailings pond “Barragem I” on 25 January 2019.
B = location of tailings pond “Barragem VI” which appeared as an early warning of stability on 27
January 2019. C = location of the destroyed cantina and office buildings. D = location of the destroyed
railway bridge (Figure 3b,c). E = location of the entry point of the mudflow into the Paraopeba River.

4.2. Transport Process of Waste in the Rio Paraopeba River

Through the examination of multi-temporal Google Earth images, the transport pro-
cess of waste in the Paraopeba River can be observed (Figure 8). Comparing Figure 8A-1
with 8A-2, a large amount of waste entered the river several days after the failure, which
might block the river for a certain period. Figure 8A-3 shows that due to the increase
of precipitation in the later period (Figure 13), the water level of the river increased and
eroded a new channel.

Figure 8B-1 shows the location of the waste as of 2 February 2019. It can be observed
that the color of the right river section is vermeil, compared with the left section (red circle).
The length of AB reach is 131.48 km with a height difference of about 60 m. It took less
than a week for the waste to transport from A to B. After the waste entered the Paraopeba
River, the transport speed of waste in the water was affected by many factors, such as
concentration and stream gradients [65,66]. In addition, according to remote sensing images
of Google Earth, it appears that the barrier of some small river dams in the Paraopeba
River might also slow down the movement of the waste. Figure 8B-1 is a true-color image
of tailings in rivers, and the change of water color in the circle position can be observed. In
order to make the watercolor contrast more obvious, considering that the green and red
bands are sensitive to the sediment [67], the ratio between these bands were calculated. As
can be seen in Figure 8B-2, there is an obvious change in water color at the red circle.
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Figure 8. Transport process of waste in the Paraopeba River. A—1, 2, 3 = images of the entry point of
the mudflow into the Paraopeba River, the yellow lines are used to mark the river boundary; B—1,
2 = images on 2 February 2019 around point B in the Paraopeba River, the watercolor change can be
seen; C—1, 2, 3 = images of the entry point into the Retiro Baixo.

Comparing Figure 8C-1 with 8C-2, the influence of waste on the water body was
obvious after it entered the reservoir of hydropower station—Retiro Baixo. A few months
later, the watercolor recovered due to the deposition of sediments. Based on the analysis of
Figure 8 and multi-temporal Google Earth images, a table of sediment transport time node
was generated (Table 4) in order to make the interpretation of sediment transport clear.

Table 4. Sediment transport time nodes.

Locations
Dates

25 January 29 January 2 February 9 March 15 March 20 June
A A-1 A-2 A-3 Unknown

B B-1 and
B-2

C C-1 C-2 C-3
Note: The brown color indicates that the location exhibits sediments on that specific date, while the blue color
implies that there was no sediment transported to this location or sediments had settled down.
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4.3. Diffusion of Waste in the Reservoirs of Two Hydroelectric Plants

(1) Determination of reservoir boundaries

Using the Atmospheric Correction Module, it can be accurately compensated for atmo-
spheric effects. In this study, the atmospheric correction using the FLAASH model [34,35,68]
was performed and Landsat 8 images were fused using the Gram—Schmidt Pan Sharpening
method [69–72]. After calculating the NDWI using the images after atmospheric correction
and image fusion, zero was used as the segmentation threshold to extract the water body, and
the manual editing was used to complete the extracted water body boundaries in the ArcGIS
software. Figure 9 shows the boundaries of two reservoirs, Retiro Baixo and Três Marias.
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Figure 9. (a) Retiro Baixo and Três Marias reservoirs. The larger reservoir on the left is Três Marias,
and the smaller one in the lower right corner is Retiro Baixo (b).

(2) Sediment index used to estimate the level of sediment concentration

The sediment index was obtained using the SI calculating method. Figure 10 shows
the pre- and post-disaster sediment concentrations. Contrasting the area of high sediment
concentration where the river enters into the Retiro Baixo reservoir (Figure 10a–c), it had
a larger area of 3.66 km2 compared with 1.89 km2 on 20 December 2018 and 2.49 km2 on
27 April 2019 with a 2-month interval spanning this disaster. It can be observed that the
sediment plume had a great impact on the reservoir of the Retiro Baixo Plant, over 300 km
from the failure location, while less impact on the reservoir of the Retiro Baixo Plant. This
result is consistent with Vale’s evaluation [73]. It appeared that small river gradients and
obstruction of the reservoir barriers played an important role in slowing down the tailings
waste moving into the São Francisco River. It is not hard to find out that this disaster event
had little impact on the Três Marias reservoir (Figure 10d–f).
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Figure 10. Level of sediment concentration of Retiro Baixo and Três Marias. (a) Level of sediment
concentration of Retiro Baixo on 20 December 2018; (b) level of sediment concentration of Retiro Baixo
on 22 February 2019; (c) level of sediment concentration of Retiro Baixo on 27 April 2019; (d) level of
sediment concentration of Três Marias on 20 December 2018; (e) level of sediment concentration of
Três Marias on 22 February 2019; (f) level of sediment concentration of Três Marias on 27 April 2019.

4.4. Tailings-Dam-Failure Trend Analysis Based on Spatiotemporal Pattern Mining

Using the emerging spatiotemporal hot spot analysis method, it can be found that the
Brumadinho dam disaster in Brazil belongs to the Consecutive Hot Spot area (Figure 11).
This disaster happened 3 years and 2 months after the Mariana dam disaster (5 November
2015), which was considered the worst environmental disaster in Brazil [74,75]. The
Brumadinho and Mariana dam disasters both occurred in Minas Gerais, Brazil, and the two
dams were both owned by Vale, a Brazilian multinational corporation engaged in metals
and mining. Furthermore, based on the world mine tailings failure records [14], tailings
dam failures have been recorded several times in this area. As a result, this area belongs to
the Consecutive Hot Spot area, and the risk of tailings dam failure in this area would be
relatively high if the necessary pond’s management and the engineering safety measures
were not carried out.
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According to Figure 11, New Hot Spots appear in Africa and South America which
belong to developing regions, where the mining industry has been an important economic
pillar in recent years [76,77]. Consecutive Hot Spots mainly lie in Eastern South America
and Western Pacific islands where there are a lot of tailings left by mining, but due to
poor management, tailings failure is easy to occur. The Sporadic Hot Spot is in Southwest
South America and Oscillating Hot Spots mainly lie in Asia and America. China has
many Oscillating Hot Spots and there have been some particularly serious tailings failure
disasters, such as the 8 September 2008 dam break accident in Shanxi [78]. Different hot
spots have different characteristics of disaster occurrences. These characteristics can be
influenced by the mining history, mining features (e.g., man-made or natural), etc. [79–81].
The recommendation is that different hot spots should be treated differently. The areas of
New Hot Spots and Consecutive Hot Spots are the ones that deserve the most attention.
Local governments should adopt appropriate risk management strategies to monitor and
change the trend. The risk assessment and monitoring of tailings reservoirs should be
adopted and implemented. In this regard, some risk assessment and monitoring methods
of mountain disasters can be used as references [82–85].

5. Discussion
5.1. Cause Analysis of This Disaster
5.1.1. Lack of Stability Management during the Maintenance Stage

Some experts believed that Brazil’s weak regulatory structures and regulatory gaps
allowed the dam’s failure [86]. This dam was built in 1976 using the “upstream” method, in
which coarse rubble, compacted soil, and dried tailings were used to build the dam (Figure
12). This is similar to the Fundão dam which failed in November 2015, killing 19 people
and causing an environmental catastrophe, compared with a more expensive and strong
method using solid rocks to contain the waste. The water leak was first observed near its
base in July 2018, and then repairs were carried out [87]. José de Gouveia, the worker of
Vale, said that the dam exhibited a small leak soon after the rainy season, and leaking water
was observed in several places at the bottom [87]. The possible pore pressure build-up
would have resulted in a decrease in effective stress and initiated a failure.
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Figure 12. Cross section of Brumadinho dam “Barragem I” from the west to the east [88,89].

5.1.2. Extreme Weather Effects

In this section, weather effects are examined. Daily precipitation data in Brumadinho
were obtained from the World Weather Online website [90]. It appeared that precipitation
increased the water content of the tailings pond before the dam failure event, increased the
pore pressure, and thus induced failure initiation, which could be an important triggering
factor for the tailings dam collapse (Figure 13). Although there was less rainfall in January
than in February and March 2019, the rainfall in January 2019 sometimes reached the peak
of monthly rainfall in some years from the perspective of multi-year rainfalls (Figure 14).
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El Niño and La Niña events are complex weather patterns resulting from variations in
ocean temperatures in the Equatorial Pacific [91]. Their circulation is a global scale climate
oscillation. Generally, the impacts of most El Niño events include above-average rainfalls
in southeastern South America, eastern equatorial Africa, and the southern USA [92].



Remote Sens. 2021, 13, 1775 15 of 22

Extreme weathers in Brumadinho are linked to El Niño conditions from September to
January typically [93]. A major El Niño event has been recorded since October 2018, and
there were unusual rainfalls before the disaster (Figure 14) [94]. The increase of soil water
content created conditions for the dam instability.

5.2. Lessons Learned and Perceptions about Safety Management of Tailings Ponds

The catastrophic tailings dam failure disaster that occurred in Brumadinho, Brazil
is worthy of reviewing the safety management of tailings ponds in order to reduce the
occurrence of such incidents. Tailings pond management has the characteristics of a heavy
task and wide involvement, and requires the cooperation of different departments and joint
law enforcement. The participation of multiple departments also illustrates that tailings
pond management is a comprehensive and complex task involving disaster, development,
industry, finance and taxation, resources, ecology, water conservancy, meteorology, and
other fields [95–97]. At the same time, the successful completion of this task requires
interdisciplinary integration and close cooperation of the related fields. Based on the above
considerations, the following recommendations are made as a reference:

(1) Set up a joint working group for tailings pond management, and build a unified
management platform, in order to guide tailings pond management. The com-
prehensive management work of tailings ponds involves many departments and
disciplines. Relevant personnel should be selected from each department for the
docking of the management work, and a joint working group should be established
to actively and steadily promote the management work of tailings ponds. In addition,
according to the needs of governance work, researchers from relevant disciplines
of scientific research institutes and universities should be invited to join the joint
working group as consulting experts to carry out academic exchanges. Through
multidisciplinary exchanges and interdisciplinary integration, theoretical support
and technical support could be provided for tailings pond management [98].

(2) Build the basic geographic information database of tailings ponds, and obtain
the basic data of tailings ponds. The geographic database is an effective way to
scientifically organize and manage geographic data. To find out the stock and spatial
distribution of tailings ponds is the premise to realize the comprehensive and efficient
management of tailings ponds in the later period. During the treatment period of
tailings ponds, the number of tailings ponds fluctuates greatly, and some of the
abandoned tailings ponds with a long history and a small size may cause statistical
omissions. Therefore, it is urgent to find out the basic data of tailings ponds through
a detailed investigation and real-time dynamic update and adjustment. Based on
the above problems, remote sensing image interpretation [99], literatures and field
investigation [100], telephone polls, etc. could be used to obtain the location of the
tailings pond, year of construction, condition of use, storage of the pond, height
of the tailings dam, type of tailings, and the geographic database could be used
for the unified organization and management of the above date [101]. Later, a new
investigation information could be used to dynamically update the database.

(3) The sites selection of new tailings ponds should take into consideration many
factors such as safety, ecology, sustainability, and land planning, so as to realize
“whole-chain” planning and guide the whole life cycle of tailings ponds with a
system engineering theory [102,103]. A complete life cycle of the tailings pond
should start from site selection, go through the process of construction, operation
and management, and finally take “reduction” as the end of the mission of a tailings
pond. Therefore, the problems needed to be considered in the planning stage of the
new tailings ponds include: First, whether geological, geomorphic, environmental,
and other factors are suitable for the construction of tailings ponds [104]; second,
whether the tailing dams could meet the relevant standards and requirements [105];
third, how to monitor and simulate the stability in the running stage of the tailings
pond [106,107]; fourth, how to carry out the comprehensive treatment after the tailings
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pond is stopped, the follow-up treatment of tailings, the ecological restoration, and
land use planning of the mining area after the tailings treatment [108,109]. The
above plans finally form a “whole chain” plan, and the system engineering theory
would be introduced into it. On the basis of interdisciplinary integration, the overall
optimal operation of the tailings pond system could guide the entire life cycle of the
tailings pond. During the management of tailings ponds, the problem of tailing pond
failures is the most important part. Such failures are mainly related to geotechnical
engineering. Engineering measures should be taken to evaluate and control the water
content in the reservoir and pore water pressure. To evaluate the slope stability a
range of geotechnical datasets are necessary, including tailing granulometry, hydraulic
conductivity, effective porosity, water level in the pond, and pore pressure under
meteorological stresses. Based on these datasets, hydraulic simulations, followed by
slope stability simulations will lead to the establishment of design requirements.

(4) Integrate multi-discipline to carry out the comprehensive safety assessment of the
built tailings ponds, make clear the management sequence of tailings ponds. The
safety of the tailings pond and its impact on the ecological environment are the
two most concerned issues of the built tailings pond. Therefore, it is necessary to
organize engineering researchers to evaluate the stability of the built tailings pond and
complete the safety risk and ecological risk assessment of the tailings pond together
with ecological researchers [110,111]. Comprehensively considering safety risks and
ecological risks, priority treatment objects for the tailings pond treatment could be
selected in order to improve the utilization efficiency of governance funds [112]. Some
engineering measures to improve the stability of the tailing ponds are necessary, such
as gentle slopes, norms regarding the maximum height of dams, drainage systems
and simulation of their influence on the slope stability, mathematical simulations to
evaluate the slope stability under different meteorological conditions, projects for
closing the ponds, etc.

(5) The study on efficient utilization of tailings ponds should be carried out in order
to clarify the concept that “tailings are the resource in the wrong place”. The defi-
nition of tailing indicates that tailing is the part with a too low content of the target
component to be used in production. With the progress of science and technology
and the improvement of the efficient utilization ability of mineral resources, on the
one hand, the target components in the tailings pond have the possibility of being
re-extracted and utilized. On the other hand, other components in the tailings may
become effective components in other industries and could be utilized. Nowadays,
tailings reuse has made great progress in many aspects, such as heavy separation
of useful materials, production of building materials, production of fertilizers, and
filling of mine goaf [113–115]. The efficient utilization of tailings ponds in the later
stage needs further research and new technology support, but the cognition of tailings
from “waste” to “resource” also needs to be changed.

(6) Mine tailings reservoir potential tourism value, broaden the tourism resources of
industrial heritage. Tailings ponds are the product of the industrial age, but also
the unique brand of the industrial age, with obvious characteristics. Tailings ponds
and their surrounding mining industry remains constitute an organism of history,
technology, society, architecture, and industrial heritage with a scientific value. The
organism becomes a witness of history, and has become one of the important tourism
contents today [116,117]. After transforming, industrial sites can be transformed into
beneficial scenic spots with the function of education. There is a long way for the
transformation of industrial heritages into successful tourism products, but there have
been many successful cases to learn from, such as Ruhr area in Germany [118] and
Beijing 798 Art Zone [119]. The development of industrial heritage tourism resources
of tailings ponds needs the full cooperation of scholars such as planning, tourism, and
heritage protection, and also needs the strong support of government departments.
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6. Conclusions

Tailings reservoir materials are easy to cause harm to the environment, and dam-
failure disasters often occur in production mining areas where there are population and
production equipment. Therefore, the damages caused by such disasters are often more
serious than others, and more attention should be paid. In this study, we carried out a
disaster investigation of the Brumadinho tailings failure event. A detailed analysis of the
Brumadinho tailing dam failure disaster was carried out using medium to high-resolution
satellite images covering the entire affected areas of the event, including the place where
the disaster occurred to the transport of tailings in the river and its impact on downstream
reservoirs. Especially, the research of the diffusion of sediment in the reservoir was done
in order to assess the impact of tailing waste, and discuss whether the waste reached the
dams of two hydroelectric plants: Retiro Baixo and Três Marias or even the São Francisco
River. Different from those caused by common landslides and debris flows, the disasters
caused by the tailings dam failure are more serious and could affect larger areas due to
the tailing waste pollution, and they should be paid more attention. On the other hand,
the impacts of climatic factors on this event were also discussed in order to make people
pay attention to the relationship between extreme weather events and nature disasters.
Most importantly, the temporal and spatial characteristics of tailings dam failure were
analyzed and summarized by building a global tailings dam failure database. The following
conclusions are drawn:

1. The analysis of disaster characteristics revealed that the Brumadinho disaster could be
identified as a hazard chain caused by dam failure, mudflow, and hyperconcentrated
flow. Especially, the tailings made a great impact on the reservoir of the Retiro Baixo
Plant.

2. The Brumadinho disaster is the result of weak regulatory structures and regulatory
gaps. However, the influence of weather factors cannot be ignored.

3. The in-depth analysis and interpretation of rainfall data over 11 years revealed that
the El Niño event which started in 2018 increased the rainfall, and in turn played an
important role and affected the stability of tailings soil.

4. Based on the spatiotemporal analysis of the global tailings dam failure disaster events,
different types of hot spots were found. Different hot spots should be dealt with
different coping strategies.

5. This disaster also shows that the risk assessment, monitoring, and early warning of
tailings ponds in mining areas are necessary for disaster prevention and mitigation.
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