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Abstract: Beamforming-based signal enhancement technologies in passive sonar array processing
often have poor performance due to array distortion caused by rapid tactical maneuvers of the
towed platform, oceanic currents, hydrodynamic effects, etc. In this paper, an enhanced data-
driven shape array estimation formulation is proposed using passive underwater acoustic data.
Beamforming based on a hypothetically ideal array is firstly employed to perform the detection
of narrow-band components from sources of opportunity, and the corresponding phases of these
detected narrow-band components are subsequently extracted to acquire time-delay differences.
Then, a weighted outlier-robust Kalman smoother is proposed to acquire enhanced estimates of the
time-delay differences, since the underlying properties of slowly changing time-delay differences
in the hydrophone array and diverse signal to interference and noise ratios in multiple narrow-
band components are explored; and its Cramer–Rao Lower Bound is also provided. Finally, the
hydrophone array shape is estimated based on the estimated time delay differences. The proposed
formulation fully exploits directional radiated noise signals from distant underwater acoustic targets
as sources of opportunity for real-time array shape estimation, and thus it requires neither the
number nor direction of sources to be known in advance. The effectiveness of the proposed method
is validated in simulations and real experimental data.

Keywords: array shape estimation; passive sonar system; radiated noise; time delay estimation;
beamforming

1. Introduction

Hydrophone arrays are widely used in underwater acoustics to perform direction-of-
arrival (DOA) estimation and beamforming-based signal enhancement in the passive sonar
system. Most array signal processing techniques are based on the assumption that the shape
of the array remains unchanged. Unfortunately, the shape of a hydrophone array, such as a
towed array, is often perturbed due to fluctuations in ship tactical maneuvering, oceanic
currents, nonneutral buoyancy, and so on, particularly in the demand of the long-towed
arrays for the acquisition of a low-frequency signal source at long range. These would lead
to uncertainty in array shape and deviation from the hypothetical one [1–4]. However,
beamforming as a typical signal enhancement technique requires knowledge of accurate
array positions to properly process the measurements, which means an accurate estimate of
the array shape is required to properly beamform the acoustic arrivals. The uncertainty in
array shape inevitably degrades the beamforming performance [2]. A theoretical derivation
of the performance loss in a distorted array shape due to the tactical maneuvering is
provided [5]. Therefore, it is requisite to implement an array shape estimation to improve
the acoustic system performance.
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1.1. Related Works

A huge amount of effort has been devoted to array shape estimation. In general, these
methods can be classified into source-independent methods and source-dependent meth-
ods. For source-independent methods, one effective method is to place depth-measurement
sensors and compasses at several points within the array. These additional sensors provide
localized respectively vertical and horizontal information on the transverse displacements
of the array, whereas it is less economical due to the use of additional sensors. Further
work is to model the array shape by a low order polynomial and to use the available
sensors’ information to determine the coefficients of this polynomial [6]. A Kalman filter
technique with a small angle approximation is used to estimate the array shape evolution
over time [7], and an extended Kalman filter approach is also considered with the predicted
state update following a higher-order nonlinear model [8].

As for source-dependent methods, acoustic hydrophone data would be used to es-
timate the array shape when there is no sensors’ information within the array or there
are too few working sensors, and the shape can be estimated by measuring the relative
time or phase delays among sensors due to one or more sources with known or unknown
directions [9–19]. Historically, the array shape model employed for acoustic-based esti-
mation is often considered to be a horizontal axis with perturbations at regular intervals
on the vertical axis. Under this formulation, the Cramer–Rao Lower Bound (CRLB) for
the narrow-band plane-wave sources is provided for source localization with a single
known source direction or a known angle between the first receiver and the second one [9].
The maximum-likelihood (ML) approach is used to jointly estimate both the array and
source parameters for multiple narrow-band or broadband sources with the known num-
ber of sources through a two-stage iteration procedure [10]. Subspace-based eigenvector
techniques form another way to estimate array shapes when a single source at a known
frequency and direction is known [11]. The eigenvector method for estimating the positions
of the array elements is based on the eigen-decomposition of the array covariance matrix
to acquire the phase delays between adjacent array elements. The statistic of phase delays
is analyzed in [12]. The CRLB of the subspace-based array shape estimation method is
provided in [3]. The eigenvector method is similar to the method [13], and it can be also
regarded as a special case of the maximum-likelihood method [14]. Reference [15] proposes
an improved array shape estimation method by jointly exploiting the acoustic hydrophone
data and sensor data.

1.2. Contributions

In this paper, an enhanced data-driven array shape estimation formulation is proposed
using passive underwater acoustic data. Instead of using the traditional method with
a deterministic signal model and a known number of discrete sources, a novel data-
driven approach is proposed by exploiting these directionals radiated noise sources, such
as shipping and cargo as sources of opportunity for real-time array shape estimation.
The conventional beamforming based on the hypothetical uniform linear array is firstly
employed to acquire an improved waveform due to spatial gain from the hydrophone
array. Since the radiated noise sources involve the amount of narrow-band components
that originated from the vibration of mechanical components like diesel generator and air
conditioning equipment, we perform the narrow-band frequency detection and extract
their corresponding phases for the acquisition of noisy time-delay differences. A novel
weighted outlier-robust Kalman smoother (WORKS) method is then proposed to acquire
enhanced time-delay estimates by exploring the properties of slowly changing time-delay
difference in hydrophone array as well as the diverse signal to interference and noise
ratios (SINR) in multiple narrow-band components, and its CRLB is also analyzed and
provided. Finally, the hydrophone array shape is obtained using the estimated time delay
differences, and thus beamforming-based improved radiated noise signal is acquired. The
proposed formulation fully exploits the directional radiated noise source signals as sources
of opportunity for real-time array shape estimation, and thus it requires neither the number
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nor direction of sources to be known in advance. Furthermore, the proposed WORKS
approach has the capability of acquiring the enhanced time-delay difference estimation by
treating the weights associated with each observed noisy time-delay difference data in a
probabilistic approach.

The contributions of the paper lie in three aspects: (1) An enhanced data-driven array
shape estimation formulation using passive underwater acoustic data is provided. The
proposed formulation fully exploits the directional radiated noise source signals as sources
of opportunity for real-time array shape estimation, and thus it requires neither the number
nor direction of sources to be known in advance. (2) A novel weighted outlier-robust
Kalman smoother method is proposed to acquire enhanced time-delay estimates by the
exploitation of slowly changing time-delay differences in hydrophone array and has the
capability of alleviating the effects of the outliers resulted from the diverse noise levels in
the multiple frequencies. (3) The CRLB of the proposed method is analyzed.

1.3. Organization and Notation

The paper is organized as follows: The underwater acoustic radiated noise signal
model is introduced in Section 2. A novel array shape estimate technique is described in
Section 3, and the weighted robust-outlier Kalman smoother method is also proposed in
this section. Performance bound is also provided in Section 3. Simulations and experiments
demonstrate the robustness of the proposed algorithms compared to conventional methods
in Section 4. Concluding remarks are given in Section 5.

Notation: We use lower-case (upper-case) bold characters to denote vectors (matrices).
p(·) denotes the probability density function (pdf), and N (x|a, b) denotes that random
variable x follows a Gaussian distribution with mean a and variance b. In addition, (·)T

and (·)H denote transpose and conjugate transpose, respectively, IN denotes the N × N
identity matrix. ∇x =

[
∂

∂x1
, · · · , ∂

∂xN

]
denotes the gradient operator respect to the variable

vector x = [x1, · · · , xN ]
T ∈ RN×1, and E(x) represents the expectation operator of the

random variable x.

2. Underwater Acoustic Radiated Noise Model in the Distorted Array

In this section, the underwater acoustic radiated noise model in a distorted hy-
drophone array is introduced. We assume that a thin flexible cable with M omnidirectional
hydrophone sensors mounted at fixed inter-element spacing d is employed. Due to the
transverse motion of ship tactical maneuvering, oceanic currents, and hydrodynamic ef-
fects, it would result in transverse displacements of the array from a straight line, as shown
in Figure 1. The positions of the first two sensors define a baseline for the coordinate
system and consequently are always assumed to reside on the x axis. It is observed that a
deformed array occurs when any one of the inner sensor y positions are no longer zero.

( , )m mx y

x

y

d

k

m

1 1( , )m mx y

d

Figure 1. An example of a distorted hydrophone array.
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The deformation is caused by bending at the sensor junctions due to the soft and
elastic external shell of hydrophone array, which implies that the inter-sensor distances
remain constant, and thus we have,

d =
√
(xm+1 − xm)2 + (ym+1 − ym)2, m = 0, · · · , M− 1, (1)

where the location of the mth sensor is denoted by (xm, ym) in the x− y Cartesian plane.
With respect to K far-field sources of opportunity impinging on the hydrophone array

and the source with the bearing or direction of θk, the range difference between the first
two sensors becomes, as shown in Figure 1,

∆rk,0 = rk,1 − rk,0 ≈ d cos θk = (x1 − x0) cos θk, (2)

where rk,1 and rk,0 denote the distances from the kth source to the second and reference
sensors, respectively, and the result above is based on the far-field hypothesis. However,
the locations of sensors deviate from the nominal ones, when the hydrophone array shape
is distorted or deformed. Assuming the deviation angle formed by the line between the mth
sensor and (m + 1)th sensor along x axis is denoted as φm, the range difference becomes,

∆rk,m ≈ d cos(θk − φm) = (xm+1 − xm) cos θk + (ym+1 − ym) sin θk. (3)

For the first two sensors as a baseline, φ0 = 0. The range difference between the mth
sensor and the reference can be written by,

rk,m − rk,0 =
m−1

∑
i=0

∆rk,i =
m−1

∑
i=0

d cos(θk − φi) =
m−1

∑
i=0

(xi+1 − xi) cos θk + (yi+1 − yi) sin θk. (4)

The corresponding time-delay difference is

τk,m =
∑m−1

i=0 ∆rk,i

v
=

m−1

∑
i=0

∆τk,i, (5)

where v is the speed of acoustic wave in water, and ∆τk,i denotes the time-delay difference
between the (i + 1)th and ith sensors with respect to the source of opportunity. It should be
noted that the accuracies of the array shape estimates will be confined to the accuracies of
each estimated time-delay difference for adjacent sensors, giving rise to error accumulations
of the time-delay difference according to Equation (5).

Assuming the kth radiated noise source signal as sk(t) with the bearing of θk, the
received signal ym(t) in the mth sensor can be written as

ym(t) =
K

∑
k=1

ζk,msk(t− τk,m) + em(t), (6)

where ζk,m and τk,m, represent respectively the amplitude and time delay from the source
to the mth sensor, and em(t) is an additive noise.

According to the statistical model of the underwater acoustic radiated noise [20,21],
the corresponding time-domain sk(t) is expressed by,

sk(t) = pkl(t) + (1 + pkm(t))pkc(t), (7)

where pkl(t) is a narrow-band signal arised from the vibration of machinery, pkm(t) repre-
sents a modulation function due to the propeller movement, and pkc(t) denotes a stationary
hydrodynamic noise.



Remote Sens. 2021, 13, 1773 5 of 18

The narrow-band signal pkl(t), which is often generated from the vibration of mechan-
ical components like diesel generator and air conditioning equipment, can be denoted by
the superposition of multiple sinusoid signals as,

pkl(t) =
L

∑
l=1

αkl sin(2π fklt), (8)

where αkl is an amplitude of the lth single-tone frequency from the source, L is the number
of the sinusoid signals, and fkl is the corresponding frequency.

In the real sonar system, the narrow-band signals in the underwater acoustic radiation
noise often have high source levels owing to inevitable mechanical vibration, and thus they
are easier to be detected and recognized, compared to the broadband hydrodynamic noise
signals [20,21]. Figure 2 shows a typical spectrum example of radiated noise from a ship.
It is observed that there exist several narrow-band frequencies that have higher powers
and are prominent in their nearby frequency ranges, their phases involve the information
of time delays between the sources of opportunity and sensors in the deformed array. It
possibly provides a way to estimate the distorted array shape.
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Figure 2. Spectrum example of real radiated noise.

3. Array Shape Estimation

In this section, a novel data-driven array shape estimation formulation will be pro-
vided, and the weighted robust-outlier Kalman smoother method is proposed to acquire
an enhanced time-delay difference estimation.

3.1. Phase Extraction Based on Detected Narrow-Band Frequencies

Assume a passive sonar system with the sample rate of Fs and the time interval of
T, and thus the total number of sample is N = FsT. In accordance with Equation (6),
the observed signal ym(t) at the mth sensor is decomposed into N narrow-band compo-
nents using Discrete Fourier Transform (DFT). The resulting narrow-band components
corresponding to any one of the frequency points may be expressed as,

ym( fn) =
K

∑
k=1

ζk,m( fn)sk( fn) exp(−j2π fnτk,m) + em( fn), n ∈ (1, · · · , N), (9)

where fn = nFs/N is the nth frequency grid, ζk,m( fn) is the coefficient at the fn frequency
with a high value, when a strong sinusoidal noise signal at the frequency of fn exists, and
K is the number of the far-field sources of opportunity.
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According to Equation (9), the wideband beamforming is turned to be multiple narrow-
band beamforming through the DFT procedure. The weight vector with the pre-defined ϑq
in the nth frequency point is written by,

w( fn, ϑq) =

[
1, exp

(−j2π fnd cos ϑq

v

)
· · · , exp

(−j2π fn(M− 1)d cos ϑq

v

)]T

, (10)

where ϑq ∈ (0, 180), q ∈ 1, · · · , Q, and Q is the number of the pre-defined bearing grid.
According to weights in Equation (10), beamforming is achieved by

$(ϑk) =
N

∑
n=1

∣∣∣w( fn, ϑk)
Hy( fn)

∣∣∣2, k ∈ 1, · · · , Q, (11)

where y( fn) = [y1( fn), · · · , yM( fn)]T ∈ CM is a received signal vector in the nth frequency
point. According to the result in Equation (11), the ϑ̂k is estimated based on the maximum-
value detection criterion. The output signal based on the estimated ϑ̂k is,

ỹk(n) =
M

∑
m=1

ym

[
n− (m− 1)d cos ϑ̂k

v

]
, n ∈ (1, · · · , N), (12)

where M is the number of the hydrophone sensors.
The operations above in Equations (9)–(12) are involved in the basic wideband fre-

quency beamforming method. The weight vector in Equation (10) is optimal, and the signal
to noise ratio (SNR) of the output signal ỹk = [ỹk(1), · · · , ỹk(N)]T can be improved by M
times, when the array is nominally uniform linear in the Gaussian noise case. However,
the array should be deformed severely and not remain a straight line due to the transverse
motion of the towing vessel, oceanic currents, and hydrodynamic effects, weights in Equa-
tion (10) would be wrong. Therefore, the performance of beamforming would worsen
dramatically, when the hydrophone array greatly deviates from the nominal one. Taking a
uniform linear towed array of M = 128 hydrophone sensors with a spatial interval of 1.6
m for example, the shape of the distorted array approximately becomes a parabola and
deviation angle φm is sin(π/(2M)), the average loss of the narrow-band signals would
reach up to about 15 dB.

The output signal ỹk based on the nominal array shape would not be the optimal one
in the distorted array cases because the time delays in the weight vector Equation (10) do
not match the true ones. Considering the fact that an important component in radiated
noise originates from the machinery noise and can be regarded as the superposition of
multiple narrowband signals, we would utilize the phases of these narrow-band signals to
estimate time delays in the distorted array instead of the time delays in the nominal array.
Instead of directly performing the element-space narrow-band detection, we carry out the
detection on the spectrum of Pyk( f ), which is acquired by performing the DFT operation
on the output signal ỹk . By exploiting the background calibration and threshold-based
detection techniques, the detected narrow-band frequencies radiated by the kth source of
opportunity can be denoted as f̂kl with l ∈ 1, · · · , L0, where L0 is the number of detected
narrow-band frequencies. The corresponding unwrapped phase of the lth narrow-band
frequency from the kth source to the mth sensor can be acquired by,

ψm( f̂kl) = 2π f̂klτk,m. (13)

In a similar way, we obtain the phase of ψm+1( f̂kl) in the (m + 1)th hydrophone,and
thus estimate the adjacent phase difference by

∆ψ̂k,l,m = ψm+1( f̂kl)− ψm( f̂kl), l ∈ 1, · · · , L0. (14)
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∆τ̂k,l,m =
ψm+1( f̂kl)− ψm( f̂kl)

2π f̂kl
, l ∈ 1, · · · , L0. (15)

3.2. Proposed Weighted Outlier-Robust Kalman Smoother

Ideally, the estimated time-delay difference ∆τ̂k,l,m between the (m + 1)th hydrophone
sensor the mth hydrophone sensor expressed by Equation (14) should be independent of
narrow-band frequencies, and be identical among L0 narrow-band frequencies. The reason
is that its phase difference is only determined by the spatial interval d between adjacent
hydrophones and the bearing of impinging source. However, the time-delay differences
∆τ̂k,l,m with l ∈ 1, · · · , L0 are often diverse in the real case. Figure 3 shows an example in a
public SWellEx-96 HLA dataset [22]. It is observed that the time-delay differences in the
detected narrow-band frequencies are completely different across sensors. The possible
reason is that there are diverse SINRs in these detected narrow-band frequencies, and these
time-delay differences will deviate from the true values at these frequencies.

0 5 10 15 20 25 30

Index of hydrophone

-0.01

-0.005
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0.015
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Figure 3. Time-delay differences varying with narrow-band frequencies in real data case.

One way to alleviate the fluctuations of ∆τ̂k,l,m is average these estimated time-delay
differences and acquire [23]

∆τ̂k,m =
1
L0

L0

∑
l=1

∆τ̂k,l,m, m ∈ 0, · · · , M− 2. (16)

However, the average operator being a linear estimator is sensitive to outliers and
easily deviates from the true value when there exists a small number of outliers. The ∆τ̂k,l,m
acquired by the adjacent phase differences easily deteriorates in the low SINR cases, and
thus become abnormal. In this case, these outliers would lead to a large deviation in the
average operator. Therefore, the average operator is not an optimal way to acquire the
time-delay estimation in the distorted array. To address this issue, we propose to use a
weighted robust-outlier Kalman smoother.

Instead of averaging all the ∆ψ̂k,l,m in multiple narrow-band frequencies, we stack
∆ψ̂k,l,m with l = 1, · · · , L0 into a vector as zk,m =

[
∆ψ̂k,1,m, · · · , ∆ψ̂k,L0,m

]T , and regard zk,m
as the observation data sample. In conformity with the analysis above, the observation
equation is expressed by,

zk,m = α( f )× ∆τk,m + εm, (17)

where α( f ) =
[
2π f1, · · · , 2π fL0

]T ∈ RL0×1 is a vector, ∆τk,m is the true time-delay differ-
ence between the (m + 1)th and the mth sensors, and εm ∈ RL0×1 is an additive noise.
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According to Equation (17), the observed time-delay differences in multiple narrow-
band frequencies can be considered as the true time-delay difference plus noise. To alleviate
the effects of outliers and diverse noise levels in the multiple frequencies, we introduce
a novel Bayesian algorithm that treats the weights associated with each observation data
samples probabilistically as proposed by [24,25]. However, unlike [24,25] which use a scalar
to weight the observed data sample and all elements in observed data sample are equally
treated, we introduce a vector weight γm for each observed data sample zk,m such that
the variances of zk,m are weighted with γm, owing to diverse SINRs in the corresponding
narrow-band frequencies, and have,

zk,m|γm, r ∼ N
(

zk,m|α( f )∆τk,m, Γ−1
m R

)
, (18)

where R = diag(r), which is a covariance matrix for observation noise, is a diagonal matrix
with r =

[
r1, · · · , rL0

]T ∈ RL0×1 on its diagonal. Γm = diag(γm) is a diagonal matrix with
γm =

[
γ1m, · · · , γL0m

]T ∈ RL0×1 on its diagonal. It should be noted that each elements in
r is weighted by the corresponding γm. A Gamma prior distribution for the weights in
order to ensure they remain positive is imposed on the weight vector γm as,

γlm ∼ Gamma(γlm|a0, b0), l = 1, · · · , L0, m = 0, · · · , M− 2, (19)

where Gamma(·) represents a Gamma distribution, and a0 and b0 are hyperparameters
respectively, and often set to a0 = b0.

Considering the fact that external shell of hydrophone array is soft and elastic, it is
reasonable to assume the time-delay differences ∆τk,m are slowly changing across sensors
(These ∆τk,m with m = 0, · · · , M− 2 should be identical, when the array is ideally straight),
and thus we have the state equation as

∆τk,m+1 = ∆τk,m + εm, m = 0, · · · , M− 2, (20)

where ∆τk,m+1 is the time-delay difference between the (m + 2)th sensor and the (m + 1)th
sensor, and εm is an additive noise. For the m = 0, the initialization of ∆τk,0 is assumed
to follow the Gaussian distribution of ∆τk,0 ∼ N (∆τk,0|0, ν0). Without loss of generality, a
Gaussian prior is considered to model this noise, and can be expressed by,

εm|ν ∼ N (εm|0, ν), (21)

where ν is the variance of state noise.
In accordance with these time-delay differences in the M sensors, we have observed

data samples ∆τk,0:M−2 at one time. To estimate the posterior distributions of the random
variables and parameter values, we should consider the log evidence of the data samples
observed, i.e., log p

(
zk,0:M−2, ∆τk,0:M−2, γ0:M−2

)
. It is a typical Kalman smoother.

We can treat this entire problem as an Expectation Minimization (EM) learning prob-
lem [26]. The expectation of the complete data likelihood should be taken with respect to
the true posterior distribution of all hidden variables q

(
∆τk,0:M−2, γ0:M−2

)
. However, since

this is an analytically intractable expression, we make a factorial approximation of the true
posterior as follows [27],

q
(
∆τk,0:M−2, γ0:M−2

)
=

M−2

∏
m=0

q(γm)
M−3

∏
m=0

q(∆τk,m+1|∆τk,m)q(∆τk,0). (22)

This factorization of ∆τk,0:M−2 considers the influence of each ∆τk,m within its Markov
chain. According to this factor approximation, all resulting posterior distributions over
hidden variables become analytically tractable. We can derive the final EM update equa-
tions from standard manipulations of Gaussian and Gamma distributions and acquire the
following,
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E-step :
Forward recursion,

N (∆τk,m|µm, vm) ∝ N
(

zk,m|α( f )∆τk,m, Γ−1R
)
N (∆τk,m|µm−1, 〈ν〉+ vm−1), (23)

→ µm = vm

(
L0

∑
l=1

〈γlm〉
〈rl〉

zk,m,l +
2π flµm−1

〈ν〉+ vm−1

)
, (24)

→ vm =

(
L0

∑
l=1

〈γlm〉
〈rl〉

+
1

〈ν〉+ vm−1

)−1

, (25)

→ 〈γlm〉 =
a0 + 1/2

1
2〈rl〉

(zk,m,l − 2π flµm)
2 + b0

l ∈ {1, · · · , L0}. (26)

Backward recursion,

γ̂(∆τk,m) = N (∆τk,m|µ̂m, v̂m) ∝ N (µ̂m+1|∆τk,m, 〈ν〉)N (∆τk,m|µm, vm), (27)

→ µ̂m = v̂m

(
µm

vm
+

µ̂m+1

〈ν〉

)
= µm +

vm

vm + 〈ν〉 (µ̂m+1 − µm), (28)

→ v̂m = vm +
v2

m

(vm + 〈ν〉)2 [v̂m+1 − (vm + 〈ν〉)]. (29)

M-step :

〈rl〉 =
m

∑
i=1

〈γli〉
m
(
zk,i,l −

〈
∆τk,i

〉)2, (30)

〈ν〉 =
m

∑
i=1

1
m
(〈

∆τk,i
〉
−
〈
∆τk,i−1

〉)2. (31)

Once these time-delay differences {µm}M−1
m=0 have been obtained, we can estimate the

array shape. Since the first two sensors define the the baseline, the estimated bearing ϑ̂k of
the kth noise source can be calculated based on the estimated time-delay µ̂0 according to
Equation (3),

ϑ̂k = arccos
(

vµ̂1

d

)
. (32)

Therefore, the estimated deviation angle φ̂m can be calculated as according to Equa-
tion (3),

φ̂m = arccos
(

vµ̂1

d

)
− arccos

(
vµ̂m

d

)
(33)

The location (x̂m+1, ŷm+1) of (m + 1)th sensor can be estimated by ,

x̂m+1 = x̂m + vµ̂m cos
(
φ̂m
)
+
√

d2 − v2µ̂2
m sin

(
φ̂m
)

(34)

ŷm+1 = ŷm + vµ̂m sin
(
φ̂m
)
+
√

d2 − v2µ̂2
m cos

(
φ̂m
)
, (35)

where m = 2, · · · , M− 1.
Finally, we perform the beamforming and acquire the improved output signal based

on the estimated array shape as

ȳk(n) = y1 +
M−1

∑
m=1

ym

[
n−

m

∑
i=1

µ̂i−1

]
, (36)
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where n = [1, · · · , N].

3.3. Summary of Proposed Distorted Array Shape Estimation Scheme

The proposed distorted array shape estimation scheme is summarized in Table 1.

Table 1. Summary of Proposed Distorted Array Shape Estimation Scheme.

Given the observed array data {ym(t)}M
m=1.

(1) Calculate ỹk with respect to the kth source based on the hypothetical uniform linear array.
(2) Acquire the detected narrow-band frequencies f̂kl with l ∈ 1, · · · , L0 based on ym(t).
(3) Calculate time-delay differences vector zk,m =

[
∆ψ̂k,1,m, · · · , ∆ψ̂k,L0,m

]T , m = 0, · · · , M− 2.
(4) Estimate the time-delay differences using proposed Weighted Robust-Outlier Kalman
Smoother:

a. Initialize hyperparameters a0 and b0.
b. Initialize covariance for observation noise R, variance of state noise ν.
c. Estimate time-delay differences µ̂m using EM algorithm Equations (23)–(31).

(5) Perform array shape estimates (x̂m, ŷm) with m = 2, · · · , M− 1 using Equations (34) and (35).
(6) Perform the beamforming and acquire the improved output signal ȳk(t).

3.4. Performance Bound Analysis

To quantify the estimation performance of the proposed method, we perform the
CRLB analysis in this section. Considering the problem of estimating the time-delay
difference vector ∆τk = [∆τk,0, · · · , ∆τk,M−2]

T from a set of observed data vectors of

zk =
[
zT

k,0, · · · , zT
k,M−2

]T
with zk,m =

[
∆ψ̂k,1,m, · · · , ∆ψ̂k,L0,m

]T , we can acquire the joint
probability distribution function (pdf) p(∆τk, zk) from the kth source as based on Equa-
tions (18) and (20),

p(∆τk, zk) =
∫

γm

M−2

∏
m=0
N
(

zk,m|α( f )∆τk,m, Γ−1
m R

)
N (∆τk,m+1|∆τk,m, ν)

×N (∆τk,0|0, ν0)Gamma(γm|a0, b0)dγm. (37)

The Fisher information matrix (FIM) J(∆τk) for the parameter vector ∆τk is defined
as follows,

J(∆τk) = −E
{
∇∆τk

[
∇∆τk ln p(∆τk, zk)

]T
}

. (38)

When the derivatives and expectation exist, we acquire an alternative formula for the
FIM as,

J(∆τk) = E
{[
∇∆τk ln p(∆τk, zk)

]T∇∆τk ln p(∆τk, zk)
}

. (39)

Let ∆τ̂k = ∆τ̂k(zk) be an estimated of the parameter vector ∆τk. The mean-square
error matrix (MSEM) is defined as

Ξk(∆τ̂k) = E
[
(∆τk − ∆τ̂k)(∆τk − ∆τ̂k)

T
]
. (40)

In fact, the MSEM is bounded by an inverse of the FIM, and we acquire [28],

Ξk(∆τ̂k) ≥ J−1(∆τk). (41)

The inverse of J−1(∆τk) is just the well-known posterior or Bayesian Cramer–Rao
bound [29], and it will be denoted as C(∆τk). According to the proposed generative model
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in Section 3.2, the logarithm of joint pdf of the state and measurement histories p(zk, ∆τk)
can be expressed as,

ln p(zk, ∆τk) =
M−2

∑
m=0

ln p(zk,m|∆τk,m) +
M−2

∑
m=1

ln p(∆τk,m|∆τk,m−1) + ln p(∆τk,0). (42)

Motivated by [28], we follow a similar recursive approach for the smoothing CRLBs,
and express CRLBs for the filtering as in the forward recursion,

C−1
m|m = C−1

m|m−1 + Sm
m, (43)

C−1
m+1|m = Gm+1

m+1 − Gm+1,m
m+1 (Gm

m+1 + C−1
m|m)

−1Gm+1,m
m+1 , (44)

C−1
0|−1 = G0

0 , (45)

where m = 0, · · · , M− 2. We acquire the CRLBs of the smoother in the backward recur-
sion [28],

C−1
m|M−2 = C−1

m|m + Gm
m+1 − Gm+1,m

m+1 (Gm+1
m+1 + C−1

m+1|M−2 + C−1
m+1|m)

−1Gm+1,m
m+1 . (46)

where,

Gm
m+1 = E

{
−∇∆τk,m

[
∇∆τk,m ln p(∆τk,m+1|∆τk,m)

]}
, (47)

Gm,m+1
m+1 = E

{
−∇∆τk,m+1

[
∇∆τk,m ln p(∆τk,m+1|∆τk,m)

]}
, (48)

Gm+1
m+1 = E

{
−∇∆τk,m+1

[
∇∆τk,m+1 ln p(∆τk,m+1|∆τk,m)

]}
, (49)

Sm
m = E

{
−∇∆τk,m

[
∇∆τk,m ln p(zk,m|∆τk,m)

]}
. (50)

According to Equations (18) and (19) in the generative model, p(zk,m) would fol-
low a multivariate Student distribution by integrating the weight vector γm, and can be
expressed by,

zk,m|∆τk,m,∼ st(α( f )∆τk,m, R, υ), (51)

where st(·) denotes the student-t distribution, and the freedom υ = 2a0.
According to [28], we derive the recursive formula for the CRLB of the proposed

WORKS method as in the forward recursion,

C−1
m|m = C−1

m|m−1 +
υ + L

υ + L + 2
α( f )HR−1α( f ), (52)

C−1
m+1|m = ν−1 − ν−1(ν−1 + C−1

m|m)
−1ν−1, (53)

C−1
0|−1 = νk,0. (54)

and we acquire the corresponding recursive formula for the CRLB as in the backward
recursion,

C−1
m|M−2 = C−1

m|m + ν−1 − ν−1(ν−1 + C−1
m+1|M−2 + C−1

m+1|m)
−1ν−1, (55)

where m = 0, · · · , M− 2.

4. Simulations and Experiments

In this section, both simulations and experiments will verify the effectiveness and
correctness of the proposed method. Several typical source-dependent approaches, such as
subspace-based eigenvector method [11] and average operation [23], are used for compar-
isons in simulations and experiments.
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4.1. Simulations

Suppose that a uniform linear towing array has M = 128 hydrophone sensors with a
spatial interval of 1.6 m, and the bearing of a radiated noise source is 60◦. The deviation
angle φm is set to be sin(π/(2M)), and thus the shape of the distorted array approximately
becomes a parabola, as the black line shown in Figure 4a. The time duration is T = 5 s and
the sampling rate Fs = 4 kHz. According to the characteristics of radiated noise [20,21], a
three parameters model with fc = 500 Hz, fm = 200 Hz and κ = 0 is used to model the
continuous spectrum component. In addition, seven narrow-band (sinusoid) signals with
frequencies of 59 Hz, 97 Hz, 125 Hz, 163 Hz, 198 Hz, 232 Hz and 280 Hz are considered.
Without loss of generality, additive Gaussian noise and additional interferences in three
narrow-band frequencies with 59 Hz, 97 Hz, and 163 Hz are considered with the SINR of
−10 dB.
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Figure 4. Performance comparisons. (a) Beamforming result based on the hypothetical array. (b)
Estimation of array shape. (c) Comparison of the estimates of time-delay differences. (d) Time-delay
differences in these detected narrow-band signals. (e) Spectrum of the improved output signal.
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Figure 4b shows the beamforming result based on the hypothetical uniform linear
array. The maximum value in the beam energy diagram is 55◦, which is deviated from
the true bearing of 60◦, due to the time-delay mismatches in the distorted array. Only five
narrow-band frequencies with 59 Hz, 97 Hz, 198 Hz, 163 Hz, and 232 Hz are acquired after
the narrow-band detection based on the beamforming with the hypothetical array shape,
and the narrow-band frequencies with 125 Hz and 280 Hz are missing. The corresponding
time-delay differences of these detected narrow-band frequencies with 59 Hz, 97 Hz, 163 Hz,
198 Hz, and 232 Hz are shown in Figure 4d. It is observed that the time-delay differences
are generally different, and show significant fluctuations particularly in the frequencies
of 59 Hz, 97 Hz, and 163 Hz, due to the diverse SINRs on these narrow-band frequencies.
Several outliers appear in the estimated time-delay differences. The time-delay differences
should be independent of the considered narrow-band frequencies and be identical for the
five narrow-band frequencies.

The ground truth of time-delay differences is shown in Figure 4c with the black line,
while the average of these phase differences is shown in Figure 4c with the blue line. The
estimation of time-delay differences in the subspace method is shown in Figure 4c with
the green line. It is found that the estimates of time-delay differences in both the subspace-
based method and the average operation method exhibit relatively large deviations from
the ground truth and lead to quite similar estimates of the time-delay differences. The
possible reason is that both the subspace-based method and the average operation approach
are based on the narrow-band phase differences between adjacent elements, and both of
them utilize the average operators for the estimates of time-delay differences in essence.
The estimated time-delay differences in the proposed WORKS method, which significantly
inhibits outliers, are quite closer to the true values, as shown in Figure 4c with the red
line. According to the detected narrow-band frequencies, the array shape estimation is
acquired by Equations (34) and (35), as shown in Figure 4a. The estimated array shape in
the proposed method is closer to the real one, compared to those of the other two methods,
even if gaps exist between them, especially in the latter part of the array. It is due to the
error accumulations of time-delay differences in the array shape estimation, according to
Equation (5).

The output spectrum based on the estimated array shape is provided in Figure 4e. It
is reasonable that the output spectrum has higher gain, and is closer to the spectrum in
the known array shape, compared to these in the subspace method and average operation
method. It is also observed that the missing narrow-band frequency of 125 Hz becomes
quite clear and can easily be detected in this enhanced spectrum. To quantify the superior
performance, we use the amplitude error as the performance index. The amplitude error is
defined as the absolute error between the amplitude of the detected narrow-band frequency
and the amplitude in the corresponding frequencies in the spectrum based on the known
array shape. The amplitude errors of the three methods are presented in Table 2. It is
obvious that the proposed method is superior over the average operation and the subspace-
based methods, owing to the ability to mitigate the effects of the outliers. It is also observed
that the proposed method generally has the highest gain improvements among these three
methods, and its amplitude errors in these detected narrow-band frequencies are generally
less than 0.3 dB.

Table 2. Amplitude errors of detected narrow-band frequencies.

Frequency/Hz 59 97 125 163 198 232 280

Amplitude error in average method/dB 25.3 15.0 43.2 24.6 37.9 11.4 25.2
Amplitude error in subspace method/dB 24.9 15.7 49.7 24.8 32.8 11.3 22.6
Amplitude error in proposed method/dB 0.1 0.1 0.1 0.1 0.2 0.3 0.3

4.1.1. Variance Estimates of Time-Delay Difference

In this subsection, the variance estimates of time-delay differences are analyzed. All
the parameters are the same as the simulations above. Figure 5 shows the variance results
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of the estimated ∆τ. It is obvious that the proposed approach has the lowest estimated
variance across 128 sensors, and its average variance is 0.023, which is quite closer to the
CRBL of 0.006, compared to 0.842 and 0.821 in the average operation and the subspace-
based methods, respectively. The main reason is that the proposed method is quite robust
to these outliers in the estimated time-delay differences possibly caused by the low-SNR
phases, whereas both average operation and the subspace-based method are sensitive to
these outliers, and would lead to relatively poor performance.
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Figure 5. Estimated time-delay difference variances.

4.1.2. Performance Comparison versus Bearings of the Radiated Noise Source

The effectiveness of the proposed method has been verified thanks to the aforemen-
tioned simulations. In the following simulation, the performance versus bearings of the
noise source will be analyzed. The source bearings change from 5◦ to 175◦ by 10◦ steps.
Other parameters are the same as in the previous simulations. It is observed that all three
approaches seem robust to the bearings of targets and their average gain errors of narrow-
band frequencies in the end-fire bearing are comparable to those in the upright bearing.
However, the average gain errors of results in the proposed method are much smaller than
in the average operation and the subspace-based methods, as shown in Figure 6.
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Figure 6. Amplitude error versus bearings of the radiated noise source.

4.1.3. Performance Comparison versus SINR

In this simulation, we focus on the performance comparison versus diverse SINRs.
The narrow-band frequency interferences of 59 Hz, 97 Hz, and 163 Hz with different
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amplitudes, which would cause diverse outliers in time-delay differences, are considered
to form diverse SINRs from −3 dB to −14 dB with the step of −2 dB. Figure 7 shows
average amplitude errors versus diverse SINRs. The proposed method has superior
performance over the average operation and the subspace-based methods. It is observed
that the average amplitude errors of the subspace-based method and the average operation
approach gradually increase as the SINR decreases, whereas the proposed method is
robust to different SINRs, which means the proposed method could mitigate the effects of
different SINRs.
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Figure 7. Average amplitude errors versus SINR in narrow-band signals.

4.2. Experiments in Lake Trial Data

In this section, a set of lake trial data based on the distorted array is used to verify
the effectiveness of the proposed method. In the experiment, the power amplifier as the
acoustic source with 15 m in depth actively transmits the 83 Hz, 104 Hz, and 109 Hz
low-frequency narrow-band signals and a chirp signal whose initial frequency is 90 Hz
and bandwidth 8 Hz. The other ship equipped with a towing array of 64 hydrophone
sensors with a uniform interval of 1.5 m, located 1 km away, is used to acquire the radiated
noise data. There is a slight bow in the array. The data duration of T is 300 second, and the
sample rate is 4 kHz.

The three narrow-band frequencies of 83 Hz, 104 Hz, and 109 Hz are acquired by
using the narrow-band frequency detection. The corresponding time-delay differences
are shown in Figure 8a. It is observed that some perturbations of time-delay differences
exist among these detected frequencies, and they would result in large derivations from
each other and lead to the appearances of outliers. The possible reason is that the SINRs
in each detected narrow-band frequencies are quite different. The time-delay differences
estimation in the average method, the subspace-based method, and the proposed WORKS
method are shown in Figure 8b, respectively. The time-delay differences in the proposed
method are quite smooth and slowly change, compared to thees in the average method
and the subspace method. The output time-frequency spectrum based on the enhanced
signals during 300 s are given in Figure 9a–d. It is found that the spectrum of enhanced
signals based on the proposed method has higher amplitudes in both narrow-band signals
and chirp signals, compared to these in the other two methods. The proposed method
is superior to the average operation and the subspace-based methods. The quantitative
performance concerning the average gains of three narrow-band frequencies are provided
as shown in Figure 10. Note that the gains are calculated by the narrow-band frequency
amplitude in the output signal over that in the conventional beamforming assuming a
hypothetical uniform linear array due to the unknown distorted array shape. It is found the
gains in the our proposed method are generally above 15 dB, even up to 30 dB, compared
to about 5 dB gains in both the average operation and the subspace-based methods.
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Figure 8. Performance comparisons. (a) Time-delay differences in 4 detected narrow-band signals.
(b) Comparisons of the estimates of time-delay differences.
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Figure 9. Performance comparisons of Short Time Fourier Transform using 20 s hamming window
with a window shift of 10 s. (a) Proposed method. (b) Average method. (c) Subspace method. (d)
CBF method.
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Figure 10. Gains of the detected narrow-band frequencies.

5. Conclusions

A robust and data-driven signal enhancement scheme is proposed to take into account
the array distortion in this paper. The proposed scheme firstly extracts the phases of narrow-
band signals from the conventional beamforming result using narrow-band signal detection.
Then, we proposed a novel weighted outlier-robust Kalman smoother to estimate time-
delay differences to mitigate outliers in the time-delay differences. Finally, an enhanced
output signal is achieved by beamforming based on the estimated time-delay differences.
The proposed scheme is validated by both simulations and experiments. The proposed
method is a data-driven approach that fully exploits the directional radiated noise signal
due to distant underwater acoustic targets as sources of opportunity for real-time array
shape estimation. It requires neither the number nor direction of sources to be known
in advance.
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