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Abstract: Multi-temporal imagery classification using spectral information and indices with random
forest allows improving accuracy in land use and cover classification in semiarid Mediterranean areas,
where the high fragmentation of the landscape caused by multiple factors complicates the task. Hence,
since data come from different dates, atmospheric correction is needed to retrieve surface reflectivity
values. The Sen2Cor, MAJA and ACOLITE algorithms have proven their good performances in
these areas in different comparative studies, and DOS is a basic method that is widely used. The
aim in this study was to test the feasibility of its application to the data set to improve the values of
accuracy in classification and the performance in properly labelling different classes. Additionally,
we tried to correct accuracy and separability mixing predictors with different algorithms. The results
showed that, using a single algorithm, the general accuracy and kappa index from ACOLITE were
the highest, 0.80± 0.01 and 0.76± 0.01., but the separability between problematic classes was slightly
improved by using MAJA. Any combination of the different algorithms tested increased the values
of classification, although they may help with separability between some pairs of classes.

Keywords: supervised classification; atmospheric correction; ACOLITE; Sen2Cor; MAJA; DOS;
random forest

1. Introduction

Land use, land cover and their changes are among the most relevant environmental
variables [1,2] with an influence on topics of crucial importance such as global change and
land management at all spatial scales [1].

Remote sensing imagery classification is generally used to monitor land use and land
cover on the Earth’s surface. Currently, the availability of a wide range of spaceborne
optical and radar systems has boosted the use of multi-spectral and multi-sensor imagery
with high temporal and spatial resolution from different satellites and has generalized
studies aiming to improve land cover classification accuracy. The Sentinel program from
the European Spatial Agency (ESA) is one of the most recent missions focusing on many
different aspects of Earth observation, including land monitoring [3].

Sentinel-2 (S2) consists of two twin-polar orbiting satellites (Sentinel-2A and 2B) active
since 2018 [4,5]. They contain a Multi-Spectral Instrument (MSI) that samples 13 spectral
bands including visible, near-infrared and shortwave infrared. Having two satellites allows
for a high temporal resolution (five days at the Equator and 2–3 days under cloud-free
conditions in midlatitudes). The spatial resolution is 10 m in the visible and near-infrared
bands. Several studies [6–9] have tested these images with good results due to their better
temporal and spatial resolution and a complete interoperability with previous satellite
programs such as Landsat [4].
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Semiarid Mediterranean regions, due to their socio-economic and physical charac-
teristics, have a high spatial irregularity in their landscape, including a variety of spatial
patterns, high fragmentation and a wide range of vegetation coverage [10,11]. These char-
acteristics pose a challenge for remote sensing classification. The distinction between crops
and natural vegetation, rainfed and irrigated crops or some anthropogenic surfaces is a
complex issue to solve, worsened by the spectral properties of lithology, soils and different
vegetation species. This issue has been usually addressed using spectral indices, which
emphasize surface biophysical characteristics [12,13], or texture features extracted from an
image [10]. Additionally, Reference [11] used a multi-temporal approach with one image
per season to include a wider range of spectral properties per class. Their results reported
an improvement in the separability between vegetation classes.

A good pre-processing is essential for multi-temporal classification and retrieval of
surface biophysical parameters from optical images [14]. Atmospheric correction (AC) is
the most important step in this process, as most satellites currently include good quality
radiometric and geometric corrections. The aim of applying AC is to remove atmospheric
effects from images, leaving only the surface reflectance values [15,16].

However, atmospheric conditions and effects are quite different depending on several
factors for each different study area. It is then a difficult task to obtain a good AC, especially
for multi-spectral data acquired at high spatial resolution [17–19]. It is also important to
take into account other issues such as the adjacency effect, which results in a reduction of the
contrast between bright and dark pixels because of the light scattered from neighbouring
pixels. Such issues might reduce apparent resolution and classification accuracy [20].

For these reasons, researchers from many institutions across Europe have developed a
wide range of algorithms for atmospheric correction [21]. In recent years, several studies
have been conducted to compare the reflectivity of Level-2A (L2A) images, processed with
different AC algorithms, with ground truth reflectivity [14,19,22]. In addition, NASA and
ESA, in the framework of the Committee on Earth Observation Satellites (CEOS), have
initiated an Atmospheric Correction Inter-Comparison Exercise (ACIX) [23] to analyse sev-
eral current AC algorithms and to compare the quality of their surface reflectance products.
During this study, arid sites were found quite challenging because of the absence of dark
dense vegetation pixels and a general underestimation of aerosols; hence, performance
at those sites was the main problem for all AC algorithms examined. Among the AC
algorithms for S2 evaluated in ACIX were MACCS and Sen2Cor, both resulting among the
four in better performances at all sites [23]. A recent study analysed the performance of
MAJA, Sen2Cor and others compared with in situ measurements of an area in the central
sector of the Ebro Basin in Zaragoza, Spain [22]. Although the methods’ performances
ranked differently for different land covers, the results showed minor differences overall.
However, a study performed by [24] pointed out difficulties determining the most accurate
model for correction due to several factors that might jeopardize a proper comparison.
Among others, one of the most important problems is that field measurements are likely
to be taken on a unique material, while measurements from remote sensors are taken on
different materials due to the spatial resolution. In regions with high landscape fragmen-
tation, as the Mediterranean areas, this problem implies that the reflectance values of a
satellite image might mix values coming from more than one land use or cover.

The studies carried out so far were devoted to finding the best AC method to reproduce
ground truth spectral signatures. No studies, as far as we know, have tried to analyse
how AC methods affect the classification accuracy or class separability. It is generally
assumed that land cover and land use classification of a single-date image, or even when
images from different seasons are used to obtain a single land cover map, might not need
an atmospheric correction, depending on the purpose of the study and, of course, the
quality of the data [25]. However, we believe that AC might increase class separability and
therefore classification accuracy.

The aim of this study was to compare classification accuracy after using different
AC algorithms in a semiarid Mediterranean area and to analyse how these algorithms
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might increase class separability in the feature space. According to previous studies, the
selected algorithms: Sen2Cor, ACOLITE, MAJA and DOS have shown good performances
in similar environments or have been developed specifically to deal with tasks such as the
adjacency effect or to improve the recognition of water surfaces. We applied them to S2
Level-1C (L1C) imagery for land use and cover classification in the southeast area of the
Hydrographic Demarcation of the Segura River (DHS). In addition, other typical strategies
to increase classification accuracy (using images of several dates and using normalized
indices) have been tested in order to compare their effects on classification accuracy. In
order to keep the results simple, we did not test the results of AC methods in each season
individually, but only in two cases: three seasons (excluding winter) and four seasons.

2. Methodology
2.1. Study Area

The study area is a 100 × 100 km2 portion of the T30SXG S2 granule that includes the
southern coast of the Hydrographic Demarcation of the Segura River (DHS), in Southeast
Spain (Figure 1). The annual mean rainfall is 382 mm, although the high spatial and
temporal variability of rainfall results in the usual alternation of extreme droughts and
floods. Temperatures are warm throughout the year, with a mean ranging from 10 ◦C to
17–18 ◦C and a thermal amplitude between 12 and 17 ◦C. There is a wide range of different
orographic and climatic features, lithology and soil classes and vegetation covers, both
natural and anthropic. The population is about 1 million inhabitants, concentrated in the
Guadalentin Valley and the coastal areas, included in this granule.
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Figure 1. Study area: area of image T30SXG overlapped on the whole area of the Segura River Basin.

The main uses in the study area are urban and agricultural. The area belongs to
the Murcia Region and represents more than a quarter of its surface and half of its total
population, including two of the most populated and largest urban areas. Along the coast,
both large, urbanised surfaces (tourist resorts) are intermingled with some protected coastal
mountain ranges. That implies a seasonal increase in population that is hardly quantifiable.

Besides, it includes two of the main agricultural areas in the Murcia Region: the
Cartagena countryside and the Guadalentin Valley, where fields of irrigated crops alternate
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with dense tree crops of citrus in lower slope areas. Such covers represent more than
51,800 ha. Rainfed crops and low dense tree fields are found in the foothills of the central
mountain ranges of the region, and those are located in the north and northwest sectors
of the granule and represent a total of 9575 ha. Crops under plastic and greenhouses are
almost 17,500 ha in the study area [26].

2.2. Atmospheric Correction Algorithms and Processors

Sentinel data are available as top of atmosphere (TOA) reflectance values. L2A prod-
ucts with bottom of atmosphere (BOA) values, estimated with the Sen2Cor algorithm,
have also been distributed since 2017. Other algorithms widely used for S2 and included
in this study are dark object subtraction (DOS), the most used image-based method for
atmospheric correction, MAJA and ACOLITE. The two latter are physically-based methods.

2.2.1. Sen2Cor

Sen2Cor [27] is an algorithm developed by ESA specifically for Sentinel 2 satellites,
and the code is freely available as a SNAP (Sentinel Application Platform) plugin. Users
can also obtain L2A products corrected with the Sen2Cor algorithm by downloading them
directly from Copernicus Open Access Hub.

The algorithm performs a cloud detection and a scene classification, followed by a
retrieval of aerosols and water vapour from L1C images. BOA reflectivity values are then
obtained using those values. The scene classification module does not produce a land cover
map strictly speaking, but a map with 11 classes including cloud, bright and water pixels,
obtained using the dark dense vegetation (DDV) method [28]. Sen2Cor depends on two
ancillary variables: the look up tables of radiative transfer (LUT) and the digital elevation
model (DEM).

Sen2Cor is the most accessible of all AC algorithms tested here. Images already
corrected with this method can be downloaded from the Copernicus web site (https:
//scihub.copernicus.eu/dhus/#/home (accessed on 21 July 2020)). It can also be applied
to L1C images using SNAP, where Sen2Cor can be implemented as a plugin; giving the
user the possibility of changing the default parameters. The images used in this study were
corrected before we downloaded them.

2.2.2. MACCS-ATCOR Joint Algorithm

MAJA is a MACCS-ATCOR joint algorithm [29], whose complete description can be
found in [30,31], as well as in the Algorithmic Theoretical Basis Document (ATBD) [32].
Multi-Temporal Atmospheric Correction and Cloud Screening software (MACCS) is an
algorithm developed by the Centre d’Etudes Spatiales de la Biosphère (CESBIO) and the
Centre National d’Etudes Spatiales (CNES) as a multi-spectral and multi-temporal AC
method. ATCOR is another AC software developed by the Deutsche Zentrum für Luft
und Raumfahrt (DLR). The method uses as the input a DEM, which helps in determining
absorption or Rayleigh scattering, detecting shadows, clouds and cirrus, masking water
and determining aerosol optical thickness (AOT). It can additionally use ozone data if
available, but default values are used if not. It is a very complicated algorithm, highly
demanding of computer resources and programming knowledge. Fortunately, the French
THEIA Data and Services Center has integrated MAJA in its process of the generation of
L2A products, so it can be used to process images with the code freely distributed or by
downloading already processed images from the THEIA web page (https://www.theia-
land.fr/en/product/sentinel-2-surface-reflectance/ (accessed on 30 April 2021)).

2.2.3. Dark Object Subtraction

DOS is a widely used family of simple image-based AC methods. It is based on
the assumption that if dark objects, such as water or dense vegetation, are in complete
shadow and have zero reflectance, the value registered by the sensor must be only due to
atmospheric scattering [33]. Hence, the minimum digital number from a scene is considered

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
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as a dark object and its value considered as the atmospheric effect. There are different
DOS techniques for correction, depending on the minimum percentage value assumed as
radiance in dark objects; for DOS1, it is 1%. The problem is that the initial assumption itself
might be wrong, as in inland images in semiarid areas, where dense vegetation is rarely
found. As it is a basic and well-known method for correction, it is usually implemented in
almost every Geographical Information System (GIS). Therefore, to carry out this correction,
the DOS1 processor in the Semi-Automatic Classification Plugin for QGIS was used [34].

2.2.4. ACOLITE

ACOLITE [35–37] was created to process Landsat and S2 data for water applications
and coastal areas. It is based on the dark spectrum fitting (DSF) algorithm, which has two
main assumptions: the homogeneity of atmospheric conditions over a certain area and the
existence of pixels with a near-zero value in at least one band. The lowest value obtained
from every other band is used to build a dark spectrum as a base of an aerosol model
calculated by linear interpolation. After a process of various steps, fully described in [36],
the surface reflectance is retrieved. The estimated air-water interface sky reflectance is set
to 0 in land pixels and analytically estimated in water pixels.

2.3. Data Sets

One image from every season in the hydrologic year 2018–2019 was selected (Table 1).
Images were downloaded from Copernicus Open Access Hub repository in Level 1C (L1C)
with TOA values and Level 2A (L2A) already corrected to BOA values with Sen2Cor.
ACOLITE correction for S2 L1C images was run with the interface and code freely dis-
tributed by the Remote Sensing and Ecosystem Modelling (REMSEM) team. Finally, the
DOS correction was applied to L1C images using the Semi-Automatic Classification Plugin
(SCP) for QGIS [34].

Table 1. Date of data sensing.

Season Date

S2

Autumn 7 November 2018
Winter 25 February 2019
Spring 16 May 2019

Summer 19 August 2019

From the 13 bands collected by MSI, only those with a 10 and 20 m spatial resolution
(Table 2) were used. The latter were resampled to a 10 m resolution using the nearest
neighbour method.

Table 2. S2 spectral bands ranging from the visible (VIS), near-infrared (NIR) and shortwave infrared
(SWIR) selected.

Band Central Wavelength S2A (nm) Bandwidth (nm) Resolution (m)

B2 Blue 492.4 66 10
B3 Green 559.8 36 10
B4 Red 664.6 31 10
B5 NIR 704.1 15 20
B6 NIR 740.5 15 20
B7 NIR 782.8 20 20
B8 NIR 832.8 106 10

B8A NIR 864.7 21 20
B11 SWIR 1613.7 91 20
B12 SWIR 2202.4 175 20



Remote Sens. 2021, 13, 1770 6 of 23

Using indices to recognise biophysical patterns on the Earth’s surface is a common
and effective practice supported by a wide range of studies [38–43]. Indices highlight basic
interactions between spectral variables. Hence, some indices were included in the data set:

• The normalized difference vegetation index (NDVI) [44] is a much used index for
measuring and monitoring vegetation cover and biomass production with satellite
imagery. It is calculated with Equation (1).

NDVI =
B8A− B4
B8A + B4

(1)

where B8A is a narrow near-infrared band (NIR) for vegetation detection and B4 the
red band (R) from S2A MSI.

• Tasselled cap brightness (TCB) [45] tries to emphasize spectral information from satel-
lite imagery. Spectral bands from the visible and infrared (both near and shortwave)
spectra are used to obtain a matrix that highlights brightness, greenness, yellowness,
nonesuch [45] and wetness [46] coefficients. In this case, we used the brightness
equation, also known as the soil brightness index (SBI), which detects variations in
soil reflectance. The equation for S2 is:

TCB = (0.3037 · B2) + (0.2793 · B3) + (0.4743 · B4) + (0.5585 · B8) + (0.5082 · B11) + (0.1863 · B12) (2)

where B1, B2 and B3 are the blue (B), green (G) and red (R) bands; B8 is the NIR band;
and B11 and B12 are the SWIR from S2A MSI.

• The soil adjusted vegetation index (SAVI) [47]: Due to the NDVI’s sensitivity to the
proportion of soil and vegetation, this index adds to the NDVI a soil factor. In semiarid
areas, this is a way to fit the index to background average reflectance. The equation is:

SAVI = (1 + L)
B8− B4

B8 + B4 + L
(3)

where B8 is the NIR band, B4 the R band and L is a factor for soil brightness with a
value of 0.5 to fit with the majority of covers.

• The normalized difference built-up index (NDBI) [48] is used to distinguish built sur-
faces, which receive positive values, from bare soils. It is calculated with Equation (4).

NDBI =
B11− B8
B11 + B8

(4)

where B11 is the SWIR band and B8 the NIR band.
• The modified normalized difference water index (MNDWI) [49] was proposed to

detect superficial water. However, due to the relation between SWIR and wetness in
soils, it can be also used to detect water in surfaces of vegetation or soil. The index is
calculated with Equation (5).

MNDWI =
B3− B11
B3 + B11

(5)

where B3 is the G band and B11 the SWIR band.

2.4. Training Areas and Classification Scheme

Training areas were selected using the most recent aerial orthophotography from
the Spanish Plan Nacional de Ortofotografía Aerea (PNOA) (Aerial Orthophotography
National Plan) (https://pnoa.ign.es (accessed on 30 April 2021)). Polygons for every
class were distributed homogeneously, balanced all over the DHS to include its spectral
heterogeneity, avoiding statistical dependence. After that, the representativity for all areas
was enhanced following the methodology proposed in [50], resulting in a total of 209
polygons distributed into a ratio of 70/30 for training and validation. The classification
scheme adopted (Table 3) was decided by grouping diverse covers to obtain a feasible set
that was representative at a regional scale.

https://pnoa.ign.es
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Table 3. Land covers taken into account in the classification, including the number of pixels in the
training and test sets.

Id Class Description Training Test

1 Forest Mediterranean forest 400 500
2 Scrub Scrubland 1500 800
3 Low-density tree crops Olive and almond mainly, but also vineyard 579 2659
4 Dense tree crops Fruit and citrus trees 500 774
5 Rainfed grass crops Cereal and grain 500 400
6 Irrigated grass crops Mainly horticultural crops 694 7734
7 Impermeable All artificial surfaces 2485 624
8 Water Water bodies, including artificial reservoirs 1258 100
9 Bare soil Uncovered or low-vegetation-covered land 1878 537

10 Greenhouses Irrigated crop surfaces covered with
different types of structures and plastics 4197 2300

2.5. Classification Accuracy

Random forest (RF) [51] is a non-parametric method based on an ensemble of decision
trees, usually between 500 and 2000, with two procedures to reduce correlation among
trees: (1) each tree is trained with a bootstrapped subsample of the training data; (2) the
feature used to split each node of the trees is selected from a randomly generated subset of
features. Once all trees are calibrated, each one contributes with a vote to classify every
new pixel. Finally, the pixel is assigned to the most voted class.

The algorithm also produces an internal form of cross-validation and a ranking of the
importance of the different variables to increase classification accuracy. It is calculated by
measuring how the accuracy decreases when a feature is randomly reshuffled while the
rest remains unchanged [52].

RF is a robust method for supervised classification [11], although when the number
of variables or predictors is quite high, it is advisable to increase the default number of
decision trees, to avoid high variability in the variables’ importance.

The randomForest library [52] of the R [53] program was used. It allows setting pa-
rameters and applying the algorithm over big data sets. We also used the caret library [54]
to obtain confusion matrices and other accuracy statistics. The parameters of the model are
ntree, the number of trees in the forest (500 by default), and mtry, the number of predictors
from which we selected the one that increased the homogeneity in each node (square root
of the number of predictors by default) [52]. We used the default value for mtry and 2000
for ntree.

Our main objectives were to test if the AC methods introduce a significant increase in
classification accuracy, to identify the methods whose increase is significantly higher than
others and to compare those increases with those produced by the use of 4, instead of 3,
images, as well as by the introduction of spectral indices. The null hypotheses were that no
difference resulted in the introduction of such methods.

In order to evaluate the accuracy of the classifications, we used overall accuracy, which
is the proportion of corrected classified cases, and the kappa index [55], defined as:

κ =
n ∑n

i=1 Xii −∑n
i=1 Xi+ · X+i

n2 −∑n
i=1 Xi+ · X+i

(6)

where n is the sample size, Xii the correctly classified cases in each class i and Xi+ · X+i the
expected agreement in each class i. Kappa index ranges from 0 (the classification is as good
as random) to 1 (the classification is perfect). Values lower than 0 are possible, but very
rare. Reference [56] stated that kappa values can be classified as: 0.00–0.20, insignificant;
0.21–0.40, low; 0.41–0.60, moderate; 0.61–0.80, good; and 0.81–1.00, very good.

Twenty different data sets were generated resulting in 5 different AC algorithms
(including no correction) and 4 different feature sets (including or not the winter image
and including or not normalized indices). These data sets included 10 reflectivity features
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and 5 indices. Therefore, the number of features ranged from 30 (no winter image and no
indices) to 60 (winter image and indices)

In order to estimate the statistical significance of recorded accuracy differences, ten
replications of the validation results were produced by bootstrapping. An ANOVA analysis
to check for accuracy equality was conducted with these replications after testing for
residual normality and homoscedasticity (using the Kolmogorov–Smirnov and Levene
tests, respectively). Besides establishing which factors are significantly different, the 20
combinations of factors were grouped into data sets with no significantly different accuracy.
Such a grouping was carried out from the results of multiple pair comparison based on a
Tukey–Kramer contrast.

2.6. Separability Analysis

Class separability in the feature space is an important issue in remote sensing imagery
classification. The Jeffries–Matusita (JM) distance [57] is the usual approach to measure
class separability. It can be expressed as:

Jij = 2(1− e−dij) (7)

where dij is the Bhattacharyya distance between classes i and j. Usually, a multivariate
normal distribution is assumed [58], and this distance is estimated as:

dij =
1
8
(mj −mi)

t

[
Σi + Σj

2

]−1

(mj −mi) +
1
2

ln

[
Σi+Σj

2

]
√
|Σi||Σj|

(8)

where mi is the vector of reflectivity means for class i and Σi the covariancematrix of class i.
The JM distance reaches asymptotically 2 when the two classes are completely separable
and is zero when they are the same. However, the JM distance assumes multivariate
normality in each of the classes [59], and such assumption is difficult to assess, especially
in multi-image classification, and difficult to fulfil.

Reference [50] proposed a different approach using isolation forests (IFs) [60] to
evaluate how representative of the study area a training data set is and also to estimate
the separability between classes using the proportion named the common isolation value
(CIV) as a parameter to measure the separability. If an IF model is trained with a sample
of data, it will produce a metric of how novel any new case in the context of that sample
is. If trained with pixels of one class, it can be used to measure how different any other
pixel is compared to that class. A low CIV means that it is very different, and a high CIV
means that it is very similar. If we compare the CIV distributions of two classes A and B
estimated with an IF model calibrated with one of them (B for instance), the overlapping of
both distribution curves measures how easily both classes may be confused (Figure 2). We
estimated the CIV parameter as the ratio between the intersection of both curves and the
union of the curves.

CIV has proven to be more informative than the JM distance, not only stating which
classes are similar and more likely confused within the extent of each other, but also
predicting omission and commission errors [50]. The lower the CIV of the IF, the better the
separability between classes.

We also used a new metric based on a nearest neighbour distance approach that we
called the between-class nearest neighbour distances (BCNND) index. The distance of each
point in Class A to its nearest neighbour in Class B is compared to the nearest neighbour
distances of all points in Class B. The probability of obtaining such a distance, or larger, if
both points are of Class B is computed as a measure of how separate that Class A point
is from the cloud formed by the Class B points. Finally, the proportion of Class A points
with a probability equal to or lower than 0.99 is a measure of how separate Class A is from
Class B. The threshold is not really that important because increasing or decreasing it will
increase or decrease all the proportions, and the final ranks would be similar.
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Figure 2. Calculation of the CIV statistic. Both curves show the CIV empirical probability densities
in an IF trained with Class B. The CIV is calculated as the proportion of the total areas shared by both
density curves.

The algorithm can be summarised as:

1. Compute the nearest neighbour distances for each class.
2. Compute the distance of all points in Class A to their nearest neighbour in Class B
3. Compute the probability of such distances being equal or higher than its value

assuming that they belonged to Class B.
4. Compute the percentage of cases with a probability larger than 0.99 (PA|B)
5. Repeat Steps 2 to 4 for all pair combinations
6. As the measure is not reciprocal, that is PA|B 6= PB|A, the final BCNNDindex is then

computed as the weighted average of PA|B and PB|A.

Separability analysis with the Jeffries–Matusita distance was carried out by season
instead of using the whole data set. The reason was that the Jeffries–Matusita distance,
when calculated with the whole data set, reached the highest possible value showing
a very low variance. The Jeffries–Matusita distance assumes multivariate normality in
the per-class reflectivity distributions [59]. We think that the failure to comply with this
condition was the reason for these anomalous results. The CIV-based separability analysis
was carried out seasonally to compare with the JM distance. Twenty-five bootstrapping
resamples were extracted to obtain an empirical probability distribution of the JM distance
and the CIV.

Being quite more computationally demanding, no replication was carried out for the
BCNND index, but it was also calculated for the whole data set instead of seasonally.

3. Results
3.1. Corrected Data Sets

The new reflectance data sets resulting from the application of different AC methods
to the L1C data set were quite similar and to L1C, except in the visible bands, especially the
blue band (B02), which showed major corrections. Although it is important to remember
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that we were operating at a regional scale, most of the classes were quite heterogeneous,
and the spectral reflectances had a high variance.

Figure 3 shows some signatures able to help clarify confusions between crops, bare
soils, impermeable and greenhouses. All signatures were quite similar regardless the
atmospheric correction method employed. Low-density tree crops and rainfed grass crops
(both rainfed) had very similar patterns. However, some differences could be found: an
increase in the mean reflectivity in Band 11 (SWIR) with respect to Band B08A (NIR) for
rainfed grass crops in autumn and a wider inter-quantile range in the spring image for
low-density tree crops. Dense tree crops and irrigated grass crops (both irrigated) also
showed a strong similarity, the difference being the higher variability in irrigated grass
crops. These facts made these two classes extremely prone to being confused. Interestingly,
when the data were corrected with a physically-based method, the winter image appeared
to be the only one that showed a small distinction between classes by the type of irrigation
(irrigated or rainfed), whether having slight differences of the values in the red edge and
NIR band in the rainfed classes or the NIR and VIS bands in the case of irrigated classes.
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Figure 3. Spectral reflectivity (expressed as decimal fraction) for each class in the 25 February 2019
image. Mean and quantiles of five and 95.

Physical-based methods, Sen2Cor, MAJA and ACOLITE, tended to uniformise the
values in the red edge (B05, B06, B07) and NIR (B08 and B08A) with respect to the values
without correction, while the values corrected with DOS were closer to those that were not
corrected, even showing similar patterns. The visible band’s reflectivities were reduced
after correction, except for B02 for artificial or bare soil surfaces, while NIR and SWIR
tended to increase. The reflectivity values were higher in spring and summer, except for
the impermeable and bare soil classes, which remained almost the same in every single
season. However, major atmospheric corrections were found in the winter image, in which
the corrected values differed from the uncorrected one in the majority of bands and classes.
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Greenhouses’ spectral patterns were similar to those of irrigated grass crops, especially
in the autumn and winter images, whereas they were more related to those of impermeable
and bare soil in spring and summer. The last two had almost exactly the same values in the
mean and quantiles, except for slight differences in the quantile of 95. The class signature
with a lower range was dense tree crops. Bare soils and impermeable were almost exactly
equal to each other.

Slight differences in Band B08A in the autumn image and in Bands B08A and B11 in
the spring image were found for both rainfed classes. There was a lower inter-quantile
range for dense tree crops in the autumn, winter and summer images with respect to the
irrigated grass crops class. In addition, irrigated grass crops had means and quantiles
almost equal to greenhouses in autumn and winter images. Bare soil and impermeable
also showed similar signature patterns, impermeable having a higher inter-quantile range.

By the atmospheric correction method, there were slight differences between the data
corrected for each class. In fact, were barely found a class where there was any overlap
with other classes. The ranges were quite high, which indicated high variance in most
of the classes. The highest values and ranges were in impermeable, greenhouses, bare
soil and low-density tree crops in data corrected with Sen2Cor, mainly in spring and
summer scenes. ACOLITE correction seemed to produce lower reflectivity inter-quantile
ranges than the others, which could be related to the larger class separability and higher
classification accuracy.

3.2. Classification Accuracy

Table 4 shows the average values of global accuracy and the kappa index for the
different AC methods and data sets and the 95% uncertainty intervals calculated from a
representative confusion matrix. The classification accuracy seemed to increase, in general,
with bands corrected by ACOLITE, closely followed by MAJA. Uncertainty was low and
very similar for every other classification, but slightly lower for ACOLITE and MAJA
with the complete data sets (four seasons and indices). Its decreasing with the addition of
variables indicated the utility of the variables added. The results of the analysis of variance
of accuracy with bootstrapped resampling showed significant differences (p < 0.001 in all
cases). Figure 4 and Table 5 show the different effects that were found to be significant.
Figure 4 shows accuracy distributions obtained with 10 resamplings of the 20 combinations
of AC, the use of indices and the number of seasons. The lower-case letters above the
boxes represent the non-significantly different groups to which each combination belonged,
obtained with ANOVA after the multiple pair comparison based on a Tukey–Kramer
contrast. The groups i and j were those with the highest accuracy and were comprised by
ACOLITE and MAJA using winter images, with or without spectral indices. The highest
accuracy values were obtained with ACOLITE and the indices, but the differences with the
other three were not significant. Table 5 shows the magnitude of the different effects and
interactions that were found significant. The greatest effect was observed when ACOLITE
was used compared to when the images were not corrected (0.029), followed by the use of
MAJA (0.024) and the inclusion of the winter season (0.019). The effect of using indices, on
the contrary, seemed not to be relevant.

It is interesting that when no winter image was used, using AC did not seem to
increase the classification accuracy; it actually reduced it, especially in the cases of DOS
and Sen2Cor. However, when the winter image was included in the data set, the accuracy
increased significantly, especially when ACOLITE or MAJA were used. Adding normalized
indices did not seem to significantly increase the accuracy in these cases. We think that,
being a semiarid area, AC did not make a difference except for winter images as the
presence of the sea introduced a large amount of coastal mist.

Figure 5 shows the per-class accuracy distributions obtained with 10 resamplings of
the 20 combinations; lower-case letters above the boxes are used with the same meaning
as in Figure 4. Table 6 summarises Figure 5 showing, in each class, which combinations
appeared in the group with the most accurate combinations. Water surfaces were classified
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with high accuracy independently of the combination used. Accuracy for natural surfaces
seemed to increase when no indices were used; however, although the differences were
statistically significant, their magnitude was quite low. Cultivated classes had the largest
differences between combinations. In these classes, the highest accuracy was reached with
MAJA and Sen2Cor in low-density tree crops, ACOLITE and MAJA in high-density tree
crops, MAJA in rainfed grass crops and ACOLITE and Sen2Cor in irrigated grass crops and
greenhouses. Impermeable areas showed a different result, as DOS was the AC algorithm
that reached a higher accuracy with a substantial difference in relation to the other methods.
Bare soil areas reached higher accuracy without the winter image and without indices
using whichever method (even no correction), except DOS.

Table 4. Classification accuracy (overall accuracy and kappa) and the 95% uncertainty intervals.

Seasons Indices AC Method Accuracy Kappa

3 No No corr 0.771 ± 0.0105 0.720 ± 0.0128
ACOLITE 0.773 ± 0.0105 0.723 ± 0.0128

MAJA 0.770 ± 0.0105 0.718 ± 0.0129
DOS 0.759 ± 0.0107 0.704 ± 0.0131

Sen2Cor 0.760 ± 0.0107 0.708 ± 0.013

3 Yes No corr 0.778 ± 0.0104 0.729 ± 0.0127
ACOLITE 0.777 ± 0.0104 0.728 ± 0.0127

MAJA 0.776 ± 0.0104 0.726 ± 0.0128
DOS 0.760 ± 0.0107 0.706 ± 0.0131

Sen2Cor 0.769 ± 0.0106 0.717 ± 0.0129

4 No No corr 0.767 ± 0.0106 0.716 ± 0.0129
ACOLITE 0.799 ± 0.01 0.753 ± 0.0123

MAJA 0.795 ± 0.0101 0.746 ± 0.0125
DOS 0.778 ± 0.0104 0.726 ± 0.0128

Sen2Cor 0.782 ± 0.0103 0.732 ± 0.0127

4 Yes No corr 0.772 ± 0.0105 0.722 ± 0.0128
ACOLITE 0.804 ± 0.0099 0.759 ± 0.0121

MAJA 0.800 ± 0.01 0.753 ± 0.0123
DOS 0.782 ± 0.0103 0.731 ± 0.0127

Sen2Cor 0.784 ± 0.0103 0.735 ± 0.0127
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Figure 4. Global accuracy for each combination of the AC algorithms, including winter or not and
including indices or not. Ten replications using bootstrapped samples were used to analyse the
variability of each combination. Significantly different groups (Tukey–Kramer contrast, alpha = 0.05)
are represented by different letters.



Remote Sens. 2021, 13, 1770 13 of 23

Table 5. Post hoc (Tukey–Kramer contrast) magnitudes of the different effects (AC method, 4 seasons
and indices) calculated as the differences with respect to the base levels (no correction, 3 seasons and
no indices). Significant interactions are also presented.

Comparison Magnitude of the Effect p-Value

4 seasons-3 seasons 0.019408 <2 × 10−16

Indices-no indices 0.004316 0.00265

DOS-no correction 0.013658 <0.001
Sen2Cor-no correction 0.006411 0.0165

ACOLITE-no correction 0.02865 <0.001
MAJA-no correction 0.023669 <0.001

3: DOS-3: no correction −0.010676 <0.001
4: DOS-4: no correction 0.018276 <0.001

4: Sen2Cor-4: no correction 0.011605 <0.001
4: ACOLITE-4: no correction 0.032286 <0.001

4: MAJA-4: no correction 0.028541 <0.001

No indices: ACOLITE-no indices: no correction 0.0188701 <0.01
No indices: MAJA-no indices: no correction 0.0150765 <0.01

Indices: ACOLITE-indices: no correction 0.0154021 <0.01
Indices: MAJA-indices: no correction 0.0121866 0.0211
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Figure 5. Per-class accuracy for each combination of the AC algorithms, seasons included and indices or no indices.
Significantly different groups (Tukey–Kramer contrast, alpha = 0.05) are represented by different letters.
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Table 6. Combinations of the AC methods, number of seasons and use of indices that appeared in the best group for each
class in Figure 5. The second row shows the difference between the mean of the best combination and the mean of the worst
combination as a measure of the scientific significance of the differences.

AC Algorithm Seasons Indices Forest
0.025

Scrub
0.031

Low Density
Tree Crops

0.218

Dense
Tree Crops

0.154

Rainfed
Grass Crops

0.108

Irrigated
Grass Crops

0.270

Impermeable
0.092

Water
0.035

Bare Soil
0.105

Greenhouse
0.048

No correction 3 No X X X X
ACOLITE 3 No X X X X

DOS 3 No
MAJA 3 No X X X

Sen2Cor 3 No X X X

No correction 4 No X X X X
ACOLITE 4 No X X X X

DOS 4 No X X
MAJA 4 No X X X X

Sen2Cor 4 No X X X X X

No correction 3 Yes X X
ACOLITE 3 Yes X X

DOS 3 Yes
MAJA 3 Yes X X X

Sen2Cor 3 Yes X

No correction 4 Yes X X
ACOLITE 4 Yes X X X X X

DOS 4 Yes X X
MAJA 4 Yes X X X

Sen2Cor 4 Yes X X X X

The difference between the maximum accuracy and the minimum accuracy (Table 6)
showed that, independently of the statistical significance, some classes, such as low-density
tree crops, dense tree crops and irrigated grass crops, experienced larger increases in
accuracy (larger than 0.15), while in others, such as forest, scrub or greenhouses, the
accuracy increase was very modest (lower than 0.05). Interestingly, the classes with a larger
accuracy increase were the agricultural classes, which were more difficult to separate and
at the same time usually more relevant.

3.3. Separability Analysis

The results by season using the JM distance or the CIV did not show any significant
difference in mean separability, but the variances were quite different and the distributions
skewed towards high separability values (around 1.4 in the Jeffries–Matusita distance and
zero in the CIV). An example showing the results for the separability of low-density tree
crops and dense tree crops appears in Figure 6. Therefore, the best option would be to chose
the lowest variance method. The Levene test, using the median instead of the average
as the centrality statistic, was used to test differences in variance. The Levene test was
less sensitive to non-normality than other equal variance tests [61], and using the median
increased its robustness.
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Figure 6. Separability of low-density tree crops and dense tree crops (Classes 3 and 4) measured with the JM distance (left)
and the CIV (right) with the summer image using different AC methods and including indices or not.
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As we used the JM distance and the CIV to measure class separability in each season,
the results were too complex to introduce all of them in a figure. Instead, we summarize
the results in Figures 7 and 8, which show how many times each combination of the AC
algorithms, combined with the usage or not of spectral indices, appeared in the group of
the lowest JM distance or the CIV variances estimated with the Levene test. The results
of both class separability measurements were less correlated than expected. According to
the results of the Jeffries–Matusita index, ACOLITE was the best AC method to increase
class separability. It was the best option in all seasons; in some cases, using indices, but in
others, without the inclusion of indices. However, the results of the CIV showed that no
correction provided a better separability than ACOLITE, although ACOLITE appeared as
the second best option and MAJA the third. These disparate results using the CIV or the JM
distance can be related to two issues. Firstly, the JM distance results may be affected by the
non-normality of the distributions. On the other hand, both statistics might be measuring
different things, and more research is needed for this issue.
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Figure 7. Jeffries–Matusita index. Number of class pairs in which each AC method was in the lowest
variance group.
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The probability distributions of the distances to the nearest neighbour computed for
each class are presented in Figure 9. The highest distances appeared in urban areas and
greenhouses and the lowest in water and cultivated areas. These distances gave an idea
of the scatter of the pixel clouds in the feature space. All empirical distributions could be
modelled using a log-normal model. Figure 10 shows the BCNND index results for the
least separable combinations of classes. The BCNND index ranges from zero (very large
separability) to one (very low separability) and represents the proportion of pixels that are
prone to be confused. The value of the BCNND index for the class pairs not included was
near zero in all cases.
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Figure 9. Per-class nearest neighbour distances for ACOLITE with four seasons and indices.
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Figure 10. BCNND values for each pair of classes, the AC methods and the combination of predictors. The dashed lines
indicate the minimum values to serve as a reference.

Using DOS decreased the class separability in most of the class pairs, and it seemed
that it was better to use no correction instead of using DOS. There were several class
combinations that did not change separability regardless of the AC method or the predictors
included: scrub vs. urban and scrub vs. greenhouses. Urban and bare soil were the most
easily confused classes, and no method was able to solve the problem. ACOLITE including
winter images (but without indices) and MAJA without the winter image and without
indices reduced the index to around 0.64. The inclusion of the winter image increased
separability for dense tree crop vs. irrigated grass crops, rainfed grass crops vs. irrigated
grass crops and irrigated vs. urban. The inclusion of indices seemed to improve the results
in scrub vs. bare soil, dense tree crop vs. greenhouses, irrigated vs. bare soil, bare soil
vs. greenhouses and rainfed vs. bare soil. Finally, the inclusion of the winter image and
indices had a positive effect for irrigated grass crops vs. greenhouses and bare soil vs.
greenhouses. It is noteworthy that, however, both the inclusion of a fourth winter image
and the inclusion of indices decreased the separability in forest vs. scrub.

Figure 11 shows the average of the results shown in Figure 10. DOS was the method
with the worst results, and ACOLITE, when including winter images and indices, obtained
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the best results. Any method, except DOS using the winter image, with or without indices,
was the next best option.
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Figure 11. Average BCNND index values for each pair of class, the AC methods and the combination
of predictors. The dashed line indicates the minimum value to serve as a reference.

The main disadvantage of this method comparing with the JM distance or the CIV
was that it was quite more time consuming. That was the reason why no resampling was
used to calculate its statistical distribution.

4. Discussion

Most of the previous studies comparing AC methods were based on ground truth
reflectivity. However, in this study, we calculated the classification accuracy and class
separability using different AC methods in order to evaluate their performance. Therefore,
the results were not directly comparable in a quantitative way. However, our results were
qualitatively in line with those of recent studies on the inter-comparison of AC methods
using reflectivity field samples.

Spectral signatures corrected with DOS were very similar to the uncorrected one, as
in [14,19]. Image-based methods rely ultimately on the subtraction of dark dense vegetation
(DDV) pixels from TOA data, so the shape of spectral signatures may no differ from data
without correction. The scarcity of dense vegetation in semiarid Mediterranean territories
jeopardizes the effectiveness of this method and explains the poor performance in accuracy
and separability for almost every class. Although we verified a good performance for
impermeable surfaces, as was found in [14], our results for bare soil were much worse
than theirs. This may be due to the existence of sparse vegetation, the diversity of mineral
composition or the colour of the bedrock over bare soil surfaces.

On the other hand, data corrected with physically-based methods were in agreement
with each other, but were quite dissimilar to non-corrected data, as these methods also
tended to homogenise values in the red edge and NIR bands. ACOLITE and MAJA pro-
duced the best classification accuracy and separability for most of the classes, especially for
crops. ACIX [23] tested several AC methods, including ACOLITE, MAACS (the former
version of MAJA) and Sen2Cor, and compared their performance for Sentinel-2 data correc-
tion at different sites around the world. Unfortunately, as the sites were selected among
locations included in the Aerosol Robotic Network (AERONET) to have the availability of
reliable atmospheric information for validation, arid sites were included, but no semiarid.
Some of the coastal sites analysed in their study share, to a certain extent, some climatic
characteristics with our study area, and all three of them were tested in them. Unfortunately,
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while Sen2Cor performed accurately with respect to true reflectance surfaces, especially in
the visible bands, it was not possible to achieve proper results for MACCS and ACOLITE
due to the absence of sufficient data. The study developed by [22], over five land covers,
also included in our classification scheme, using, among others, MAJA and Sen2Cor, stated
MAJA as a better option for correction over Sen2Cor, especially for vegetation covers. Our
results showing an improvement in accuracy per class using images from the four seasons
corrected with MAJA was coherent with the conclusions of [23].

In our study, ACOLITE outperformed MAJA in overall accuracy and separability in
most of the classes when the data set included the winter image and indices. However,
MAJA was the second best option as it still outperformed ACOLITE in separability in
some of the most important classes of crops. The lack of previous inter-comparison studies
including ACOLITE and MAJA with sufficient data to establish a proper comparison is
noteworthy.

The best classification result in overall accuracy was from ACOLITE, although con-
sidering results by class, MAJA outperformed it in some of the classes. Moreover, as the
study area is a coastal area with most of its surface covered by crop fields and urban areas,
these results seemed to be consistent with the fact that the main purpose of ACOLITE is to
perform atmospheric correction in coastal areas. If the study area had extended to other
areas of the DHS, the results could have been different. For this reason, MAJA should not
be discarded as an atmospheric correction method. Its use for correcting optical images of
Sentinel2 jointly with SAR data (Sentinel 1) has already been implemented in applications
for agriculture, as Sen2Agri [62–65]. More predictors, algorithms and methods should be
tested to achieve better rates of separability.

5. Conclusions

The main purpose of this study was to test the best AC method to improve classifica-
tion accuracy and class separability in a semiarid Mediterranean coastal area. The most
confounding classes included crops, artificial surfaces, and bare soil. This issue has been
previously reported in several multitemporal studies and addressed in different ways, such
as adding indices and ancillary or textural variables as predictors [10–13]. However, we
tried a different approach, comparing the results of using different AC methods, as well as
including different variables in each data set.

The largest effect detected on accuracy was the use of ACOLITE as the atmospheric
correction method, followed by the use of MAJA, the use of three seasons and, finally,
the use of indices. Therefore, atmospheric correction seems to be a key step in order to
improve classification accuracy. The analysis of spectral signatures showed that DOS, the
most widely AC method, produced very few changes on reflectivity, whereas physically-
based methods produced similar results to each other and different from the non-corrected
signatures.

When integrating all these effects, the most accurate classification was obtained with
ACOLITE-corrected bands, four seasons and indices. However, the results obtained with
MAJA, four seasons and indices were not significantly different. There was a clear improve-
ment in accuracy when the winter image was added, but not when the spectral indices
were added.

Per-class accuracy values showed a more complex picture. In most of the classes,
ACOLITE with indices and the winter image appeared in the group of the most accurate
methods. However, in five classes, there was a different result. The class scrub had the
highest accuracy using MAJA and the winter image with or without indices. Low-density
tree crops reached the highest accuracy with MAJA or Sen2Cor using the winter image
both with and without indices. The classes rainfed grass crops and bare soil reached
the highest accuracy using MAJA with indices, but no winter image. Finally, the class
impermeable reached the highest accuracy using DOS and both the winter image and
indices. Summarising these results, ACOLITE was the best option for five classes and
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MAJA for four classes. The use of indices and the winter image was the best option in most
of the classes.

According to the Jeffries–Matusita distance, ACOLITE without indices provided the
best separability results in spring and summer images, whereas also ACOLITE, but with
indices, was the best option for autumn and winter images.

The results were different for the CIV. In this case, no correction seemed the best option
in summer, autumn and winter, whereas ACOLITE with indices was the best option for
the spring image. ACOLITE with indices was also the second best option in the other three
seasons. In this case, a strange behaviour appeared. On the one hand, a low correlation
between the JM distance and the CIV was observed, but on the other hand, although
in the case of the CIV, ACOLITE was still the AC method that improved separability
the most, it did not improve the separability of the bands. Another aspect to highlight,
complementary to the analysis of spectral signatures that we carried out, was that the JM
distance and the CIV indicated that DOS even reduced the separability with respect to the
uncorrected bands.

The BCNND results were more similar to those of the Jeffries–Matusita distance
and those obtained with accuracy. ACOLITE with indices and the winter image was the
combination that reached a higher separability, although in general, any method, except
DOS, with winter images reached similar separability values. The results per class were
more complex as there were class combinations that were hardly separable (scrub and
urban, scrub and greenhouses, urban and bare soil and urban and greenhouses) regardless
of the AC method or combination of variables used to classify. Scrub and bare soil and bare
soil and greenhouses were also difficult to separate, but the separability improved adding
the winter image and indices.

The conclusions of this study should not be directly applied to other areas as envi-
ronmental differences may produce changes in the ranking of the AC methods. It is even
possible that the results in this same study area could be different for different images due
to the atmospheric situation of every image. However, we think that the methodology
could be useful. More studies in other areas are needed before a claim in relation to which
AC method works generally best can be made.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Atmospheric correction
BCNND Between-class nearest neighbour distances
BOA Bottom of atmosphere
CIV Common isolation values
DDV Dark dense vegetation
IF Isolation forest
JM Jeffries–Matusita
MSI Multispectral instrument
RF Random forest
SWIR Shortwave infrared
TOA Top of atmosphere
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