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The combination of the state-of-the-art in the thermal infrared (TIR) domain [1–3] with
the recent advances in the capabilities provided by operating and new satellites [4–10], UAV-
based [11] or aerial remote sensing are boosting the use of land surface temperature (LST) in
a variety of research fields [5,8,9,11,12]. LST plays a key role in soil–vegetation–atmosphere
processes and becomes crucial in the estimation of surface energy flux exchanges, actual
evapotranspiration, or vegetation and soil properties [8,9]. The latest advances in data
fusion, downscaling and disaggregation techniques provide a new dimension to LST
applications in water resource and agronomic management thanks to the improvement in
both the temporal and spatial resolution of thermal products [8–10]. However, at the same
time, continuous research into LST estimation algorithms, as well as continuous calibration
and validation, are still required to improve the accuracy of ground LST data and satellite
LST products [1–5,13,14].

Our aim with this Special Issue was to collect recent developments, methodologies,
calibration and validation and applications of thermal remote sensing data and derived
products, from UAV-based remote sensing, aerial remote sensing and satellite remote
sensing. A total of 20 manuscripts were submitted to our Special Issue and after rigorous
peer-review process, by around 50 anonymous reviewers, 14 papers were finally selected
for publication, by a total of 69 authors. The published papers were those of high-quality
content based on their cutting-edge remote sensing techniques. The geographical distri-
bution of the authors´ institutions is global, with the highest number from the USA (18),
followed by China (15), Spain (7), UK (6), Sweden and Korea (5 each) and many others,
such as The Netherlands, Denmark, Japan, Germany, Italy or Turkey (1 to 3 each).

Published papers cover a wide range of topics, which can be classified in five groups:
algorithms, calibration and validation [1–4], improving long-term consistency in satel-
lite LST [5–7], downscaling LST [8–10], LST applications [11,12] and land surface
emissivity research [13,14].

In total, three papers have been included dealing with algorithms to retrieve LST from
the Landsat series [1–3]. Gerace et al. [1] progressed towards developing an operational
split-window algorithm for TIRS on board Landsat 8 and 9, that might improve the
accuracy achieved by the current single-channel methodology used to derive LST in the
Landsat Collection 2 surface temperature product. The effect of the stray-light correction
implemented in Landsat 8 was evaluated by Guo et al. [2] using ground-measured LST
from SURFRAD sites. Data from this SURFRAD network, together with ARM, were used
by Sekertekin et al. [3] to examine the efficiency of different LST algorithms for daytime and
nighttime Landsat 8 images. Despite the feasibility of the assessment results reported, a
necessity for more robust and homogeneous validations, using ground-measured datasets,
is recognized [2].

Geostationary satellites are also present in this Special Issue. Long-term, consistent
LST archives must account for geostationary satellite sensor updates and Pinker et al. [5]
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developed a framework to achieve this goal. Choi and Suh [4] developed a nonlinear
split-window LST retrieval algorithm for the next-generation geostationary satellite in
Korea, GEO-KOMPSAT-2A.

The applicability of remote sensing LSTs is sometimes compromised in areas that are
very frequently covered with clouds. Aware of this issue, Zhang et al. [6] and Yoo et al. [7]
introduced approaches for the gap-filling of MODIS LST data, by reconstructing 1 km
clear-sky LST using Bayesian methods [6] or random forest machine learning [7]. This
strategy can improve the applicability of LSTs in a variety of research and practical fields.

As mentioned above, ET modeling from surface energy balance benefits from LST
datum as a key input. Field-scale evapotranspiration modelling requires high spatio-
temporal resolution in the thermal data. This Special Issue includes recent efforts by [8–10]
to fill this gap until next generation of thermal satellites are launched. Sánchez et al. [8]
produced LST maps with 10 m spatial resolution from the combination of MODIS/Sentinel-
2 images and validated their methodology using a ground-based LST dataset gathered
in an agricultural area. Guzinski et al. [9] evaluated several approaches for improving
the spatial resolution of the thermal images by merging Sentinel-2 and Sentinel-3 satellite
data. The resulting data were used to produce surface energy fluxes that were then
validated against flux tower observations in a variety of land covers and climatological
conditions. Downscaling approaches also apply to geostationary satellites, increasing
the frequency of the LST estimates. Njuki et al. [10], in their work also included in this
Special Issue, presented an approach, based on random forest regression, to downscale
the coarse-resolution MSG-SEVIRI to 30 m spatial resolution, based on predictor variables
derived from Sentinel-2 and the ALOS digital elevation model. Although results reported
are promising, particularly for the joint use of the tandem Sentinel-3/Sentinel-2, certain
limitations remain that encourage further research.

Urban environments can be explored from a thermal perspective by using high-
resolution drone solutions. The Special Issue includes a good example by Naughton and
McDonald [11]. Findings shown by these authors elucidate factors that can be applied
to develop better temperature mitigation practices to protect human and environmental
health. Another potential application of LST data is the use of continuous satellite-derived
surface temperatures as input in geophysical models, substituting discrete in situ air
temperature registers extrapolated to different elevations using constant lapse rates, then
providing more realistic estimates. An example is shown by [12] using MODIS imagery.

Field and laboratory emissivity measurements are essential for improving and val-
idating LST retrievals [13,14]. Temperature and emissivity separation algorithms can be
applied when multispectral thermal radiances are available. A manuscript in this Special
Issue by [13] explored the influence mechanism of noise on the LST and surface emis-
sivity retrieval errors of the ARTEMISS algorithm. The authors proposed an improved
method for thermal data with a high noise level and high spectral resolution, which can
reduce LST and emissivity uncertainties. Langsdale et al. [14] made measurements of
manmade and natural samples under different environmental conditions, both in situ and
at laboratory. Differences between laboratory and field spectral measurements highlighted
the importance of field methods for these samples, with the laboratory setup unable to
capture sample structure or inhomogeneity. The emissivity box method was faced to
FTIR-based approaches, showing significant differences in LST retrieval and then stressing
the importance of correct emissivity data specifications.

Although there is much work to be done on the topic of LST monitoring from remote
sensing, we truly hope that the selection of papers published in this Special Issue can help
research communities to become aware of the potential of the orbiting thermal sensors, the
necessity to give them continuity and also to develop and launch higher spatio-temporal
resolution platforms.
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