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Abstract: Phase noise refers to the instability of an oscillator, which is the cause of instantaneous
phase and frequency deviations in the carrier wave. This unavoidable instability adversely affects
the performance of range–velocity radar systems, including synthetic aperture radars (SARs) and
ground-moving target indicator (GMTI) radars. Phase noise effects should be considered in high-
resolution radar designs, operating in millimeter wavelengths and terahertz frequencies, due to their
role in radar capability during the reliable identification of target location and velocity. In general,
phase noise is a random process consisting of nonstationary terms. It has been shown that in order
to optimize the coherent detection of stealthy, fast-moving targets with a low radar cross-section
(RCS), it is required to evaluate the integration gain and to determine the incoherent noise effects
for resolving target location and velocity. Here, we present an analytical expression for the coherent
integration loss when a nonstationary phase noise is considered. A Wigner distribution was employed
to derive the time–frequency expression for the coherent loss when nonstationary conditions were
considered. Up to now, no analytical expressions have been developed for coherent integration loss
when dealing with real nonstationary phase noise mathematical models. The proposed expression
will help radar systems estimate the nonstationary integration loss and adjust the decision threshold
value in order to maximize the probability of detection. The effect of nonstationary phase noise is
demonstrated for studying coherent integration loss of high-resolution radar operating in the W-band.
The investigation indicates that major degradation in the time-frequency coherent integration due
to short-term, nonstationary phase noise instabilities arises for targets moving at low velocities and
increases with range. Opposed to the conventional model, which assumes stationarity, a significant
difference of up to 25 dB is revealed in the integration loss for radars operating in the millimeter
wave regime. Moreover, for supersonic moving targets, the loss peaks at intermediate distances and
then reduces as the target moves away.

Keywords: phase noise; W-band radar; Wigner–Ville distribution; atomic clocks; coherent integration

1. Introduction

In recent years, the usage of millimeter- and terahertz (THz)-wave radars is contin-
uously growing. These systems require a very high phase accuracy in order to increase
the resolution in the detection of low-radar-cross-section (RCS) moving targets. The prob-
ability of radar detection is normally enhanced by coherent time integration being per-
formed on the quadrature detector components prior to the decision [1]. Such coherent
(or predetection) integration preserves the phase within the received signal, revealing an
increased signal-to-noise ratio (SNR) to improve the detection reliability and measurement
accuracies [2]. Such a procedure is implemented in radars, sonar, communications, etc.
The phase noise is the random jitter in the oscillator time-base generating the carrier
wave [3]. Since the radar measures the respective time delay of the reflected signal, any
deviation in the clock timing translates to randomness in the range and velocity measure-
ment. In coherent detection, the noise manifests itself as a phase modulation, introducing
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errors in the delay time of the signal scattered from the target. This modulation then affects
the resolution of the detection, potentially impacting target detectability and mensuration.

In [4], an analytic discrete form for the coherent integration gain in the presence of
stationary white Gaussian phase noise was derived for radar, sonar, and communication
links. Based on a generalized analysis of coherent integration loss, Yu et al. [2] proposed an
analytic upper bound of the coherent integration loss for the stationary phase noise with
symmetric Gaussian, uniform, and Laplace distributions. Obviously, coherent integration
loss [2,4] is a time-invariant expression; thus, the SNR loss is time-independent—assuming
that stationarity, i.e., constant phase variance, yields time-independence in coherent inte-
gration loss expressions [2,4]. Coherent acquisition cannot be integrated for an arbitrary
period if stationarity is assumed [5]. In addition, frequency sources are exposed to a va-
riety of environmental conditions, causing variations in the oscillator output signal [6].
These variations are expressed in phase instabilities and variations in the oscillator output
signal are considered to be a stochastic process, which is a time-variant nonstationary
process [7,8].

Here, we propose a new expression for the coherent integration loss caused by nonsta-
tionary oscillator phase noise. To date, time–frequency analysis has not yet been used in
the characterization of the radar coherent integration loss caused by nonstationary oscil-
lator phase noise. In our new expression, we used a realistic mathematical model for the
nonstationary phase noise. Our proposed expression can estimate the coherent integration
loss in radar, sonar, and communication systems by revealing the time-varying frequencies
generally seen in clock error noise under nonstationary conditions and in other platforms,
such as systems under vibration or shocks. Moreover, we proposed a new technique that
will allow usage of loss information in order to adjust the decision threshold. Such a
technique can help radar systems to evaluate real-time estimation of the nonstationary
integration loss and adjust the decision threshold value according to the estimation result
in order to maximize the radar probability of detection.

The simulation results indicate that our new proposed expression can estimate the
varying coherent integration loss in a W-band high-resolution radar system while the
conventional stationary model cannot reveal those variations.

A short review of the quasi-monostatic radar model and the phase noise in oscillators
is provided in Section 2. The mathematical model of nonstationary phase noise in oscillators
is presented in Section 3. The proposed approach for coherent integration loss using the
Wigner spectrum is presented in Section 4. In Section 5, the high-resolution radar simulation
results are presented. Section 6 summarizes the paper.

2. The Quasi-Monostatic Radar Model

A simplified block diagram of a radar transceiver that employs coherent integration
followed by a threshold decision is shown in Figure 1.

𝐸𝑇(𝑡) 

𝐸𝑅(𝑡) 

Target 

LPF 

Correlator 

𝑅(𝑡, τ) 
X 

Local Oscillator ~ 

Decision 

Wigner 
Integration 

𝑊𝐿(τ, 𝑓) 

 𝑑𝑡 

Integration 

Figure 1. Simplified block diagram of a quasi-monostatic radar system with a threshold receiver and
a coherent integration loss system.
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The transmitted signal ẼT(t) generated by the radar’s local oscillator, including the
phase ϕ(t) variations due to noise, is given by [6,9]

ẼT(t) = ATej[2πν0t+ϕ(t)], (1)

where AT is the amplitude and ν0 is the central frequency of the carrier wave. The received
signal ẼR(t) is merely a delayed version of the transmitted signal ẼT(t), where τ is the
echo delay time.

ẼR(t) = ARej[2πν0(t−τ)+ϕ(t−τ)], (2)

where AR is the amplitude of the reflected signal. The received signal ẼR(t) is heterodyned
with the transmitted one ẼT(t), resulting in a complex stochastic correlation:

R(t, τ) = Ẽ∗R(t)ẼT(t) = AR ATej[2πν0τ+ϕ(t)−ϕ(t−τ)], (3)

with an expected value given by

R(t, τ) = E{R(t, τ)} = AR ATej2πν0τE{ej[ϕ(t)−ϕ(t−τ)]}. (4)

The operation E{x} denotes the expectation value of x. The effect of short-term,
nonstationary phase deviation ϕ(t) on the correlation (4) is analyzed in the following
section. The “Correlator” block is responsible for extracting the intermediate frequency
(IF) information. It is based on a heterodyne mixing of the received signal ẼR(t) scattered
from the target with the transmitted signal ẼT(t) followed by a low-pass filter (LPF).
The block “Integration” represents the coherent integration process that preserves the
phase information of the IF signal by simply integrating the result over time. The unit
“Decision” makes the decision about the existence of the target in space. Basically, it has
some set threshold limit that is compared with the magnitude of the received signal. If the
threshold value is surpassed by the output signal, then this shows that presence of the
target. Otherwise, it is assumed that only the noise component is present in the space.
Radar designers seek to maximize the probability of detection for a given probability
of false alarm. Thus, the proposed “Wigner integration” block will help to estimate the
integration loss caused by the nonstationary phase noise. Then, an adjustment to the
threshold value (described above in the “Decision” block) can be made according to the
estimation results.

3. Nonstationary Phase Noise in Oscillators

In this section, we review the mathematical model of nonstationary phase noise in
oscillators in order to propose a novel model, which will take place in the following
nonstationary coherent integration loss expression. The phase variation ϕ(t) is given as a
summation of seven terms [10,11]:

ϕ(t) = 2πν0

[
x0 + y0t + a

t2

2
+ µ3

t3

6
+ σ1BH1(t) + σ2

∫ t

0
BH2(s)ds + σ3

∫ t

0

(t− s)2

2
dBH3(s)

]
, (5)

where parameters are defined as follows:

1. x0 and y0 are the initial phase and frequency offsets, respectively.
2. a is defined as the frequency drift coefficient.
3. µ3 is a linear variation coefficient added to the frequency drift.
4. {BHi (t), t ≥ 0}, i = 1, 2, 3 are three independent, one-dimensional standard Wiener

processes (Brownian motion) [10]. The Wiener process is often referred to as an
integral of white noise, and is, in principle, a nonstationary process.

5. The diffusion coefficients σ1 and σ2 represent the white- and random walk-frequency
noises, respectively [12].

6. σ3 is related to the frequency drift. Since σ3 is related to long-term frequency drift, it
is not relevant to short-term analysis, and was thus neglected [10].
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The phase variations ϕ(t) can be divided into short- and long-term instabilities [10].
The long-term characteristics due to oscillator aging result in a very slow drift in the
carrier frequency. This behavior is not relevant to radar scenarios, as it is only noticeable if
the frequency is observed over hours and days, while the delay of the received signal is
significantly shorter. Short-term phase noise is an essential issue when considering coherent
integration. Therefore, hereafter, we concentrate on short-term instabilities only (6), since it
is the influencing factor in coherent radar integration.

The stochastic short-term of the phase variations ϕ(t) is given by

ϕ(t) = 2πν0

[
x0 + y0t + σ1BH1(t) + σ2

∫ t

0
BH2(s)ds

]
. (6)

The resulted phase difference, which is required in Equation (4) for cross-correlation
R(t, τ), is then

ϕ(t)− ϕ(t− τ) = 2πν0

[
y0τ + σ1BH1(t) + σ2

∫ t

0
BH2(s)ds− σ1BH1(t− τ)− σ2

∫ t−τ

0
BH2(s)ds

]
. (7)

4. Coherent Integration Loss in the Presence Nonstationary Phase Noise

A closed-form expression for the characterization of coherent integration loss due to
nonstationary phase noise in local oscillators can now be derived. Our analytical derivation
is based on the Wigner–Ville spectrum [13–15], which expends the spectral measures to
contain the nonstationary characteristics of the oscillator phase variation. The Wigner–Ville
distribution does not suffer from leakage effects as the short-time Fourier transformation
(STFT) does. Hence, the Wigner–Ville distribution gives the best spectral resolution [13].
Therefore, in this paper, we used the Wigner–Ville distribution for time-frequency analysis.
The integration loss is usually defined [4] as the ratio of the correlation R(t, τ) in the pres-
ence of noise to the “pure“ (noiseless) correlation R0(τ):

L(t, τ) =
R(t, τ)

R0(τ)
. (8)

In the absence of phase noise (when ϕ(t) = 0), the resulted correlation is

R0(τ) = AR ATej2πν0τ . (9)

Substituting (4) and (9) into the expression for the coherent integration loss (8) yields

L(t, τ) = E{ej[ϕ(t)−ϕ(t−τ)]}. (10)

When nonstationary phase noise is present, the resulted L(t, τ) is a time-varying
stochastic process. The time–frequency transform of the nonstationary coherent inte-
gration loss, defined by (10), is the Wigner distribution [13–15], which is expressed via
Fourier transformation:

WL(τ, f ) =
∫ ∞

−∞
L(t, τ)e−j2π f tdt. (11)

While the power spectral density (PSD) is a result of time integration that assimilates
the time domain, the Wigner distribution is a time-dependent measurement [15] that can
reveal the phase variations of an oscillator in high-resolution radars.

In typical oscillators such as the temperature-compensated crystal oscillator (TCXO) and
oven-controlled crystal oscillator (OCXO), for Rubidium and Cesium frequency standards, if
σ1 and σ2, which represent the magnitude of the oscillator noise, are small enough with respect
to 1, then we can state that ϕ(t) << 1, ϕ(t− τ) << 1 and make the following approximations:
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cos[ϕ(t)] ≈ 1

cos[−ϕ(t− τ)] ≈ 1

sin[ϕ(t)] ≈ ϕ(t)

sin[−ϕ(t− τ)] ≈ −ϕ(t− τ).

(12)

Substituting (12) into (10) gives

L(t, τ) = E{1 + jϕ(t)− jϕ(t− τ) + ϕ(t)ϕ(t− τ)}. (13)

Then, substituting (13) into (11) gives

WL(τ, f ) =
∫ ∞

−∞
E{1 + jϕ(t)− jϕ(t− τ) + ϕ(t)ϕ(t− τ)}e−j2π f tdt. (14)

The phases ϕ(t) and ϕ(t− τ) are standard Wiener processes with expected values
E{ϕ(t)} = E{−ϕ(t− τ)} = 0. Consequently, the resulted E{jϕ(t)− jϕ(t− τ)} = 0,
resulting in

WL(τ, f ) =
∫ ∞

−∞
E{1 + ϕ(t)ϕ(t− τ)}e−j2π f tdt. (15)

In order to find WL(τ, f ), (6) is substituted into (15) and the integral of the expectation
value in (15) is solved (see Appendix A for a detailed derivation). Doing this yields a closed
form time–frequency expression for the nonstationary coherent integration loss:

WL(τ, f ) = δ( f ) + (2πν0)
2
{

σ2
1
2

[
|τ|δ( f ) + 1−e−j2πτ f

2π2 f 2

]
+

σ2
2
6 e−j2π f τ

[
−2π2 f 2τ2+j4π f τ+3

4π4 f 4 + τ(π f τ−j)
2π3 f 3

]
+

σ2
2
4

(
3−j2π f τ

4π4 f 4

)
+

σ2
2

12

[
|τ|τ2δ( f ) + e−j2πτ f τ2

2π2 f 2 − 3
4π4 f 4

]}
.

(16)

The resulted time–frequency coherent integration loss (16) is now applied to analyze
high-resolution radars operating in the millimeter-wave regime.

5. High-Resolution Terahertz Radar

The radar presented in Figure 2 is a W-band ranging sensor module presented in [16].
This is a continuous-wave high-resolution radar operating at 94 GHz. The meaning of the
phrase “high-resolution” refers to the high-resolution detection of the target’s instanta-
neous velocity. The transmission at high carrier frequency compensates for employing a
narrower temporal window in the Wigner spectrum, while maintaining the high velocity
resolution [16]. In such extremely high frequencies, directive antennas with a relatively
small aperture can be employed. The 94-GHz carrier frequency is within the atmospheric
W-band transmission window, suffering relatively low atmospheric absorption. The low–
medium loss enables increasing the distance to the target, thereby enabling detection even
during adverse weather conditions. The radar parameters are presented in detail in [16].

A schematic illustration of the radar is shown in Figure 3. A continuous carrier wave
at 15.67 GHz produced by the Agilent 83623B frequency synthesizer is multiplied by a
factor of 6, resulting in a 94-GHz carrier. A small amount of the generated power is coupled
to the product detector of the receiving chain via a directional coupling port. Two identical
horn lens antennas are employed for transmission and reception.

Figure 4 proposes a general geometric model for the transmitted and received signals’
trajectories relative to the distance between the antennas x = x1 + x2.
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Local Oscillator 
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Figure 2. Block diagram of a W-band Doppler radar.

Figure 3. The continuous-wave micro-Doppler radar [16].

Figure 4. Simplified geometry model of a quasi-monostatic radar system.

The intermediate frequency (IF) product at the mixer’s output is

R(t, τ) = Ẽ∗R(t)ẼT(t) = AR ATe

Ψ(t)

j

︷ ︸︸ ︷[
2πν0

c
· [r1(t) + r2(t)] + ϕ(t)− ϕ(t− τ)

]
, (17)

where c is the speed of light. r1(t) and r2(t) are the distances from the transmitting antenna
to the moving target and from the moving target to the receiving antenna, respectively.
According to the geometry model of a quasi-monostatic radar presented in Figure 4, we
can present the angle Ψ(t) relative to the distance between the antennas:

Ψ(t) =
2πν0

c
·
[√

r2(t) + x2
1 +

√
r2(t) + x2

2

]
+ ϕ(t)− ϕ(t− τ). (18)
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r1(t) and r2(t) can be written in terms of their radial velocities vr1(t) and vr2(t), respec-
tively, as

r1(t) = r10 +
∫ t
−∞ vr1(t

′)dt′

r2(t) = r20 +
∫ t
−∞ vr2(t

′)dt′,
(19)

where r10 and r20 are the initial distances from the transmitting antenna to the moving
target and from the moving target to the receiving antenna, respectively. The IF product
obtained at the mixer output is the derivative of the angle Ψ(t):

f IF(t, τ) =
1

2π

dΨ(t)
dt

=
ν0

c
[ .
r1(t) +

.
r2(t)

]
+

1
2π

[ .
ϕ(t)− .

ϕ(t− τ)
]
, (20)

where the “over-dot”
·
x(t) denotes a time derivative of x(t). Please note that Balal et al. [16]

presented two experiments where the distance from the antennas to the target was greater
by about two orders of magnitude from the distance between the antennas, thus, r >> x1
and r >> x2 and we can state that r(t) ≈ r1(t) ≈ r2(t). Now, we can write (20) in terms
of

.
r(t):

f IF(t, τ) = 2
ν0

c
.
r(t) +

1
2π

[ .
ϕ(t)− .

ϕ(t− τ)
]
. (21)

The time delay τ = 2r0/c is expressed in terms of the distance r0 to the target.
Substituting the time delay and the target radial velocity vr(t) =

.
r(t) into (21) results in

f IF(t, τ) = 2
ν0

c
· vr(t) +

1
2π

[
.
ϕ(t)− .

ϕ

(
t− 2r0

c

)]
. (22)

In the last equation, the Doppler frequency shift can be detected due to the instanta-
neous radial velocity vr(t) of the target according to

fd(t) =
2ν0

c
· vr(t). (23)

The resulting Doppler frequency shift fd(t) in the IF output is shown to be proportional
to the target radial velocity. A target moving at the radial speed of vr = 1000 m/s, for
instance, will be detected by a 94-GHz W-band radar as a Doppler shift tone equal to
fd = 626 KHz, whereas the same W-band radar will detect a target moving ten times
slower (vr = 100 m/s) as a Doppler shift tone equal to fd = 62.6 KHz.

The preceding time–frequency analysis was then used to identify nonstationary insta-
bilities in the phase of the frequency synthesizer to follow its spectral variations in the time
domain. An estimation of the Agilent 83623B [17] diffusion coefficients σ1, σ2 can be made
using the power law phase noise spectra function [12]. Under quiescent conditions, we
found σ1 = 10−4, σ2 = 10−6.

Please note that the proposed method is also available for realistic state-of-the-art
microwave signal sources with an integrated Voltage Controlled Oscillator (VCO), e.g.,
the Analog Devices ADF4371 [18]. The ADF4371 allows implementation of a fractional-N
or Integer N phase-locked loop (PLL) frequency synthesizer with a wide-band output
frequency range of 62.5 MHz to 32 GHz. This range allows the usage in this integrated
circuit (ADF4371) as the local oscillator of the W-band Doppler radar presented in Figure 2.

Figure 5a is the resulted three-dimensional plot of the nonstationary coherent integra-
tion loss (16) in the time–frequency (τ, f ) domain. Figure 5b presents the corresponding
contour plot after converting it to range (r) and radial velocity (vr). At low Doppler fre-
quencies (corresponding to small velocities), the local oscillator of the radar presents higher
intensity of phase noise that increases the coherent integration loss. As the target velocity
increases, the phase noise power decreases, resulting in a reduction in the loss.
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(a)

(b)

Figure 5. (a) The resulted three-dimensional plot of the nonstationary coherent integration loss (16)
in the time–frequency (τ, f ) domain under quiescent conditions: σ1 = 10−4 and σ2 = 10−6. (b) The
contour plot of the proposed coherent integration loss presented in (a).

An opposite tendency occurs with range, as the target moves away from the radar, the
time delay increases, causing a degradation in the coherence between the transmitted and
received signals.

A simplified description of the loss as a function of range can be seen in Figure 6 for
several target velocities: vr = 100–1100 m/s.

Table 1 summarizes the coherent integration loss as a function of several ranges and
target velocities.

A closer inspection of Figure 6 reveals that the coherent integration obtained for the
Agilent oscillator is approximately 35 dB for a moving target with a radial velocity of
vr = 100 m/s and is located at a distance of r0 = 50 m, whereas a moving target with a
supersonic speed of vr = 1100 m/s at the same range presents a lower loss of 24 dB.

An interesting phenomenon can be seen for fast-moving targets approaching super-
sonic velocities. The coherent integration loss shows peaks at intermediate ranges. As the
target moves further, the coherent integration loss improves. The nonstationary nature of
the phase noise leads to smaller losses in the long range detection of targets.
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Figure 6. A simplified description of the loss as a function of range for several target velocities
between vr = 100 and vr = 1100 m/s.

Table 1. A summary of the coherent integration loss as a function of several ranges and target velocities.

Range—r (m)

25 100 200

Radial velocity (m/s)
100 32 dB 37 dB 41 dB
500 24 dB 31 dB 30 dB

1000 21 dB 27 dB 23 dB

It is interesting to notice that the reduction of the loss peaks for high velocities ap-
ply generally for most signal sources and there are no major differences in the source
architecture such as cavity oscillators, dielectric resonator oscillators (DROs), PLL, and
fractional-N-PLL. The reason for this behavior is the common fundamental nature of the
phase noise in oscillators, which declines as the frequency (from the carrier) increases [12].
In the PLL-based frequency synthesizers, the phase noise performance is determined by a
superposition of two main noise sources: the reference oscillator noise and the VCO noise.
The superposition process saves the fundamental nature described above [19], therefore,
the reduction of the loss peaks for high velocities also apply for PLL frequency source
architecture. Although, the magnitude and low-power characteristics of the phase noise
for different source architectures change from one to another, causing different reduction
of the loss peaks for high velocities.

Figure 7a presents a comparison between the proposed approach (16) and the conven-
tional stationary coherent integration loss method given in Equation (18) in [4]: L = −4.34σ2,
where L denotes the loss in dB and σ represents the stationary phase noise standard devia-
tion. The green plane is the constant stationary coherent integration loss for σ = 2 ∗ 10−2

while the colored three-dimensional plot shows the nonstationary coherent integration
loss (16) in the time–frequency (τ, f ) domain under the same conditions described in
Figure 5a. The standard deviation σ value is chosen so that the same total amount of noise
power (as was taken in Figure 5a) will also be available for the stationary model simulation.
Figure 7b illustrates the same comparison presented above (Figure 7a) in a different angle
in order to demonstrate the difference from another point of view. It can be seen that
whereas the stationary phase noise method yields a constant value for the coherent integra-
tion loss for a given frequency source, the proposed nonstationary coherent integration
loss approach yields a varying loss value (16). The nonstationary expression enables the
high-resolution radar designer to estimate the loss caused by the local oscillator phase
noise for a large range of target velocities. Moreover, the proposed expression (16) can also
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help the radar designer to estimate the loss variation for a specific range–velocity curve in
real-time that fits the target trajectory. The resulted real-time loss estimation made by the
“Wigner integration” block can be used as an input to a threshold adjustment process in the
radar final “Decision” block, as described in Figure 1.

(a)

(b)

Figure 7. (a) A comparison between the resulted nonstationary coherent integration loss (16) in the
time–frequency (τ, f ) domain vs. the stationary coherent integration loss proposed by [4]. (b) An
illustration of the same comparison presented in Figure 7a from a different point of view.

In the following, we will demonstrate our theory with comparison to the stationary
coherent integration loss approach, as presented in [4]. Balal et al. [16] presented two
experiments with measurement results obtained with the setup illustrated in Figure 3. The
demonstration will be performed by numerical simulation according to those experimental
test results. Hereafter, the standard deviation value will be as above (σ = 2 ∗ 10−2) in order
to maintain a fair comparison between considering and neglecting nonstationary phase
noise. In the first experiment, an optical gate system measured the instantaneous velocity
of a bullet fired from a gun at an initial speed of about 1200 m/s. The velocity of the bullet
fades as it approaches the radar. Figure 8a shows the velocity vr as a function of r.
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Figure 8. The first experiment: (a) The instantaneous velocity of a small target dependent on r.
(b) A comparison between the resulted nonstationary coherent integration loss (16) vs. the stationary
coherent integration loss proposed by [4]. Both numerical simulations were performed based on the
first experiment test results.

The point at 0 m on the x-axis represents the location of the radar. Figure 8b presents
the numerical simulation of the proposed nonstationary coherent integration loss (16) vs.
the conventional stationary coherent integration loss [4]. Both curves are presented as a
function of r. In the second experiment, a bullet of a different shape was fired from the gun
at a speed of about 500 m.

Figure 9a shows the velocity vr as a function of r, while in Figure 9b, we present the
numerical simulation of the proposed nonstationary coherent integration loss (16) vs. the
constant stationary coherent integration loss [4]. Both curves are presented as functions
of r.

These results show that while the conventional stationary coherent integration loss
failed to follow the nonstationary process, the proposed theory demonstrated real-time,
high-accuracy analysis of short-term phase instabilities. Therefore, in order to increase the
radar probability of detection, the proposed approach can be used as an input to a real-time
threshold adjustment process in the radar’s final decision block.
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Figure 9. The second experiment: (a) The instantaneous velocity of another bullet dependent on r.
(b) A comparison between the resulted nonstationary coherent integration loss (16) vs. the stationary
coherent integration loss proposed by [4]. Both numerical simulations were performed based on the
second experiment test results.

6. Summary and Conclusions

The coherent integration loss characterization of high-resolution radars due to the
nonstationary phase noise generated by the local oscillator has been presented herein.
Wigner–Ville distribution was employed to express the coherent integration loss in the
time–frequency domain. We derived an analytic expression for the coherent integration
loss for nonstationary phase noise. While the common characterization of integration loss
failed to follow nonstationary processes, the Wigner–Ville distribution demonstrated high-
accuracy analysis of short-time phase instabilities and a comprehensive description of their
evolution for high-resolution broadband radars. The proposed approach was applied for
evaluating the dynamics of coherent integration loss in a high-resolution radar operating
in millimeter wavelengths. It is demonstrated that time-frequency analysis exposes the
effect of instantaneous, nonstationary phase variations and frequency deviations generally
seen in oscillators. Nonstationary phase noise is shown to affect radar performance in
scenarios where high-resolution capabilities are required for target detection and tracking.
It is interesting to note that the time-frequency analysis presented here indicates that
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variations in the coherent integration loss appears in high-velocity targets moving at sub-
or supersonic velocities.

The new technique allows usage of loss information in regulating the decision thresh-
old. It can help radar systems to evaluate the nonstationary integration loss in real time
and modify the decision threshold correspondingly, in order to maximize the radar’s
detection reliability.
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Appendix A

Provided in this appendix are details of the expression for WL(τ, f ).
Substituting (6) into (15) yields

ϕ(t)ϕ(t− τ) = ω2
0

[
y0t + σ1BH1(t) + σ2

∫ t

0
BH2(s)ds

][
y0(t− τ) + σ1BH1(t− τ) + σ2

∫ t−τ

0
BH2(s)ds

]
. (A1)

{BHi (t), t ≥ 0}, i = 1, 2 are two independent, standard Wiener processes, so we can
introduce (A1) as

ϕ(t)ϕ(t− τ) = ω2
0

[
y2

0t2 − y2
0tτ + σ2

1 BH1(t)BH1(t− τ) + σ2
2

∫ t

0
BH2(s)ds

∫ t−τ

0
BH2(s)ds

]
. (A2)

Therefore, the expectation value of (A2) is given by

E{ϕ(t)ϕ(t− τ)} = ω2
0

[
y2

0t2 − y2
0tτ + σ2

1 E
{

BH1(t)BH1(t− τ)
}
+ σ2

2 E
{∫ t

0
BH2(s)ds

∫ t−τ

0
BH2(s)ds

}]
. (A3)

The standard Wiener process {BH(t), t ≥ 0} has the following covariance function [20,21]:

E{BH(t)BH(s)} =
1
2
(|t|2H + |s|2H − |t− s|2H). (A4)

In our case, the process BH(t) is the standard Brownian motion, (H = 0.5); therefore,
by substituting (A4) into the middle term of (A3), we get

E{ϕ(t)ϕ(t− τ)} = ω2
0

{
y2

0t2 − y2
0tτ +

σ2
1

2
(|t|+ |t− τ| − |τ|) + E

{
σ2

∫ t

0
BH2(s)dsσ2

∫ t−τ

0
BH2(s)ds

}}
. (A5)

Now, the expectation value is inserted into the joint integral argument on the last term
of (A3):

E{ϕ(t)ϕ(t− τ)} = ω2
0

{
y2

0t2 − y2
0tτ +

σ2
1

2
(|t|+ |t− τ| − |τ|) + σ2

2

∫ t

0

∫ t−τ

0
E
{

BH2(s)BH2(s
′)
}

dsds′
}

. (A6)



Remote Sens. 2021, 13, 1755 14 of 15

Next, the expectation value of the last term of (A6) is calculated, again, by using (A4):

E{ϕ(t)ϕ(t− τ)} = ω2
0

{
y2

0t2 − y2
0tτ +

σ2
1

2
(|t|+ |t− τ| − |τ|) + σ2

2

∫ t

0

∫ t−τ

0

1
2
(|s|+

∣∣s′∣∣− ∣∣s− s′
∣∣)dsds′

}
. (A7)

After some trivial integral calculation, (A7) can be written in its final form:

E{ϕ(t)ϕ(t− τ)} =

ω2
0

{
y2

0t2 − y2
0tτ +

σ2
1
2 (|t|+ |t− τ| − |τ|)

+
σ2

2
4 |t− τ|(t− τ)t + σ2

2
4 |t|t(t− τ) +

σ2
2

12
[
|τ|τ2 − |−t + τ|(−t + τ)2 − |t|t2]}.

(A8)

Next, the closed form expression for the main term of (15) (
∫ ∞
−∞ E{ϕ(t)ϕ(t− τ)}e−i2π f tdt)

is presented by solving the Fourier transformation of (A8).
The seven terms of (A8) are defined as follows:

a12(t, τ) = y2
0t2 − y2

0tτ

b12(t, τ) =
σ2

1
2 (|t|+ |t− τ| − |τ|)

c12(t, τ) =
σ2

2
4 |t− τ|(t− τ)t

d12(t, τ) =
σ2

2
4 |t|t(t− τ)

e12(t, τ) =
σ2

2
12 |τ|τ2

f12(t, τ) = − σ2
2

12 |−t + τ|(−t + τ)2

g12(t, τ) = − σ2
2

12 |t|t2.

(A9)

Therefore, we can state that (A8) can be written as

E{ϕ(t)ϕ(t− τ)} = ω2
0 [a12(t, τ) + b12(t, τ) + c12(t, τ) + d12(t, τ) + e12(t, τ) + f12(t, τ) + g12(t, τ)]. (A10)

Next, the closed form expression for
∫ ∞
−∞ E{ϕ(t)ϕ(t− τ)}e−i2π f tdt is presented by

solving the Fourier transformation of (A9):∫ ∞
−∞ E{ϕ(t)ϕ(t− τ)}e−i2π f tdt =

ω2
0
∫ ∞
−∞[a12(t, τ) + b12(t, τ) + c12(t, τ) + d12(t, τ) + e12(t, τ) + f12(t, τ) + g12(t, τ)]e−i2π f tdt

= (2πν0)
2[A12(t, f ) + B12(t, f ) + C12(t, f ) + D12(t, f ) + E12(t, f ) + F12(t, f ) + G12(t, f )],

(A11)

where A12(t, f ), B12(t, f ), C12(t, f ), D12(t, f ), E12(t, f ), F12, G12(t, f ) denote the Fourier trans-
formation of a12, b12, c12, d12, e12, f12, g12(t, τ) given in (A9), respectively.

Finally, by solving the Fourier transformation of the seven terms stated in (A9) and
substituting their closed form expressions into (15), we get (16).
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