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Abstract: Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged
for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for
crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded
by various issues, including illumination variation throughout the crop growing season, the effect of
which on the retrieval performance is not well understood at present. In this study, four retrieval
methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover
(fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates
during the growing season. We analyzed: (1) The standard look-up table method (LUTstd), (2) an
improved (regularized) LUT method that involves variable correlation (LUTreg), (3) hybrid methods,
and (4) random forest regression without (RF) and with (RFexp) the exposure time as an additional
explanatory variable. The Soil–Leaf–Canopy (SLC) model was used in association with the LUT-
based inversion and hybrid methods, while the statistical modelling methods (RF and RFexp) relied
entirely on in situ data. The results revealed that RFexp was the best-performing method, yielding
the highest accuracies, in terms of the normalized root mean square error (NRMSE), for LAI (5.36%),
fCover (5.87%), and CCC (15.01%). RFexp was able to reduce the effects of illumination variability
and cloud shadows. LUTreg outperformed the other two retrieval methods (hybrid methods and
LUTstd), with an NRMSE of 9.18% for LAI, 10.46% for fCover, and 12.16% for CCC. Conversely,
LUTreg led to lower accuracies than those derived from RF for LAI (5.51%) and for fCover (6.23%),
but not for CCC (16.21%). Therefore, the machine learning approaches—in particular, RF—appear to
be the most promising retrieval methods for application to UAV-based hyperspectral data.

Keywords: LUT-based inversion; hybrid method; statistical method; leaf area index; fractional
vegetation cover; canopy chlorophyll content

1. Introduction

Crop trait assessment and monitoring are of crucial importance in agricultural ap-
plications (i.e., precision farming) [1]. By providing an accurate estimation of crop traits,
the accuracy of growth monitoring can be improved. Consequently, spatially explicit
trait quantification can help a farmer to adapt and optimize their management practices
(e.g., nutrient application) in an efficient way, in order to increase the yield production [2].
The leaf area index (LAI) and fractional vegetation cover (fCover) are key canopy structural
variables, used for characterizing the ecological, hydrological, and biogeochemical pro-
cesses in terrestrial climate systems [3]. Furthermore, chlorophyll content, defined either at
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the leaf level (leaf chlorophyll content, LCC) or at the canopy level (canopy chlorophyll
content, CCC) is used as a bioindicator of vegetation state [4–6]. These variables of interest
are also good proxies of above-ground biomass, nitrogen uptake, and the actual crop
condition [7,8].

Remote sensing observations are valuable data sources for mapping the spatial vari-
ation of crop traits in precision agriculture applications [9]. In particular, the possibility
to acquire hyperspectral data at a very high spatial resolution repeatedly during a crop
season and the whole plant phenology has led to the creation of new applications for drone-
or UAV (unmanned aerial vehicle)-based observations [10,11]. Since the new technology
of UAV-based hyperspectral data has appeared, several studies have been devoted to
obtaining good predictions of LAI [1,12–17], fCover [18–20], and CCC [21–23].

Over the last few decades, a diversity of retrieval methods has been developed, en-
abling the conversion of reflectance data into certain variables of interest. These models can
be broadly classified into three general categories: Physically based, statistical, and hybrid
methods. The physically based methods (i.e., radiative transfer models; RTMs), are con-
sidered generic, transferable, and independent of in situ measurements [24–26]. However,
the ill-posed problem has been encountered as one major limitation for RTM inversion
strategies, as several combinations of input variables may result in identical spectra [27].
Moreover, measurement uncertainties and model assumptions may induce a large vari-
ation of possible solutions, leading to inaccurate results for the estimated variables [28].
To alleviate the ill-posed inverse problem and increase the accuracy of retrieval, different
regularization schemes have been suggested, as described in [29]. In a recent study [30],
the usage of correlated variables using the Cholesky method was proposed, in order to
regularize a look-up table inversion approach (LUTreg). Using prior information on the
cross-correlations between variables (e.g., LAI, CCC, and fCover), which can be collected
from field measurements, may reduce the probability of unrealistic parameter combinations
and simulated spectra [31].

Progressing along this line, a comparison of the LUTreg method with other retrieval
methods is needed. Statistical methods involve parametric and non-parametric regres-
sion methods [32,33]. Machine learning algorithms (ML), as non-parametric regression
methods, often markedly outperform parametric methods, since the relationships be-
tween crop variables and the observed reflectance often entail non-linear variability and
autocorrelation [34,35]. Due to its dependence on the ground data, however, a statistical
method may be poorly transferable to other sites, vegetation types, or sensors [24]. Further-
more, its performance may be hampered by the number, quality, and representativeness
of in situ data [36]. Nevertheless, such methods are of interest to researchers, due to their
flexibility in predicting the variable of interest [37,38].

The last category of retrieval methods is hybrid methods, which use ML algorithms
for training spectra simulated by an RTM. Hybrid methods appear promising, as they
combine the universality and robustness of physical models with the advantages of non-
parametric methods (e.g., non-linearity, fast performance) [39–42]. To train the generated
LUT database, a variety of ML algorithms have been introduced into hybrid methods
for retrieving canopy traits. Among ML algorithms, Random Forest Regression (RF) and
Gaussian Process Regression (GPR) have been well applied in several studies, due to
their robustness and efficient implementation [39,43–49]. RF is a regression tree-based
ensemble algorithm which can handle several input variables without overfitting while
also being less sensitive to outliers and noise [50,51]. GPR was developed based on the
theory of the Bayesian framework. Fortunately, it does not require a large sample size
for the training data set and needs less tuning for the hyperparameters [52]. Additionally,
the uncertainty of estimates can be provided by calculating the standard deviation and
mean [53]. As compared to GPR and RF, Conical Correlation Forest (CCF) has received
less attention in retrieval studies [54]. The sensitivity of this method to the ensemble size
(i.e., the number of trees) is less than that of RF [55]. Therefore, it is worthwhile to evaluate
alongside other methods (e.g., RF and GPR).
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A specific challenge arises when UAV-based hyperspectral data are acquired under
sub-optimal illumination conditions, a condition that is quite abundant in, for instance,
Central and Northern Europe, featuring a mixture of full or partial cloud cover and clear sky
during a growing season. Indeed, processing such images taken under variable illumina-
tion throughout the flight mission and the growing season of the crop is not straightforward.
In the studies of [56,57], additional radiometric calibration beside the empirical line method
has been used to reduce this effect, based on irradiance measurements by ASD FieldSpec3
or UAV and the integrated exposure time. However, when this information is not available,
UAV images taken under cloudy conditions are mostly discarded [58–60]. To the best of
our knowledge, no previous study has been devoted to systematically assessing how the ac-
curacy of variable estimates using the aforementioned methods is affected while operating
a UAV under variable illumination conditions (i.e., cloudy and partially cloudy weather).

Overall, this study set out to investigate the performances of statistical, physical,
and hybrid methods under variable illumination for estimating LAI, fCover, and CCC from
UAV-based hyperspectral data throughout the growth cycle of a potato crop. The follow-
ing specific objectives are addressed: (1) To test whether the regularized LUT (LUTreg)
developed in the study of Abdelbaki et al. [30], which was shown to work on a single
observation date, using field spectroradiometer measurements, can yield an improvement
in the variables of interest; (2) to compare the LUTreg with statistical and hybrid methods
in the estimation process; and (3) to assess if using information on illumination conditions
during image acquisition can improve the accuracy of estimates.

2. Materials
2.1. Study Area and Experimental Setup

The study area is in the southwest of Luxembourg, close to Hivinge village 49°36′47.1′′N,
5°55′6.7′′E (Figure 1A). A potato cultivar (Solanum tuberosum L. cv. Victoria) was cultivated
in the spring/summer season of 2016. The predominant soil type was sandy loams.
The annual mean temperature and annual total precipitation of the study area were 9.8 ◦C
and 865 mm, respectively. Six field sampling dates for the potato crop were conducted,
from 8 July to 10 August, resulting in 156 sampling plots (see Table 1). Plots (5 m × 3 m)
with three different levels of nitrogen application were established (80, 180, and 280 kg/ha
nitrogen), representing under-, standard-, and over-fertilization, respectively (see Figure 1B),
which led to variation in biophysical and biochemical variables. Each fertilization level was
represented by three replicates times three plots (for nine samples), leading to 27 samples
at each observation date. However, on the first date of the growing seasons, there were
only 21 valid samples, as the flight did not cover the whole field by mistake.

Table 1. Flight conditions and camera settings for the campaigns in 2016.

Date Growth Stage Flight Time SZA SAA Illumination
exp (Second)

VIS NIR

8-July Tuber bulking 12:00 28 165.58 Partial cloud cover 1/840 1/1135
14-July Tuber bulking and flowering 12:30 29 165.51 Partial cloud cover 1/840 1/1135
19-July Tuber bulking and flowering 12:15 30 165.62 Clear/ sunny 1/840 1/1135
27-July Maturity 12:15 31 166.09 Partial cloud cover 1/496 1/840

5-August Maturity 11:25 33 177.94 Full cloud cover 1/328 1/716
10-August Maturity 11:46 35 162.3 Full cloud cover 1/328 1/552

Note: Solar zenith angle (SZA); solar azimuth angle (SAA); exposure time (exp); and visible and near-infrared bands (VIS and NIR,
respectively).
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Figure 1. (A) A map of Luxembourg, containing the exact location of the study site (the red star).
Main map: Image of the UAV orthomosaic, based on the true RGB color captured by the drone on
19 July at an altitude of 50 meters (12:15 pm); and (B) the plot design for in situ measurements [30].

Non-destructive measurements were taken in the center area of each plot, along with
the positions (Figure 1B), in order to avoid border effects. To determine the non-destructive
LAI from the gap fraction an LAI-2000 Plant Canopy Analyzer (PCA; Li-Cor, Inc., Lincoln,
NE, USA) was used in this study. The optics of PCA consist of a fisheye lens (148° field
of view (FOV)), which encompasses five sensors, each si-simultaneously measuring light
intensities in the blue spectral-domain (320–490 nm) (with central zenith angle of 7°, 23°,
38°, 53°, and 68°, respectively) [61,62]. A 180° view cap of the PCA lens was fixed and the
PCA measurements were processed to LAI by the File Viewer software (LI-COR FV2000).
The measurements were taken either early in the morning, under clear-sky or partly cloudy
conditions, or near mid-day, during overcast sky conditions, to minimize the effects of
direct radiation. In each plot, below-canopy readings were recorded at eight different
positions within the plot (red crosses in Figure 1B), followed by an above-canopy reading.
fCover was visually estimated by an experienced observer, in a vertical plant shoot-area
projection, as a percentage of quadrat area, where the observer divided the range of
fCover (0–100%) into interval classes (in steps of 5%) as an ordinal variable [63]. The leaf
chlorophyll content (LCC) was measured using an SPAD-502 Konica Minolta. Six leaves
per plot were selected randomly, and the five readings per leaf from different positions of
the top leaflet were averaged to one value. The SPAD readings (unitless) were converted
into LCC (µg cm−2). The Formula (1) developed by [64] was applied for unit conversion.
The CCC (g cm−2) for each plot was then determined, using multiplication between LAI
and LCC values at leaf level.

LCC(µg cm−2) = 0.0913 ∗ e0.0415∗SPAD. (1)

2.2. Canopy Spectra Measurements

Spectral measurements of each plot were performed using an ASD FieldSpec3 spec-
troradiometer (Analytical SpectralDevices, Boulder, CO, USA) at six critical growth stages
with a spectral range from 300–2500 nm. The spectral resolution of 2151 spectral bands
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was 3 nm between 350–1000 nm and 10 nm between 1000–2500 nm. Before carrying out the
UAV flight missions, ASD canopy measurements were taken at nadir position under direct
solar illumination between 10:30 a.m. and 2:00 p.m. (one hour before and after on the same
day of the flight mission), from a distance of about 80 cm above the canopy. With a field of
view of 25°, a footprint diameter of 0.88 cm2 on the ground was observed. For each plot,
the eight measurements at distributed positions (red crosses; Figure 1B) were averaged.

2.3. UAV-Based Hyperspectral Data Acquisition and Processing

Prior to the hyperspectral flight missions, a fixed-wing aircraft UAV (Mavinci Sirius)
equipped with a Real-Time Kinematic Global Positioning System (RTK-GPS) was flown
over the larger study site, in order to obtain a reference orthomosaic of the area, on 22 June
2016. The UAV contained an RGB-camera. The captured images were processed to an
orthomosaic, using the Agisoft Photoscan Processional software (v. 1.26 Agisoft, LLC, St.
Petersburg, Russia), to a final ground resolution of about 1.7 cm and registered to the local
Universal Transverse Mercator Zone 31 North projection based on the World Geodetic
System (UTM 31N WGS 1984).

Aerial images for the experiment were acquired during six flight missions in 2016
(Table 1) using an OXI VNIR-40 hyperspectral sensor (Gamaya, SA, Lausanne, Switzerland)
system, which was mounted on a DJI S900 octocopter UAV. The sensor system contains
two global snapshot cameras with a 5 × 5 grid sensor for 25 spectral bands in the visible
range (VIS) between 474 nm to 638 nm (FWHM of 16–27 nm), as well as a 4 × 4 grid
sensor for 16 spectral bands in the near-infrared between 638 nm to 915 nm (FWHM of
15–27 nm), with partly overlapping bands. The raw VIS and NIR images were de-convolved
by Gamaya, resulting in two images with size of 2048 × 1088 pixels (2 MP). Using the
Agisoft Photoscan Professional software (v. 1.26, Agisoft, LLC, St. Petersburg, Russia),
the two sets of images (VIS and NIR) were further processed by Gamaya. The focal length
of the camera was 25 mm and the exposure time was set manually, prior to each flight.
The duration of flight missions was 15 min. The aerial images were captured at an altitude
of about 50 m, with a front lap of 75% and a side lap of 60%. As GPS positions were not
automatically stored during image acquisition, all orthomosaic images were co-registered
to the RTK-RGB-orthomosaic as the base reference, with an RMSExy of 0.78 to 0.14 pixels.

In our campaigns, UAV data acquisition was carried out bi-weekly and deliberately
under less favorable illumination conditions (Table 1). For radiometric calibration to
reflectances, nine wooden panels with grey shades from black to white were laid out at the
center of the study area. Their radiance was measured during the image acquisitions and
calibrated to reflectances. The optimal illumination date, 19 July 2016, was selected as a
radiometric reference (Figure 1A). An empirical line calibration (ELC) [65] was carried out
between the optimal illumination date (19 July) digital numbers (DN) and the reference
panel reflectances obtained from the ASD FieldSpec3 measurements in the field on that
date. Due to saturation of the brightest panels, only the five darkest panels were integrated
into the derivation of the ELC for the VIS sensor. However, for the NIR sensor, all reference
panels were used. All values were scaled from 0–1. The empirical line (EL) fit was evaluated
using R2 and the residuals (RMSE) (Table A1). All hyperspectral orthomosaics for the other
dates were calibrated to the target reflectances of the reference panels measured by the
ASD FieldSpec3 in the field on the reference date (19 July). Table A1 lists the radiometric
accuracy for each date’s first 40 bands. The 41st band was eliminated, as it contained a
sharp drop in reflectances, which was not explicable. The mean values for the six flight
dates range from R2 = 0.99 (RMSE = 0.01) for the reference date (19 July) to R2 = 0.94
(RMSE = 0.04) for the following flight date (27 July), where the lightning conditions varied
the most, indicating mean reflectance errors below 2% vs. 5% for the worst case.

When comparing the canopy reflectances collected in situ to the spectra obtained by
the OXI VNIR-40 sensor, spectral shifts between distinct spectral features were detected
due to a broad bandwidth of the spectral bands of Gamaya-camera. The resulting overlap
of individual spectral bands results in spectral smoothing and a related shift in spectral
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band positions. This is comparable to a low-pass filtering effect, as shown in Figure 2A.
Therefore, a systematic test was implemented based on a comparison between the ASD
FieldSpec3 and UAV image sample spectra of the identical plot area. Characteristic spectral
shape features, such as maximum peaks of green and NIR, the inflections points of the
green-red edge, and the red edge inflection point, were used by means of first and second
derivative of the hyperspectral reflectance curve. The OXI sensor band positions were then
shifted towards the ASD band positions by spline interpolation, showing the result of the
OXI spectrum in the red curve (Figure 2B).

Figure 2. Comparison of the canopy reflectance between spectra derived from a field spectrometer
(ASD FieldSpec3, blue) and UAV spectra (red) before (A) and after (B) correction of spectral band
positions for a representative plot (LAI = 2.04 m2/m2, fCover = 0.65, and CCC = 1.44 g/m2) on
19 July.

3. Methods
3.1. Radiative Transfer Model

The Soil–Leaf–Canopy (SLC) model [66], a combination of the leaf model PROSPECT-4 [67],
the canopy model 4SAIL2 [66], and the soil model Hapke [68] were used in this study to
predict the LAI, CCC, and fCover of potato crops (heterogeneous and discontinuous crop).
The SLC model does not have many input parameters to optimize, as compared to other
complex 3D models (e.g., DART [69]), which are mainly used when considering a spatially
heterogeneous plant canopy [70]. Moreover, the fCover variable is directly quantified as a
model output, compared to other RTMs (e.g., PROSAIL [71]).

SLC simulates canopy reflectance over the spectral range between 400 and 2500 nm with
a spectral resolution of 1 nm. The PROSPECT-4 model simulates directional-hemispherical
reflectance and transmittance for a single leaf. The input variables of the model are the
leaf structure parameter (N) and leaf biochemical constituents, including leaf chlorophyll
content (LCC), leaf dry matter content (Cm), leaf water content (Cw), and leaf senescent
matter content (Cs). The 4SAIL2 model, which is an amended version of the turbid medium
SAIL model, simulates the top of the canopy reflectance. This model is a function of a series
of variables: The fraction of brown canopy area (fB), the dissociation factor (D), hotspot
(hot), tree shape factor (Zeta), crown cover (Cv), leaf area index (LAI), and leaf inclination
distribution function (LIDF a and b). The latter three input variables were used to retrieve
the effective fraction of vegetation cover (fCover) [72], as follows:

f Cover = Cv ∗ (1− e−k∗LAI), (2)

where Cv is the vertical crown cover, e−k∗LAI is the gap fraction following the Lambert–Beer
law, and k is the extinction coefficient in the vertical direction, which depends on the leaf
inclination distribution function (LIDF) and the viewing angle (Θ).
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Moreover, in the Hapke model, the soil moisture content (SM) and Hapke parameters
are employed for simulating soil spectra (bidirectional reflectance distribution function;
BRDF). To observe the geometry of the UAV image capture, the observed zenith angle (tto),
relative azimuth angles (psi), and the solar zenith (tts) (28°, 29°, 30°, 31°, 33°, and 35°) pa-
rameters were fixed at nadir-viewing position under different field conditions. To constrain
the inversion result, the ranges and distributions of free variables (LAI, LCC, and Cv) were
set, based on prior knowledge from ground measurements, while the remaining parameters
were fixed based on the literature, as shown in Table 2.

3.2. Look-Up Table Generation-Based SLC Model

Extending a previous study [30], we generated two LUTs (LUTstd and LUTreg) with a
size of 17,280 simulations. The input model variables of the standard LUT (LUTstd) were
independent of each other, following the uniform and multivariate normal distribution
function. To cover and maximize the sampling space of input variables, Latin Hypercube
Sampling (LHS) was employed [73]. On the other hand, the regularized LUT (LUTreg)
relied on the correlated variables naturally found in the field. There were strong correlations
between measured LAI and fCover (R = 0.83), LAI and CCC (R = 0.97), and CCC and
fCover (R = 0.79) variables. To preserve their relationships and law distributions in the SLC
model (Figure A1 and Table 2), the Cholesky method (LU) combined with Latin Hypercube
Sampling (LHS) was used to create the cross-correlation between the model input variables
of LAI, Cv, and LCC [74,75].

The detailed calculations of the proposed algorithm used in LUTreg are described as
follows, broken down into steps and implemented using Matlab 2019:

(1) Initialize the number of canopy simulations (n = 17,280) and the number of correlated
variables with their normal distributions.

(2) Generate the Latin Hypercube Samples (Z) with the size of n × 3, considering the
number of canopy simulations (n) and correlated variables (3) that divide into samples
(N), with the same probability of 1/N, and selecting one sampling value of these
samples in each partition randomly [76].

(3) Define the correlation matrices between three measured variables (M) and between
the generated values of LHS (m), following the size of the correlated variables.

(4) Calculate the non-singular lower triangular matrix (L) of the measured variables by
using the Cholesky decomposition method (LU) for the correlation or covariance
matrix (M), which satisfies:

M = LLT =

1 R R
R 1 R
R R 1

 =

σi 0 0
a b 0
c d e

σi a c
0 b d
0 0 e

 =

 σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3

ρ1,3σ1σ3 ρ2, 3σ2σ3 σ2
3

, (3)

L = Cholesky(M), (4)

where M(3 × 3) is a Hermitian positive-definite matrix, which is decomposed into
lower triangular (L) and upper triangular (LT) matrices; R is the correlation coefficient
used in the correlation matrix M; σi is the standard deviation of the variable xi; ρi,j is
the covariance between xi and j; a, c, and d could be positive, negative or zero values
of off-diagonal values; and b and e cannot be equal to zero.

(5) Calculate the non-singular lower triangular matrix (Q) from the correlation matrix of
the LHS realizations (m(3 × 3)):

Q = Cholesky(m). (5)

(6) Simulate the correlated random variate, which is based on transforming the realization
matrix of LHS (Z) to a new matrix, denoted Z1, with size n × 3.

Z1(i, j, k) = Z(n × 3) ∗ (L(3 × 3) ∗ Q(3 × 3))
T . (6)
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(7) Convert the uniform correlated variables of Z1 to the normal distribution function,
as defined before for three variables (Step 1). Then, each product of Z1 represents
(Z1i) for LAI, (Z1j) for Cv, and (Z1k) for LCC.

More details about the implementation of the Cholesky method (LU) and LHS to
correlate the model inputs using the ground measurements can be found in [30,76]. The sim-
ulated spectra of both LUTs (LUTstd and LUTreg) were resampled, corresponding to the
40 bands of the Gamaya OXI VNIR-40. To reduce the uncertainties of the modelled and
measured spectra, as well as autocorrelation between the spectrum and input variables,
a Gaussian distribution with 0.5% was injected into the canopy simulations [77].

As the fully green leaves of the potato crop were observed during the growing season,
the value of the fraction of the brown canopy area (fB) was set to zero (Table 2). Furthermore,
the value of the leaf senescent material (Cs) was fixed as zero, using our knowledge in the
field. To characterize the mixture between green and brown leaves, the D parameter is set
equal to zero when brown leaves are homogeneously distributed over the top layer of the
canopy. On the other hand, when the brown leaves are at the bottom of the canopy layer,
the D value is equal to 1, as was observed in our field trial. The tree shape factor (Zeta) was
calculated based on the ratio of crown diameter to crown height. The values of crop height
and crown diameter were roughly set as 100 cm, such that the value of zeta was defined
as 1. The range of Cv values used in 4SAIL2 was defined according to the study of [30],
based on Equation (2) with a fixed value of the extinction coefficient (K = 0.55). Lastly,
the Hapke parameters were set as default values for ploughed soil [66], due to a lack of
information in the soil measurements.

Table 2. Input parameters of the Soil–Leaf–Canopy (SLC) model used for generating a look-up table (LUT).

Parameter Unit Range Distribution Fixed Value ReferenceMin Max

Leaf Parameter (PROSPECT-4)

Internal leaf structure, N Unitless 1 2.5 Uniform [78,79]

Chlorophyll content, LCC (µg cm−2) 40 90 Gaussian From field measurement
µ = 65.36, σ = 9.38

Water content, Cw (cm) 0.0317 [5]

Dry matter content, Cm (g cm−2) 0.005 [79]

Senescence material, Cs Unitless 0 From field experience

Canopy Parameter (4SAIL2)

Leaf area index, LAI (m2 m−2) 0.05 7 Gaussian From field measurement
µ = 2.85, σ = 1.17

Leaf inclination distribution functions (LIDFa
and LIDFb)

Unitless LIDFa (0.66), LIDFb (−0.04) [30]

Hotspot coefficient, hot (m m−1) 0.05 [80]

Vertical crown cover, Cv Unitless 0.05 1 Gaussian [30]
µ = 0.71, σ = 0.23

Tree shape factor, zeta Unitless 1 From field experience

Layer dissociation factor, D Unitless 1 From field experience

Fraction of brown canopy area, fB Unitless 0 From field experience

Soil parameters (Hapke)

Hapke_b Unitless 0.84 [66,72]

Hapke_c Unitless 0.68 -

Hapke_h Unitless 0.23 -

Hapke_B0 Unitless 0.3 -

Soil moisture, SM Unitless 15 From field experience

Note: µ is the mean and σ is the standard deviation.
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3.3. Retrieval Strategies
3.3.1. Physically Based Method

The retrievals from LUTstd- and LUTreg-based inversion were applied to 156 of the
measured spectra recorded during six observation dates and at three levels of nitrogen
fertilizers (N80, N180, and N280). The RMSE was used as a cost function, in order to find
the closest match between measured and simulated spectra, sorted in ascending order
(i.e., lowest to highest). Consequently, the best single solution for a possible variable
combination could be defined. However, this solution may not be the unique or optimal
result, due to measurement errors and model inadequacies [25]. In an attempt to solve
the inverse problem, averaging similar input variable combinations with the smallest
differences between the measured and simulated spectra were calculated using the mean
or median [25,81,82]. However, the median of 300 LUT entries was used as an optimal
solution, as has been pointed out previously [30].

3.3.2. Hybrid Method

From the available ML algorithms in the MLRA toolbox of ARTMO, three approaches
were selected for this study (Table 3). They were classified into non-kernel and kernel
regression approaches: Random forests (Tree Bagger; RF) and Conical correlation for-
est (CCF) as non-kernel methods; and Gaussian process regression (GPR) as a kernel
method. After identification of the best type of inverted LUTs (LUTstd and LUTreg), the op-
timal LUT—containing the pairs of modelled spectra and corresponding input model
variables—was used for training. Using a large training data set of simulations may not
be beneficial in several ML algorithms, due to the redundant information and the calcu-
lation time [83]. To reduce the size of the training sets, different subsets, starting from
100 to 5000 simulated spectra, were randomly sampled from the original pooled data
set (17,280 simulations). The ten subsets were used for training and testing the three ML
methods. This procedure was repeated ten times, using the k-fold cross-validation strategy.
In order to identify the most appropriate sample size and method of ML, ground validation
based on in situ data, as an independent test, was mainly used for evaluation; instead
of using the cross-validation relying on the simulated data set from the SLC model (i.e.,
theoretical validation).

3.3.3. Statistical Method Using the Exposure Time

Among the ML methods presented in Table 3, Random forest regression (RF) was
selected to train the in situ data. RF provides high accuracy for estimation without a
tendency for overfitting [39,42,84]. Thus, it enabled us to evaluate the performances of
LUTreg and hybrid methods, where no in situ data were used for the model calibration.

Table 3. List of selected ML methods implemented in ARTMO toolbox.

Algorithm Brief Description References

Non-Linear Non-Parametric Regression

Random Forest (Tree Bagger) RF is an extension over bagging trees. In particular, random selection is applied
to construct different subsets of training data sets, as well as their features,
to grow trees instead of using all features. This leads to a consensus prediction.

[51]

Conical Correlation Forest CCF is a member of the decision tree ensemble family. Conical correlation
analysis is used to find feature projections, wherein a voting rule combines the
predictions of individual conical correlation trees to make a final prediction for
unknown samples.

[85,86]

Gaussian Process Regression GPR, as one of the kernel-based regression methods, is a stochastic probability
distribution-based process of estimation by providing the mean and covariance.
Consequently, the confidence interval around the mean predictions can be
provided to assess the uncertainties.

[87]

With the aim of reducing the effect of spatial autocorrelation in the 156 experimental
samples, leaving-one-sampling-date-out (n = 27) as unseen data in the model was per-
formed. This procedure was repeated for each sampling date, except for the first date,
in which the model was trained with 135 samples and the remaining samples (n = 21) were



Remote Sens. 2021, 13, 1748 10 of 25

used for validation. As image acquisition in our experiment was carried out under varying
illumination conditions, the exposure time was added as independent variable besides the
measured spectra to estimate LAI, fCover and CCC variables during the training process
(hereafter denoted as RFexp).

3.4. Model Validation

The LAI, fCover, and CCC estimates obtained from the retrieval methods were as-
sessed using common statistical indicators, such as the coefficient of determination (R2),
normalized root mean square error (NRMSE (%), and root mean square error (RMSE)
(Equation (3)). In hybrid methods based on ML, the Friedman test [88], followed by a
pairwise multiple comparison test using the Bergmann–Hommel procedure adjusted for p-
values, was performed to determine whether one of the MLRAs was statistically significant
in the estimates. For the LUT inversion methods (LUTreg and LUTstd), the paired t-test
was applied to evaluate the significance between different levels of nitrogen.

NRMSE% =
RMSE

range of measured variable
∗ 100. (7)

After evaluating the accuracy assessment between retrieval strategies, the best method
was used to map the canopy traits using UAV images taken under sunny conditions
(19 July). The non-potato crop area (soil and weeds) was manually masked out from the
UAV image using the ENVI software (v. 5.1, Harris Corporation, Melbourne, FL, USA).
Then, the best retrieval method was applied to the potato crop-masked images.

4. Results
4.1. Descriptive Statistics of Field Measurements

Table 4 shows the detailed summary statistics of the biochemical and biophysical
characteristics (LAI, fCover, and CCC) for 156 potato samples. The table reveals that the
mean of measured variables increased continuously, until they reached a maximum value
on 5 August (maturity stage). At the end of the growing season (10 August), the mean of
measured variables decreased, when senescence took place. Furthermore, based on the
combined data of the six observation dates, there were high variabilities in the coefficient of
variation (C.V.) measures for LAI and CCC variables, as compared to fCover. This indicates
that the measured fCover was more stable than that of measured LAI and CCC.

4.2. LUTreg- and LUTstd-Based Inversion

The performance of LUTreg was evaluated against LUTstd, in terms of LAI, fCover,
and CCC predictions, using the whole data of the six observation dates. At different levels
of nitrogen fertilization, there was a clear enhancement in LAI and CCC estimates, but not
for the fCover estimate (Figures 3 and 4). With the treatment rates of nitrogen (N80 and
N180), the accuracy, in terms of R2 and NRMSE (%), improved in the estimated LAI and
CCC; however, when increasing the level of nitrogen (N280), their accuracies started to
decrease. For fCover, the observation was the same as LAI and CCC, where the accuracy
improved slightly in LUTreg with the standard level of nitrogen (N180).
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Table 4. Descriptive statistics of the measured variables over six dates in 2016 for a potato crop.

Var. Stats.
8 July 14 July 19 July 27 July 05 August 10 August

All Data
Tuber Bulking Tuber Bulking and Flowering Tuber Bulking and Flowering Maturity Maturity Maturity

LAI (m2/m2)

Mean 1.91 2.19 2.22 2.98 3.94 3.69 2.85
Min 0.19 0.06 0.56 0.92 1.64 2.35 0.06
Max 2.84 3.74 4.04 5.25 6.67 5.46 6.67

Stdev 0.62 0.91 0.86 0.99 1.05 0.77 1.17
C.V. 0.32 0.42 0.39 0.33 0.27 0.21 0.41

fCover

Mean 0.47 0.58 0.62 0.77 0.91 0.88 0.71
Min 0.05 0.15 0.1 0.35 0.55 0.7 0.05
Max 0.65 0.85 0.95 0.95 1 1 1

Stdev 0.17 0.22 0.25 0.14 0.12 0.09 0.23
C.V. 0.36 0.38 0.41 0.19 0.13 0.11 0.33

CCC (g/m2)

Mean 1.37 1.48 1.66 1.93 2.27 2.22 1.84
Min 0.15 0.05 0.38 0.48 0.81 1.18 0.05
Max 2.1 2.89 3.3 3.62 3.85 3.63 3.85

Stdev 0.47 0.68 0.77 0.78 0.69 0.6 0.75
C.V. 0.35 0.46 0.46 0.4 0.31 0.27 0.41

Note: Var. are the variables of interest; Stdev is the standard deviation; Min is the minimum value; Max is the maximum value; C.V. is the coefficient of variation; LAI is the leaf area index; CCC is the
canopy chlorophyll content; and fCover is the fractional vegetation cover.
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Figure 3. The coefficient of determination (R2) obtained from LUTreg and LUTstd in predictions of LAI, fCover, and CCC at
three levels of nitrogen.

Figure 4. The normalized root mean square error (NRMSE%) obtained from LUTreg and LUTstd in predictions of LAI,
fCover, and CCC at three levels of nitrogen.

Figure 5. Scatterplots of LAI (A), fCover (B), and CCC (C) obtained from LUTreg using all data (156 samples); with trend
lines for linear fitting (black) and 1:1 line (dashed red).

Using the paired t-test, significant differences between the two types of LUTs (LUTstd
and LUTrteg) were observed for LAI, fCover, and CCC, at p < 0.05. Significant differences
between the three levels of nitrogen in the estimations were also found between LUTreg
and LUTstd. Figure 5 represents the tendency of predictions to assess the permanence
of LUTreg and LUTstd, in terms of over-or underestimation. LUTreg underestimated the
values of LAI (above 4), fCover (above 0.8), and CCC (above 2.5). However, in LUTstd the
underestimation of LAI, CCC, and fCover started above 3, 1.5, and 0.8 values, respectively
(Figure A2).

4.3. Hybrid Methods Based on ML

The validation accuracies of the predicted LAI, fCover, and CCC by the three selected
ML methods are presented to identify the best method (Table 5) and best sample size using
all data sets (n = 156 samples), as shown in Appendix A and (Table A2 (for LAI), Table A3
(for fCover), and Table A4 (for CCC). GPR outperformed the other methods, when using a
sampling size of 100 samples, for LAI (R2 = 0.70, NRMSE% = 9.80). RF and CCF were the
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best methods for fCover and CCC when using sample sizes of 500 and 1000, respectively
(R2 = 0.82 and NRMSE% = 10.59 for fCover; and R2 = 0.55 and NRMSE% = 13.4 for CCC).

Table 5. Accuracy assessment between hybrid method-based ML approaches for the whole
growth season.

Methods Stats. LAI(m2/m2) fCover CCC(g/m2)

RF R2 0.77 0.82 0.81
NRMSE(%) 10.59 10.59 15.06

CCF R2 0.59 0.65 0.55
NRMSE(%) 11.59 16.58 13.40

GPR R2 0.70 0.68 0.60
NRMSE(%) 9.80 17.58 17.26

Note: The results of ground validation obtained from a hybrid method based on the best sample size, where the
bold number indicates the best results; Stats is the statistical measures; R2 is the coefficient of determination; and
NRMSE (%) is a normalized root mean square error.

There were significant differences between the three hybrid methods (p < 0.05) for
LAI (0.0045), fCover (0.00063), and CCC (0.000018). When assessing the significant dif-
ference between LUTreg and the best method of ML, LAI did not show any difference
(0.082), as compared to fCover (0.00013) and CCC (0.0000029). Scatter plots (Figure 6)
show that the estimated CCC had a strong tendency of underestimation for higher values
(above 2.5), as compared to LUTreg. For other estimated values (LAI and fCover) using
GPR and RF, the underestimation phenomena appeared the same as those obtained with
the LUTreg method.

Figure 6. Scatterplots of LAI, fCover, and CCC predicted from hybrid models based on GPR (A), RF (B), and CCF (C),
respectively; with trend lines for linear fitting (black) and 1:1 line (dashed red).

4.4. Retrieval Strategies Under Illumination Variation and Crop Developments Over Time

The results presented in Table 6 summarize the effects of illumination variability
and growth stage on the estimation accuracies when using different retrieval methods.
In general, RFexp delivered high accuracies for LAI, fCover, and CCC through crop de-
velopment under sunny and cloudy conditions. The four methods were systematically
evaluated, based on combining the six observation dates (all data = 156 samples). For LAI
and fCover, the rank of retrieval methods, in terms of highest to lowest accuracy, was
RFexp > RF > LUTreg > hybrid; while the performance of the methods for CCC were
ordered as LUTreg > hybrid > RFexp > RF.
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Variation in illumination obviously impacted LAI retrieval, where sunny days were
always the best for statistical methods, as compared to other dates. However, when
comparing two methods (LUTreg and hybrid methods) under cloudy conditions and at the
maturity stage (5 August), the best accuracy of LAI was obtained from LUTreg. For CCC,
the result was inconsistent with LAI using statistical methods (RF and RFexp), where
the CCC estimates were not optimal under sunny conditions. Nevertheless, when using
hybrid and LUTreg methods, the results of CCC obtained on the date of 5 August were
of the same order of magnitude as those obtained for LAI. In the last case for fCover, it
was shown that on 27 July (under cloudy conditions), four methods (RFexp, RF, LUTreg,
and hybrid) yielded the best accuracy, as compared to other observation dates. A final
observation was that on 10 August (the final stage of crop growth), the accuracy of all
estimates (LAI, fCover and CCC) started to degrade, which was remarkably consistent
with the measured data. Figure 7 shows the spatial distribution of predictive maps for LAI,
fCover, and CCC, at different levels of nitrogen, using RFexp for the observation date of 19
July. When increasing the level of nitrogen (N280), the plots displayed more green color
(higher values) than the plots under lower levels of nitrogen (N80 and N180).

Table 6. The coefficient of determination (R2) and Normalized Root Mean Square Error (NRMSE %) values obtained from
different retrieval strategies.

Estimations Growth Seasons Illumination

Different Retrieval Strategies
Hybrid LUTreg RF RFexp

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

LAI(m2/m2)

8 July (Tuber bulking) Partial cloud cover 0.56 23.23 0.73 13.81 0.70 12.64 0.8 12.27
14 July (Tuber bulking and flowering) Partial cloud cover 0.64 15.26 0.71 14.83 0.65 16.23 0.76 14.69
19 July (Tuber bulking and flowering) Clear/Sunny 0.83 16.66 0.73 13.87 0.87 9.33 0.88 8.11

27 July (Maturity) Partial cloud cover 0.52 17.35 0.59 14.57 0.58 14.54 0.71 11.59
5 August (Maturity) Full cloud cover 0.61 15.15 0.70 12.09 0.46 15.50 0.63 11.81

10 August (Maturity) Full cloud cover 0.16 33.95 0.26 24.53 0.25 25.27 0.43 14.25
All data - 0.70 9.80 0.77 9.18 0.80 5.51 0.83 5.36

fCover

8 July (Tuber bulking) Partial cloud cover 0.41 22.92 0.75 14.37 0.7 15.61 0.76 13.82
14 July(Tuber bulking and flowering) Partial cloud cover 0.64 19.92 0.77 17.12 0.72 17.5 0.79 13.71
19 July (Tuber bulking and flowering) Clear/Sunny 0.71 14.35 0.74 14.99 0.77 14.46 0.80 13.14

27 July (Maturity) Partial cloud cover 0.55 13.97 0.74 12.80 0.740 12.53 0.86 8.03
5 August (Maturity) Full cloud cover 0.38 13.96 0.71 13.76 0.66 21.89 0.91 8.81

10 August (Maturity) Full cloud cover 0.11 33.42 0.12 33.06 0.45 36.56 0.71 10.93
All data - 0.82 10.59 0.83 10.46 0.85 6.23 0.86 5.87

CCC(g/m2)

8 July (Tuber bulking) Partial cloud cover 0.64 26.12 0.6 18.05 0.61 17.20 0.68 15.49
14 July(Tuber bulking and flowering) Partial cloud cover 0.68 16.83 0.6 17.09 0.65 15.59 0.75 13.35
19 July (Tuber bulking and flowering) Clear/Sunny 0.79 15.83 0.64 16.11 0.80 17.32 0.85 13.66

27 July (Maturity) Partial cloud cover 0.52 18.25 0.62 16.92 0.32 18.15 0.52 15.04
5 August (Maturity) Full cloud cover 0.55 15.59 0.54 14.49 0.47 19.28 0.56 14.53

10 August (Maturity) Full cloud cover 0.08 30.86 0.09 23.33 0.11 22.34 0.44 15.12
All data - 0.55 13.40 0.62 12.16 0.65 16.21 0.61 15.01

Note: The highlighted numbers indicate the best estimates for retrieval methods: For LAI, using the Hybrid method using Gaussian
Process Regression (GPR); for fCover, using Random Forest (RF); and, for CCC, using Conical Correlation Forest (CCF) and
LUTreg-based inversion (LUTreg).
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Figure 7. Predictive maps for LAI (A), CCC (B), and fCover (C) using RFexp under sunny day
conditions (19 July). The polygons show the applied nitrogen fertilization rates for potato crop
development; while the black stars present the exact locations of representative plots.

5. Discussion
5.1. The Use of Correlated Variables in LUTreg Inversion

In this study, the regularization scheme based on the introduction of variable corre-
lation obtained from the in situ data into LUTreg successfully improved the estimated
variables of LAI and CCC at different levels of nitrogen, as compared to fCover (Figure 4).
The results from LUTreg emphasized that when increasing the level of nitrogen (N280),
the crop cannot respond, leading to a decrease in the accuracy of crop traits (i.e., LAI and
CCC). Moreover, the unrealistic simulated canopy spectra in the near-infrared (NIR), which
is controlled by several canopy architecture variables (e.g., LAI, LIDF, Cv, Cm, and Cw),
decreased, compared to those obtained from LUTstd.

When combining the whole data from the six observation dates (Figure 5), the improve-
ment for estimated fCover (R2 = 0.83 and NRMSE =10.46%) was slightly increased in LUTreg,
as compared to LUTstd (R2 = 0.80 and NRMSE = 13.13%). However, for LAI and CCC obtained
from LUTreg, the accuracies were considerably improved (R2 = 0.77 and NRMSE = 9.18% for
LAI; R2 = 0.62 and NRMSE = 12.16% for CCC) rather than LUTstd (R2 = 0.61 and NRMSE =
14.45% for LAI; R2 = 0.46 and NRMSE = 18.28% for CCC). LUTreg underestimated the high
values of LAI (above 4) due to saturation; this result is in line with previous studies [79,89,90].
The SLC model, as an extension of PROSAIL, did not take the row-structure of the potato
crop into account; therefore, underestimation often occurred. This, in turn, indirectly affected
the CCC estimate; where, with increasing values of CCC (above 2.5), the scattered points were
distributed below the 1:1 line. In fCover, underestimation (more than 0.80) took place as the
soil background was fully covered by the crop. The assumptions of the SLC model (1D turbid
medium RTM) were met, as has been previously reported [30,72].

On the date of 19 July, under sunny conditions, using UAV-based hyperspectral data
(Table 6), the accuracy of estimates from LUTreg was R2 = 0.73 and NRMSE = 13.87% for
LAI, R2 = 0.74 and NRMSE = 14.99% for fCover, and R2 = 0.64 and NRMSE = 16.11% for
CCC. The accuracy of our results was higher than that in previous studies [16,30]. The latter
study integrated two correlated variables (LAI and fCover) through the Cholesky method
into LUTreg using ASD FieldSpec3 on 19 July. Their findings revealed that the estimated
fCover (R2 = 0.70 and NRMSE = 17.85%) did not show any improvement, as compared
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to the estimated LAI and CCC (R2 = 0.71 and NRMSE = 25.57% for LAI and R2 = 0.70
and NRMSE = 14.01% for CCC). The reason for having a low improvement for estimated
fCover in the present study might be that the value of the LIDF parameter was fixed in
LUTreg, in order to simplify the model parameterization and avoid confusion with other
free variables. The LAI and Cv variables used for quantifying fCover have a great influence
on the NIR spectrum and, thus, a problem of the linear spectral mixture of soil and canopy
might be introduced in the model simulation for certain plots [30]. Moreover, fixing some
parameters, such as leaf dry matter and water content (Cm and Cw), based on the literature,
might have had an impact on the final result. The discrepancies between the presented
result and the results of [30] on 19 July (sunny day) could be due to the different sensor
types (ASD FielSpec3 and Gamaya), the types of distributed variables and their ranges,
and the number of correlated variables used in LUTreg.

5.2. Evaluation of the Retrieval Methods at Different Observation Dates

For the crop growing season, over the six observation dates, retrieval methods (LUTreg,
hybrid, RF, and RFexp) were used to predict crop traits. There are three aspects that cannot
be differentiated to study their effects on the estimates: Illumination variation, growth cycle,
and the variation in structural crop traits (e.g., plant height, leaf orientation, and plant size).

For LAI, statistical methods (RF and RFexp) performed optimally under sunny condi-
tions, as compared to LUTreg inversion and hybrid methods. However, under cloudy con-
ditions and the late growing season dates (5 and 10 August), LUTreg inversion turned out
to be the best. This indicates that statistical methods (RF and RFexp) were apparently more
affected by illumination conditions than LUTreg and hybrid methods. The results obtained
from statistical method (RFexp) under sunny conditions was consistent (NRMSE = 9.33%
and RMSE = 0.32 m2/m2) with a previous study [91] that used UAV-hyperspectral vegeta-
tion index data (OSAVI) for a potato crop (RMSE of 0.67 m2/m2).

The best prediction for fCover was observed for the RFexp method under partial cloud
conditions (27 July) at the maturity stage. Furthermore, the other methods (RF, LUTreg,
and hybrid) also yielded the best predictions on that date (27 July). This observation was
contradictory with our expectation, as the prediction of fCover under sunny conditions was
not the best. This might partly be attributed to the impact of phenological growth stages
on crop status, rather than the cloud shadow effect. In fact, using any retrieval method can
yield an accurate result when the crop is near closure and covering the soil background.
Our results (RMSE below 10%) are supported by a similar retrieval study [92], where the
wide dynamic range vegetation index (WDRVI) delivered high accuracy with RMSE below
6% using hyperspectral data for corn. Likewise, for the CCC, the best estimate did not
occur under sunny conditions (19 July), but on 14 July (using the statistical methods) or
on 5 August (using LUTreg and hybrid methods), under variable illumination conditions.
The unstable CCC result might have been introduced due to the uncertainty of the estimated
LCC. Since Equation (1) was used in this study for converting the SPAD data to LCC values,
a poor relationship between them was founded for potato crops (R2 = 0.46), as compared
to other studied plant types [64].

We noticed that across the observation dates, LUTreg inversion could deliver generally
superior results, compared to the hybrid method. These findings were expected, as a hybrid
method inevitably is influenced by confounding factors, including: (1) LUT parameteriza-
tion. Using prior knowledge from previous studies to fix some parameters (as mentioned
previously) was possibly anticipated to lead to some error in the simulated canopy spectra.
Thus, tuning the model input parameters (i.e., fB, D, hot, Zeta, and LIDF) are of tremen-
dous importance in improving canopy simulations during crop development over time,
as UAV-hyperspectral data has a very high spatial resolution (1.7 cm). At this resolution,
the shadowing effect, cast by plants, and the bidirectional effects might have an impact. (2) ML
optimization. Each algorithm has its own set of parameters; thus, they need to be tuned prop-
erly to having optimal values. Finally, (3) the proper choice of RTM type. The SLC radiative
transfer model treats the canopy as a horizontally uniform layer (1D), which does not accom-
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modate for row crops and, as such, does not fully represent the actual canopy architecture
of the row-structure of the potato crop. For instance, at the early stage, the soil background
is exposed within a plot, representing the vegetation in both the row and the furrow [79,93].
However, during the final stages, the potato crop completely covers the surface, leading to
a homogeneous canopy. Hence, the model delivers a more accurate result. Nevertheless,
the findings of LAI and fCover using the GPR and RF (hybrid methods; Figure 6) indicate
that these methods achieved good accuracies, in terms of R2 and NRMSE (%), as opposed to
CCF, when used for the CCC estimate. The latter might be affected due to the limitation of
ML methods in predicting vegetation variables from remote sensing data [37,94] or the lack of
accurate estimation of LCC obtained from the SPAD measurements.

The results revealed that the four retrieval methods—hybrid, LUTreg, RF, and RFexp—were
affected by two main issues. First, the measured spectra still had some uncertainties. These
may have originated from: (1) The exposure time, which was not adjusted carefully during
the cloudy dates (i.e., 14 July); (2) instrumental issues, such as the spectral correction
method was carried out for Gamaya to reduce the mismatch between ASD FieldSpec3 and
UAV spectral band positions. This correction was not an accurate solution to solve the
overlapping bandwidths of the spectral bands of Gamaya sensor. Second, uncertainties
could have been induced by the in situ measurements. Using the LAI-2000 instrument
often leads to LAI underestimation in the case of potato crops, as this instrument relies on
several assumptions [95] which were violated in our case study. The assumptions of the
LAI-2000 are that the potato leaves are small for the observed field of view (148° FOV), are
an optical black in the wavelength region below 490 nm (i.e., not transmitting or reflecting
incident radiation), and are randomly oriented with respect to azimuth [61]. For fCover,
visual assessment is widely used in plant communities, due to its simplicity and rapid mea-
surement; however, it can be a potential source of error, due to its subjective dependency
and the difficulty in measuring the variable accurately [96]. Furthermore, when calculating
the LCC from SPAD measurements using Equation (1), the transfer function should be
calibrated to the particular crop of interest [97].

6. Conclusions

The purpose of this study was to evaluate the LUTreg-based inversion method inte-
grated with the Cholesky method, in terms of providing improved LAI, fCover, and CCC
estimates for a potato crop using UAV-hyperspectral data through the crop’s development
over time. This study built upon an earlier study [30], where the selected method (LUTreg)
was determined on a single observation date from field spectroradiometer measurements.
We further compared hybrid and statistical methods, in order to investigate their perfor-
mance through the growth season under variable illumination conditions. Information
on the illumination condition was determined in the statistical method, to improve the
accuracy of estimates.

Our major finding was that the LUTreg method was able to improve the accuracy of
LAI and CCC, either using the whole data of the six observation dates or under different
levels of nitrogen. However, the estimated fCover from LUTreg was improved slightly,
as compared to LUTstd. Moreover, at each growth stage, LUTreg delivered superior
accuracies, compared to the hybrid method. However, when comparing LUTreg with the
statistical method (RF), the accuracy of LAI and fCover estimates decreased, while that for
the CCC estimate did not. Finally, the use of exposure time as an explanatory variable in
the RF method (RFexp) was successfully able to alleviate the influences of illumination
variability during image acquisition and decreasing the errors in all predictions (i.e., LAI,
fCover, and CCC).

These findings open an avenue for further studies. The use of the Cholesky method in
LUTreg using PROSAIL [71], INFORM [98], and SCOPE [99] from remotely sensed data
(e.g., Sentinel-2 and -3 imagery) needs further exploration for estimating other crop traits
(e.g., nitrogen and biomass). In addition, future endeavors may include more calibration
(e.g., radiometric correction) for UAV images acquired under cloudy conditions.
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RTK-GPS Real-Time Kinematic Global Positioning System
RGB Red-Green-Blue
SLC Soil–Leaf–Canopy
SCOPE Soil Canopy Observation, Photochemistry, and Energy fluxes
SPAD Soil Plant Analysis Development
SZA solar zenith angle
SAA solar azimuth angle
UAV unmanned aerial vehicle
UTM31N Universal Transverse Mercator Grid Zones 31North
VIS Visible range of spectrum
VNIR Visible and Near-Infrared Ranges
WDRVI Wide Dynamic Range Vegetation Index
WGS84 World Geodetic System 1984
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Appendix A

Table A1. Radiometric accuracies across bands per date of the ELC for hyperspectral UAV orthomosaics.

Observation Dates
8 July 14 July 19 July 27 July 5 August 10 August

Day1 Day2 Day3 Day4 Day5 Day6

Band No.
Band

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE RMSE
(nm)

1 474 0.99 0.0094 0.792 0.0422 0.9977 0.0044 0.9581 0.0183 0.982 0.0126 0.9634 0.018
2 483 0.9871 0.0106 0.8407 0.0367 0.999 0.003 0.9579 0.0181 0.9816 0.0127 0.9629 0.018
3 492 0.9842 0.0117 0.9236 0.0254 0.9997 0.0022 0.9633 0.0166 0.9814 0.0127 0.9619 0.018
4 501 0.9829 0.0121 0.9775 0.0142 0.9998 0.0029 0.9792 0.0121 0.9821 0.0125 0.9621 0.018
5 509 0.9838 0.0118 0.9914 0.009 0.9989 0.0051 0.9942 0.0067 0.9832 0.0122 0.9633 0.0179
6 518 0.9855 0.0112 0.9926 0.0081 0.9961 0.008 0.9883 0.0109 0.9842 0.0118 0.9649 0.0175
7 527 0.9868 0.0107 0.9925 0.0079 0.9905 0.0111 0.9588 0.0192 0.9848 0.0116 0.9661 0.0172
8 536 0.9871 0.0105 0.9921 0.008 0.9854 0.0134 0.9257 0.0252 0.9849 0.0114 0.9669 0.017
9 545 0.9869 0.0105 0.9913 0.0083 0.9835 0.014 0.9101 0.0273 0.9851 0.0113 0.9674 0.0168

10 554 0.9868 0.0106 0.99 0.0089 0.9853 0.013 0.9167 0.0257 0.9855 0.0111 0.9679 0.0166
11 569 0.9863 0.0106 0.9874 0.01 0.9897 0.0109 0.9322 0.0227 0.9856 0.0109 0.9682 0.0163
12 582 0.9857 0.0106 0.9838 0.0112 0.9935 0.009 0.9415 0.021 0.9855 0.0108 0.9681 0.0161
13 596 0.9854 0.0106 0.9785 0.0128 0.9963 0.0071 0.944 0.0205 0.9854 0.0107 0.9683 0.0158
14 610 0.9852 0.0106 0.9697 0.0152 0.9985 0.0048 0.9447 0.0203 0.9856 0.0106 0.969 0.0155
15 624 0.9845 0.0108 0.957 0.018 0.9995 0.0026 0.9444 0.0201 0.9855 0.0105 0.9697 0.0152
16 638 0.9836 0.011 0.9474 0.0197 0.9986 0.0026 0.9386 0.0208 0.9853 0.0105 0.9703 0.015
17 651 0.9811 0.0117 0.9461 0.0198 0.9979 0.0032 0.9447 0.0195 0.9855 0.0103 0.9711 0.0148
18 665 0.9762 0.0131 0.9518 0.0186 0.9986 0.003 0.967 0.0147 0.9867 0.0098 0.9725 0.0142
19 674 0.9706 0.0144 0.9619 0.0164 0.9996 0.0023 0.9838 0.01 0.9878 0.0093 0.9739 0.0137
20 682 0.968 0.0149 0.9723 0.0139 0.9996 0.0021 0.9889 0.0083 0.9875 0.0092 0.9741 0.0135
21 691 0.9829 0.038 0.9978 0.0136 0.9988 0.0093 0.998 0.0128 0.9976 0.0146 0.996 0.0187
22 699 0.9868 0.0335 0.9984 0.0117 0.9986 0.0096 0.9982 0.0115 0.9983 0.0119 0.9972 0.0157
23 708 0.9902 0.0287 0.9987 0.0105 0.9992 0.0077 0.9965 0.0171 0.9984 0.0117 0.9969 0.0163
24 716 0.9922 0.0248 0.9988 0.01 0.9996 0.0065 0.9877 0.0322 0.9984 0.0113 0.9965 0.0168
25 725 0.9882 0.0294 0.9988 0.0092 0.9998 0.0053 0.9338 0.0722 0.9982 0.0113 0.9956 0.0173
26 743 0.9845 0.0305 0.9981 0.0097 0.9995 0.0055 0.8446 0.1088 0.998 0.0111 0.9949 0.0156
27 761 0.9884 0.0237 0.998 0.0109 0.9995 0.0056 0.878 0.0937 0.9977 0.0111 0.9952 0.0135
28 779 0.987 0.0264 0.9988 0.0102 0.9996 0.0076 0.8976 0.087 0.9975 0.012 0.996 0.0131
29 797 0.9684 0.048 0.9988 0.0092 0.9997 0.0037 0.7959 0.1276 0.9981 0.0111 0.9961 0.0146
30 815 0.9747 0.0441 0.9984 0.0103 0.9999 0.0028 0.8049 0.126 0.9984 0.0102 0.9965 0.0144
31 825 0.9902 0.0275 0.9985 0.0102 0.9995 0.0073 0.9358 0.0726 0.9986 0.0094 0.9972 0.0129
32 835 0.9892 0.0293 0.9988 0.0092 0.9993 0.0081 0.9426 0.0683 0.9985 0.01 0.9972 0.0133
33 845 0.979 0.0406 0.9984 0.0105 0.9997 0.0061 0.862 0.1055 0.9978 0.0121 0.9965 0.0154
34 855 0.9851 0.0341 0.9984 0.0106 0.9996 0.0065 0.98 0.0417 0.9978 0.0124 0.9966 0.0156
35 865 0.992 0.0251 0.9987 0.0091 0.9997 0.0065 0.9906 0.0253 0.9981 0.0116 0.9973 0.014
36 875 0.9882 0.0309 0.9987 0.0089 0.9994 0.0082 0.986 0.0333 0.9986 0.0099 0.9979 0.0122
37 885 0.9882 0.0306 0.9978 0.0124 0.9985 0.0118 0.9921 0.0247 0.9985 0.0102 0.9976 0.0138
38 895 0.9887 0.0297 0.9975 0.0135 0.9997 0.0039 0.9687 0.0505 0.9973 0.0138 0.9971 0.0145
39 905 0.993 0.0229 0.9979 0.012 0.9989 0.0106 0.9428 0.0676 0.9982 0.0116 0.9966 0.0151
40 915 0.9943 0.0204 0.9987 0.01 0.9995 0.0058 0.968 0.0495 0.9986 0.0103 0.9972 0.0122

Total mean 0.985 0.0215 0.9777 0.014 0.9974 0.0066 0.9446 0.041 0.9914 0.0113 0.9821 0.0155
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Figure A1. The distribution of measured leaf area index (LAI) and leaf chlorophyll content (LCC) using all data (156 samples).

Figure A2. Scatterplots of LAI (A), fCover (B), and CCC (C) obtained from LUTstd using all data (156 samples); and the
trend lines for linear fitting (black) and 1:1 line (dashed red).

Table A2. Average NRMSE % of 10 replicates based on cross-validation and ground validation under
different sample sizes and machine learning methods for LAI estimates.

MLRAs RF CCF GPR

Samples CV GV CV GV CV GV

100 7.07 g 15.96 i 7.38 f 12.58 e 6.40 e 9.80 a

200 7.56 h 14.20 g 7.58 g 12.21 b 7.23 f 10.99 d

250 7.02 g 14.54 h 6.88 e 13.97 g 6.53 f 12.99 d

500 6.20 f 13.13 f 6.55 d 12.56 d 6.20 c 10.33 b

1000 5.18 e 12.01 e 6.52 d 12.94 g 6.20 c 15.39 h

2000 4.63 d 11.46 d 6.36 c 12.30 c 6.09 b 13.28 f

2500 4.48 c 10.59 a 6.53 d 11.59 a 6.29 d 12.10 d

3000 4.38 b 11.42 d 6.50 d 12.85 f 6.21 c 14.06 g

4000 4.06 a 10.90 c 6.15 a 12.83 f 5.86 a 13.00 e

5000 3.98 a 10.70 b 6.24 b 12.94 g 5.96 b 10.83 c

Note: The highlighted numbers indicate the best retrieval; Cv and Gv denote the cross-validation and ground
validations; the letters represent the ranking of Friedman’s aligned post-hoc test, there is no significant difference
when sharing the same letter.
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Table A3. Average NRMSE % of 10 replicates, based on cross-validation and ground validation
under different sample sizes and machine learning methods, for fCover estimates.

MLRAs RF CCF GPR

Samples CV GV CV GV CV GV

100 2.70 g 12.58 f 1.49 d 17.03 e 3.72 e 17.58 b

200 2.23 f 11.51 e 2.58 f 16.65 b 1.45 d 17.49 a

250 2.26 f 11.16 c 2.24 f 16.95 d 1.37 c 18.20 d

500 1.97 e 10.59 a 1.90 e 16.58 a 1.41 d 17.96 c

1000 1.67 d 10.83 a 1.61 16.84 c 1.32 b 18.48 e

2000 1.54 c 11.22 d 1.46 d 17.33 g 1.30 b 21.29 i

2500 1.51 c 11.06 b 1.42 c 17.13 f 1.30 b 20.73 h

3000 1.46 b 12.07 1.40 c 17.08 d 1.29 b 18.90 f

4000 1.41 a 11.01 b 1.37 a 17.29 h 1.25 a 20.37 g

5000 1.42 b 11.29 d 1.38 b 17.14 e 1.29 b 18.24 d

Note: The highlighted numbers indicate the best retrieval; Cv and Gv denote the cross-validation and ground
validations; the letters represent the ranking of Friedman’s aligned post-hoc test, there is no significant difference
when sharing the same letter.

Table A4. Average NRMSE % of 10 replicates, based on cross-validation and ground validation
under different sample sizes and machine learning methods, for CCC estimates.

MLRAs RF CCF GPR

Samples CV GV CV GV CV GV

100 7.85 i 30.45 i 8.00 g 14.20 f 7.63 h 18.21 b

200 8.93 j 26.85 h 8.58 h 15.94 g 8.17 i 29.90 i

250 7.77 h 27.84 g 7.69 f 13.85 e 7.25 g 30.47 j

500 6.57 g 23.17 f 6.93 c 14.91 g 6.60 c 17.26 a

1000 5.78 f 22.61 e 7.13 13.40 a 6.86 f 20.99 h

2000 5.01 e 20.87 d 6.99 d 13.49 b 6.69 d 19.92 e

2500 4.81 d 15.06 a 7.09 e 17.13 i 6.83 f 20.73 f

3000 4.66 c 19.07 b 7.06 e 13.44 a 6.75 e 19.86 d

4000 4.40 b 20.05 d 6.77 a 13.66 d 6.45 a 20.91 g

5000 4.32 a 19.92 c 6.89 b 13.53 c 6.59 b 19.84 c

Note: The highlighted numbers indicate the best retrieval; Cv and Gv denote the cross-validation and ground
validations; the letters represent the ranking of Friedman’s aligned post-hoc test, there is no significant difference
when sharing the same letter.
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