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Abstract: Accessible, low-cost technologies and tools are needed in the developing world to sup-
port community planning, disaster risk assessment, and land tenure. Enterprise-scale geographic
information system (GIS) software and high-resolution aerial or satellite imagery are tools which
are typically not available to or affordable for resource-limited communities. In this paper, we
present a concept of aerial data collection, 3D cadastre modeling, and disaster risk assessment using
low-cost drones and adapted open-source software. Computer vision/machine learning methods are
used to create a classified 3D cadastre that contextualizes and quantifies potential natural disaster
risk to existing or planned infrastructure. Building type and integrity are determined from aerial
imagery. Potential flood damage risk to a building is evaluated as a function of three mechanisms:
undermining (erosion) of the foundation, hydraulic pressure damage, and building collapse due to
water load. Use of Soil and Water Assessment Tool (SWAT) provides water runoff estimates that are
improved using classified land features (urban ecology, erosion marks) to improve flow direction
estimates. A convolutional neural network (CNN) is trained to find these flood-induced erosion
marks from high-resolution drone imagery. A flood damage potential metric scaled by property
value estimates results in individual and community property risk assessments.

Keywords: drone; aerial imagery; disaster risk management; classification; 3D modeling

1. Introduction and Motivation

Effective disaster risk management (DRM) requires accurate and up-to-date
models [1,2]. In many cases, DRM and supporting information comes from multiple
disaggregated and potentially out-of-date sources that may not reflect the currently built
environment [2–4]. An increase in disaster risks is also being driven by population growth
and rapid urbanization [5]. To encourage the use of an updated database that includes
high-resolution features, we present a method based on small, low-cost drone imagery and
adapted open-source tools to classify the built environment and use this information to
model flood and other risks. Resource-limited communities will benefit from on-demand
use of easily captured, low-cost, and high-resolution drone imagery to periodically update
property and natural hazard risk information [6,7].

This article presents new analytical tools to conduct aerial imagery-based assessments
for mitigating risk to existing and planned infrastructure. The goals of this work were:
(1) to produce a DRM solution using low-cost drones for data collection, 3D cadastre
modeling with the drone data, and disaster risk quantification for buildings; (2) to use
drone imagery to expand upon existing SWAT analysis tools for producing flood models
in areas with limited data; (3) to quantify building risk by combining flood models with
building classification using drone imagery. While the methods presented in this paper
apply to flooding due to this historically being a prime contributor to property damage [8],
similar methods can be used to assess other risk sources. These risk sources could include
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earth movement, such as erosion, or urban development that alters an existing natural
hydrological response.

Accurate cadastre information, or datasets that define property boundaries and own-
ership, are frequently lacking in the developing world [9]. The lack of property titles
can lead to conflict and insecurity, which, in turn, leads to instability for a country [9].
The Director of Land Affairs in the Democratic Republic of the Congo recently stated that
“drones facilitate the real-time collection and rapid updating of land data, compared with
traditional methods” [10]. A few accurate ground reference points visible in drone imagery
are all that is required to complete a detailed cadastre for a community.

The ability to capture high-resolution imagery with a low-cost drone is matched
to recent developments in Artificial Intelligence (AI) that can rapidly classify an area
for features and objects of interest as well as create a reconstructed 3D environment for
modeling purposes [11,12]. A fully convolutional neural network with Feature Pyra-
mid Network architecture from the 2020 Open Cities AI Challenge hosted by the World
Bank [13] can effectively classify buildings. The trained models from the challenge are
available for download and we plan to further train these models for different locations.
The resulting layer of identified features from the neural network can be used to build a
flood model of an environment. OpenDroneMap is an efficient, open-source structure from
motion (SfM) program used to produce 3D models from aerial imagery [14]. This software
can additionally generate digital terrain maps (DTM) from the drone imagery. The outputs
of these programs could be used to further classify buildings by condition with the use of
observed roof type as a metric for construction quality.

Flood analysis using the Soil and Water Assessment Tool (SWAT) [15] is an efficient
way to determine how flood events impact communities. SWAT accounts for terrain
features, such as water flow to sub-basins caused by gradients, and land use including
agricultural, developed, and undeveloped land. In the context of urban ecology, SWAT
models can be used to show the beneficial effects of limited development to improve water
uptake, which reduces flood height and volume.

We used the SWAT output as a baseline dataset for water damage potential along with
the detection of erosion patterns in aerial imagery to provide a remotely sensed “ground
truth” of water movement. Water marks, or erosion-caused ditches, can be correlated to
slope to improve the accuracy of flow estimation and the potential for damage to buildings.
The machine learning program Picterra [16] is used to find erosion patterns after an initial
training dataset is used, which provides large-scale water movement evidence. Combined
with a building classifier, risk is calculated using a weighted risk metric that accounts for
building integrity/quality and the proximity to water-caused erosion.

2. Drone-Based Data Collection and Analysis
2.1. Motivational Forces in Disaster Risk Management

According to the World Bank, since 1980, more than two million people and over
$3 trillion have been lost to disasters caused by natural hazards, with total damages
increasing by more than 600% from $23 billion a year in the 1980s to $150 billion a year
in the last decade [5]. In many developing countries, disaster risk is not contextualized
at the community level during the project-planning process. An example is a school in
Afghanistan funded by the World Bank, shown in Figures 1 and 2, that illustrates the
disastrous impact natural hazards can have on infrastructure if not mitigated during the
project planning process. The satellite images in Figure 1 show the location of a school
before and after flooding of the Amu Darya river in Balkh Province, Afghanistan in April
2018. The photo in Figure 2 shows the extent of the damage caused to the school by flooding.
This example underscores the need to provide donors, governments, and communities
in developing nations access to low-cost data collection and analysis tools to assess and
minimize disaster risk in order to protect lives and investments.
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Figure 1. The location of a school in Afghanistan before and after a flood (Satellite imagery: ESRI).
This flood of the Amu Darya river occurred in April 2018.

Figure 2. A school constructed in an Amu Darya river flood plain in Afghanistan and partially
destroyed by flooding. This image was provided by Development Monitors LLC.

2.2. Down-Sized and Low-Cost Drone Technology

The drone market continues to evolve, with several small and low-cost drones now
available on the consumer market. DJI is the world’s largest consumer drone producer,
with their products accounting for around 70 percent of the global consumer and enterprise
drone market [17]. In addition to commercial drones for business, DJI also sells smaller
and lower-cost drones, costing less than US $500. A comparison of the three smallest DJI
drones is shown in Figure 3.

The main advantage of sub-250 gram drones is that a country’s regulatory authority
may recognize the reduced operational risk for the low-weight aircraft, making access
to airspace easier [18]. Drones weighing less than 250 grams have inherently less kinetic
energy, and therefore less injury and damage potential, making them appealing for flight
operations in areas with higher population density.
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Figure 3. A comparison of the three smallest drones produced by DJI. This comparison tool is available on the DJI
website [19].

The use of a small, low-cost, and expendable drone can enable the inexpensive collec-
tion of high-resolution aerial imagery. The Virginia Tech Unmanned Systems Lab designed
and assembled a custom drone from inexpensive, off-the-shelf components. This drone
weighs less than 250 grams and is shown on a scale in Figure 4. The drone is made
from a custom carbon fiber frame and uses a flight controller running ArduPilot software.
The imaging system consists of a Raspberry Pi Camera V2 connected to a Raspberry Pi
Zero board. The camera is pointed downward in a fixed direction with a vibration isolated
mount and is capable of capturing 8 megapixel imagery [20].

Figure 4. Our small, low-cost drone which weighs under 250 grams.

The drone is fully autonomous and flight plans are automatically generated using
an application developed by the team. The planned mission covers a desired area while
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acquiring imagery that meets the required overlap and ground sample distance criteria.
The planned mission is uploaded to the drone using the open-source Mission Planner
software [21]. The drone is equipped with a telemetry radio for in-flight communication
with an Android application also developed by the team.

Once the mission has been created and sent to the drone, no manual user intervention
is needed other than a command to start the mission. The drone autonomously flies its
mission and collects high-resolution imagery before landing. Due to the lack of required
user input, missions with this drone can be performed by minimally trained operators,
thereby enabling this system to be used by locals in communities throughout the world.
The flight controller includes fail-safe features where the drone will return to the home
location and land in the event of a low battery or other issues during the mission. While
the current drone does not include obstacle avoidance features, we hope to include these
capabilities in a future version.

2.3. Machine Learning with Drone Imagery

Machine Learning techniques can be used on the high-resolution drone imagery
in order to detect and classify objects and features. For our work, machine learning
methods could be used to detect buildings, classify building roof type, and detect erosion
patterns in the soil. Deep Neural Networks, or Artificial Neural Networks (ANN) with
multiple layers, are considered one of the most powerful machine learning tools and have
become very popular [22]. The Convolutional Neural Network (CNN) is one of the most
popular deep neural networks [22]. “A Convolutional Neural Network is a Deep Learning
algorithm which can take in an input image, assign importance (learnable weights and
biases) to various aspects/objects in the image, and be able to differentiate one from the
other” [23]. CNNs have achieved excellent performance in machine learning problems,
especially applications that deal with image data, computer vision, and in natural language
processing (NLP) [22]. CNNs are composed of multiple layers of artificial neurons, which
are mathematical functions to output an activation value by calculating the weighted sum
of multiple inputs [24]. The behavior of these neurons will be defined by their weights and
they are able to pick out various visual features when the pixel values of an image are used
as an input to the neural network [24]. CNNs can be “trained” using labeled input data to
update the weights of its neurons in order to improve performance [24]. A test dataset is
then used to verify the accuracy of the CNN on data it has not seen before [24].

Many open source machine learning libraries exist for Deep Learning with CNNs.
Two of the most popular open source machine learning libraries are TensorFlow [25] and
PyTorch [26]. In addition to these open source libraries, proprietary software systems
are also available. For part of our work, the proprietary software Picterra was used for
creating machine learning models. Picterra enables users to build and train detectors
quickly through their intuitive online interface [16]. Although Picterra does not provide
information on the model structure, the results of these detectors can be visualized and
shared online as well as integrated with other platforms [16]. Picterra includes many pre-
trained models as a starting point for training [27] and has been used for many different
applications [28], including building detection [29].

3. The Soil and Water Assessment Tool (SWAT) in Urban-Scale Flood Modeling

SWAT is a river basin or watershed scale model that was created to predict the effect
that land management practices have on water, sediment, and agricultural chemical yields
over a long period of time [30]. The ability to model recharge and runoff makes SWAT an
ideal tool to understand the dynamic behavior of water at the confluence of urban, forested,
and agricultural areas frequently present in lower income communities. A SWAT model is
based on the water balance equation (Equation (1)) [30].

SWt = SW0 +
t

∑
i=1

(Rday −Qsur f − Ea − wseep −Qgw) (1)
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“where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content
on day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i
(mm H2O), Qsur f is the amount of surface runoff on day i (mm H2O), Ea is the amount of
evapotranspiration on day i (mm H2O), wseep is the amount of water entering the vadose
zone from the soil profile on day i (mm H2O), and Qgw is the amount of return flow on day
i (mm H2O).” [30].

Created in the early 1990s, SWAT is a very popular hydrology model used in hundreds
of published journal articles, many of which explore urban ecology—[31–33] just to name
a few. In [31], the authors explore how changes in land use affect hydrology in the River
Njoro watershed in Kenya. Baker et al. [31] created three land-use maps over a 17-year
period, ran a SWAT simulation for each one, and found that land-use changes occurring
in their study area (i.e., deforestation, increase in cropland) increased surface runoff and
decreased groundwater recharge.

There are many hydrology tools available and it can be difficult to choose the right one
for any particular study area. In [34–37], the authors compared SWAT to other commonly
used hydrology models and found SWAT to be the best continuous model for a data-scarce
area. In data-scarce areas, it can be impossible to calibrate SWAT. In [38–40], the authors
compared calibrated and uncalibrated SWAT models to measured stream flow data and
found that, in many situations, SWAT can be run without calibration. For example, [38]
explores the importance of calibrating SWAT in the Santa Cruz River Watershed for fore-
casting absolute and relative changes in stream-flow by comparing the outputs of three
SWAT models with varying degrees of calibration. The three degrees of calibration are:
uncalibrated, outlet-calibrated (most commonly used), and spatially calibrated. Using
the Percent Bias and Nash-Sutcliffe Efficiency, the observed flow was compared to the
simulated flow on a monthly time scale. Although the uncalibrated model performed the
worst, calibration did not affect the relative change in stream-flow due to precipitation or
temperature. Niraula et al. [38] found that if relative change is the factor of importance,
results from an uncalibrated model are sufficient. We are interested in comparing surface
runoff at different points in our study area, relative to the average surface runoff throughout
the study area, so relative change is the factor of importance.

The main variable of interest for our study is surface runoff. “Surface runoff, or over-
land flow, is flow that occurs along a sloping surface” [30]. SWAT has two methods for
estimating surface runoff: the SCS Curve Number and the Green & Ampt Infiltration.
The Green & Ampt Infiltration method was not an option for this study because it requires
sub-daily precipitation data, which was unavailable for the study area. The SCS Curve
Number method is an empirical model created after over 20 years of studies exploring
rainfall–runoff relationships from small rural watersheds across the US and is computed
using Equation (2) [30].

Qsur f =

(
Rday − 0.2S

)2

(Rday + 0.8S)

S = 25.4
(

1000
CN

− 10
) (2)

where Qsur f is the accumulated surface runoff/excess rainfall (mm H2O), Rday is the
daily rainfall depth (mm H2O), and CN is the daily curve number which is a function
of soil properties and land use. To determine CN, each soil type is placed into one of
four categories based on the soil’s infiltration characteristics. The U.S. Department of
Agriculture provides tables to determine CN [41].

4. Data Collection and Registration
4.1. Cadastre Systems and Data

Municipalities in developed countries use a wide variety of cadastre systems to
document property ownership. A good example is from Montgomery County, Virginia



Remote Sens. 2021, 13, 1739 7 of 23

(Figure 5). In many areas, particularly in the United States, cadastral information can be
found and downloaded freely online.

Figure 5. Sample cadastre system used in Montgomery County, VA, USA [42].

For the Commonwealth of Virginia, cadastral information is openly available on the
Open Data Portal created by the Virginia Department of Transportation [43]. For our
purposes, shapefile, or GeoJSON formats of cadastral data can be displayed in GIS software
such as QGIS [44] as shown in Figure 6. The figure shows data and satellite imagery for
Kentland Farm, which is a farm that was acquired by Virginia Tech for research purposes.
While cadastre data is openly available for much of the United States, this is not the case in
many developing countries [9].

Figure 6. Property boundary data displayed in QGIS for the Virginia Tech Kentland research farm.

4.2. Natural Disaster Risk Applications and Data

Considerable effort in creating targeted and easy-to-implement disaster risk manage-
ment (DRM) tools has resulted in a range of options for community planners. A good
example is the Open HAZUS-MH tool [45] developed by the US Federal Emergency
Management Agency (FEMA). This open-source risk modeling tool was developed for
multi-hazard risk assessment in the US. As part of a World Bank project in Afghanistan,
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Development Monitors created a natural disaster risk mapping plug-in for the open-source
GIS application QGIS. The plug-in leverages available high-resolution imagery, multi-
hazard natural disaster risk data, and a machine learning model to detect infrastructure
features in order to create community-level disaster risk maps like the one shown in
Figure 7. Multi-hazard risk data at the national and state levels are available to the general
public from many sources, including FEMA, VFRIS, and others.

Figure 7. 3D landslide risk map of two communities in Badakhshan province, Afghanistan. This image was provided by
Development Monitors LLC.

4.3. 3D Modeling

Many different approaches are being explored for 3D visualization and 3D cadastral
mapping and modeling. This includes the 3D cartographic visualization of a historical
topographic object [46]. The use of surveyed ground control points, real-time kinematic
positioning data, and Structure from Motion algorithms enable the generation of detailed
3D models of objects and their surroundings with accuracy of up to several millimeters [46].
Models like this could be transferred and shared on public geospatial databases. Research
is also being done on the use of modern game engines with geospatial data to create
immersive virtual 3D environments for geographic visualization [47]. Additionally, sig-
nificant research has been performed on the intersection of 3D cadastre data and building
information modeling (BIM), which can provide a rich repository of legal and physical
datasets in a common environment [48].

Using our drone system, we are able to collect high-resolution aerial imagery of
properties. The collected imagery can then be post-processed to produce 3D reconstructions
of an area. The open source OpenDroneMap software can be used to produce 3D textured
models, point clouds, georeferenced orthorectified images, and georeferenced Digital
Elevation Models from aerial imagery [14]. An example of a 3D reconstruction produced
from aerial imagery collected by a small, lost-cost drone is shown in Figure 8. While the
georeferenced models can be produced using geotagged images, surveyed ground control
points are needed to produce more accurate location data. Once the 3D models have been
created, these can be combined with cadastre and risk data in order to further contextualize
this information.
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Figure 8. A 3D reconstruction produced from drone imagery captured at the Virginia Tech Kentland
research farm.

4.4. Contextualizing 3D Models with Cadastre and Risk Data

In developing countries, drones coupled with a real-time kinematic (RTK) base station
can enable communities to accurately create land registries [10]. In more developed
countries, available cadastre and risk data can contextualize 3D models for mitigating risk
at the property and building level.

After drone imagery has been processed by OpenDroneMap, georeferenced outputs
can be aligned with and overlaid on top of property boundary data. The georeferenced
orthorectified image, or orthophoto, of a building at Kentland Farm is shown in Figure 9.
This orthophoto was overlaid on top of base satellite imagery and the property boundary
data using QGIS. The georeferencing was performed using the GPS data from the drone
for each of the individual images. While the image aligns reasonably well with the satellite
imagery, a GPS base station with ground control points would improve the georeferencing
accuracy. Once the orthophoto and 3D model data have been aligned with the cadastre
data, available risk data can contextualize this at the property and building levels to show
the specific properties at risk. Disaster risk information can be highlighted within the
property boundary and matched to specific portions of the 3D building data to clearly
show how the buildings may be impacted.

Additional outputs of the drone image processing include DTMs. These can be
produced by the open source OpenDroneMap software as well as many other proprietary
software options. The use of a DTM as one of the inputs for risk assessment is discussed
further in the following section.
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Figure 9. A 3D reconstruction orthophoto produced from drone imagery captured at Kentland Farm
overlaid on satellite imagery and cadastre data in QGIS.

5. SWAT Modeling and Hydrology Modeling
5.1. Dzaleka Refugee Camp Data Collection and Initial Flood Model

Located in Dowa, Malawi, Dzaleka Refugee Camp is home to 41,000 refugees from
the Democratic Republic of Congo, Rwanda, Burundi, Ethiopia, and Somalia [49]. When
they arrive, many refugees build a house out of concrete and home-made bricks created
from dug-up clay. With little urban planning and poor building materials, refugees’ homes
encounter flood damage, and many homes collapse, forcing refugees to build houses
over and over again. In some cases, a collapsed house will also be abandoned by the
owners, taking up precious space in an over-populated camp that was originally built for
10,000 people [49].

Water events can cause buildings at Dzaleka to collapse in three different ways:
foundation undermining (Figure10a), hydraulic pressure damage (Figure10b), and roof
collapse due to water load (Figure10c). Foundation undermining occurs from water
running along the dirt around the base of a structure. Over time, the dirt will wear away,
reducing the integrity of the structure’s foundation. Hydraulic pressure damage occurs
when water running along the surface applies pressure to the walls of a building causing
the walls to collapse. Roof collapse due to water load occurs when the weight of rainfall is
larger than the weight the roof can support.

This study explores the risk of foundation undermining (Figure10a) throughout Dza-
leka Refugee Camp by using drone imagery as an input for SWAT and a machine learning
program. SWAT is a small watershed model used to simulate the quantity of water over
time [15]. SWAT requires four datasets: digital terrain model (DTM), land use map, soil type
map, and weather data. Both the DTM and land use map were created using drone imagery.
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Figure 10. Buildings at Dzaleka Refugee Camp can collapse from water-related events in three
different ways: (a) foundation undermining, (b) hydraulic pressure damage, and (c) roof collapse
from water load.

In March 2020, the African Drone & Data Academy completed a mapping mission
over Dzaleka Refugee Camp (4.6 km2) using a Parrot Disco drone with a Parrot Sequoia
camera on-board. The mission was flown 120 m above ground level with 70% image
overlap. The 2603 RGB images were stitched together in Pix4D Mapper to create a digital
terrain model (DTM) (Figure 11a) and RGB orthomosaic (Figure 11b), both of which have
a resolution of 3.5 cm. Both the DTM and RGB orthomosaic were resampled to 20 cm
resolution to reduce the processing power required. ArcGIS object classification was
completed on the RGB orthomosaic to create a land-use map (Figure 11c) based on four
classifications: urban, bare, shrubland, and row crops. The 20 cm resolution DTM and
20 cm resolution land-use map were then used as inputs for SWAT.

The soil-type map was created using the Harmonized World Soil Database (HWSD),
which combines regional and national updates of worldwide soil information [50]. In HWSD,
Malawi’s soil data are from the Soil and Terrain database, which was initiated by the Food
and Agricultural Organization of the UN in 1986 [51]. The soil data have a resolution of
1 km, with many of the data points being “filled in” through interpolation. All of Dzaleka
Refugee Camp was classified as the same soil type with a dominant soil group of Lixisol.

The weather data were provided by the National Centers for Environment Prediction
Climate Forecast System Reanalysis (CFSR) which has a horizontal resolution of 38 km and
provides daily values for precipitation, temperature, wind, relative humidity, and solar
radiation from 1979–2013 [52]. Fuka et al., 2014 compared the CFSR flood model output to
the flood model output using the closest weather station for five different watersheds, [52]
found that CFSR generally has equal to or more accurate streamflow predictions. The CFSR
weather data were for a point 15.9 km northwest of the camp located at −13.582 S, 33.750 E.
SWAT used the first four years as a “warm-up”.

SWAT created 34 subbasins and 135 hydrological response units (HRU) for the
study area. Figure 12 shows the stream network (white lines), subbasins (black outlines),
and HRUs (colors). An HRU is a unique combination of subbasin, slope, land use, and soil
type. Because the entire study area only has one soil type, for our case, an HRU is a unique
combination of subbasin, slope, and land use.

Monthly accumulated surface runoff was used to correlate flood events to undermin-
ing. Surface runoff is the height of water running along the surface. This water neither
infiltrates the soil nor evaporates. From 1983–2013, the month with the greatest rain accu-
mulation was January 2013, totaling 714 mm of rain. The total generated surface runoff by
HRU in January 2013 is shown in Figure 13a. The surface runoff varies drastically through-
out Dzaleka, ranging from 265.3 mm to 479.5 mm. Because of this large range, it is clear that
some areas of the camp are less impacted by rainfall than others. Instead of studying the
worst event in recent history, the 10% surface runoff exceedance probability was analyzed,
and again the study area experiences a large range of surface runoff. Figure 13b is the
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10% surface runoff exceedance probability for Dzaleka Refugee Camp. The surface runoff
ranges from 54.6 mm to 181.3 mm. Comparing surface runoff during the worst recorded
flood event (Figure 13a) and the 10% exceedance probability event (Figure 13b), it is clear
that the amount of surface runoff in a particular HRU relative to the entire study area does
not change.

Figure 11. (a) Digital terrain model (DTM), (b) orthomosaic, and (c) land use map. The DTM and
land-use maps were created by stitching 2603 images of Dzaleka Refugee Camp together in Pix4D
Mapper. The land-use map was created by using ArcGIS Object Classification on the orthomosaic
(Figure 11b). The study area contains four different land classifications: urban (tan), bare (brown),
shrubland (black), and row crops (green).
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Figure 12. The initial SWAT output contains 34 subbasins (black outlines) based on the stream
network (white lines) and 135 HRUs (colors).

Figure 13. (a) Millimeters of water surface runoff accumulated in January 2013; (b) Millimeters of water surface runoff for a
10% exceedance event.
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This is very useful information, but SWAT is only as powerful as the data provided
to it. Although the DTM and land use map used for our model are incredibly high in
resolution, the weather and soil data are not. Dzaleka also has no data that can be used for
validation (i.e., measured streamflow). To improve the model, extra information from the
drone imagery was extracted and then combined with the SWAT analysis.

5.2. Drone Imagery Used to Enhance Initial Flood Model

As previously mentioned, drone imagery resolution is very high (in our case 3.5 cm),
which can provide valuable information about flood patterns. The left image in Figure 14a
was captured during the mapping mission. This image is enlarged on the right of Figure 14a.
In the enlarged image, there are a lot of erosion patterns (dark lines in the dirt). Some
of these erosion patterns can provide even more information about flooding habits at
the Dzaleka Refugee Camp. Instead of manually finding erosion marks, the proprietary
machine learning program Picterra [16] was trained and used to detect erosion marks. Out
of the available pre-trained models in the Picterra library, cracks are the most similar to
erosion patterns. As a result, a pre-trained base model for cracks was used as the starting
point for model training. Portions of the drone imagery were annotated within Picterra for
training. These training labels enabled Picterra to produce a model which could be tested
on different portions of the imagery. Figure 14b is an example of an erosion pattern found
using the Picterra model.

Figure 14. Picterra was used to find erosion patterns in the drone imagery. (a) An example of a drone captured image
at Dzaleka Refugee Camp along with an emphasis on erosion patterns (dark lines) that Picterra was trained to find.
(b) An example of a Picterra found erosion pattern after training.

Each found erosion pattern was converted into a line (purple in Figure 15a) and theta
(θ in Figure 15a) was calculated. Theta was compared to a flow direction raster created
using the D8 method on the DTM. This was done to determine which found erosion
patterns were caused by water flow. The D8 method compares the elevation of a pixel
to the elevation of all eight of its neighbors and then determines the direction in which
water will flow. Each of the eight possible directions are given a number, 1, 2, 4, 8, 16, 32,
64, and 128 (see Figure 15b). If the erosion pattern line was in the same direction as the
flow, then the mark was kept and considered to be a water-caused erosion pattern (WCEP).
Table 1 provides the range of angles that correspond to each flow direction.
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θ

Figure 15. (a) To compute the angle of each found erosion pattern, each polygon was converted into
a line (purple) and then theta was calculated; (b) Flow direction definition for the D8 method.

Table 1. Range of angles that correspond to each flow direction.

Flow Direction Range of Degrees

1, 16 −45→ 45
2, 32 −90→ 0
4, 64 −90→ −45, 45→ 90

8, 128 0→ 90

Each WCEP is not only providing information about that specific location but also
about the immediate surrounding areas. A 10m buffer was applied to each WCEP to
include the surrounding areas. There cannot be a WCEP in a location where there is a
house because erosion patterns are only found in bare earth, so the 10m buffer enables
structures close to WCEP to be included in the affected area. Although this was done for
the entire study area, Figure 16e shows the found erosion patterns with a 10 m buffer (black
and purple) and which portions of the erosion patterns are water caused (purple) for a
small sample of the study area.

Locations of WCEPs are high undermining risk areas. A more comprehensive flood
model was created by combining the WCEPs map (purple in Figure 16e) and the 10%
exceedance probability for surface runoff (Figure 13b). The 10% exceedance probability for
surface runoff (Figure 13b) was normalized from 0 to 1, and then each dataset was given
a weight of 0.5 and added together. The created comprehensive flood model is shown in
Figure 17; dark blue represents the highest flood-risk areas. By creating a comprehensive
flood model, we are able to include ground truthed data (i.e., found WCEPs).

5.3. Analysis of a Small Study Area within Dzaleka Refugee Camp

To further explore the output data, a small study area of Dzaleka Refugee Camp was
analyzed. Figures 16a–f are clips of the same small study area through different steps of
the analysis. Figures 16a,b are the DTM and land use map, respectively. The elevation
of this study area varied by 20 m and the study area contains all four different land-use
classifications that are found at Dzaleka Refugee Camp. The normalized surface runoff for
10% exceedance probability produced by SWAT (Figure 16c) portrays how land use affects
surface runoff. The patch of row crops (in the north and 0.15 km from the west border) has
significantly lower surface runoff than the surrounding areas, which are urban or barren.

Figure 16d shows the orthomosaic of the study area along with black outlines of
all the found erosion patterns. The erosion patterns were then given a 10 m buffer and
compared to flow direction (Figure 16e). The comprehensive flood model (Figure 16f) is the
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combination of the initial flood model (Figure 16c) and the WCEP (purple in Figure 16e).
The comprehensive flood model allows for areas in one HRU to be distinguished from
each other. Instead of the entire mid-west of the study area having a high flood risk (as in
Figure 16c), the southern section of the mid-west is considered to have a higher flood risk
because of the WCEPs there.

The comprehensive flood model is incredibly useful in future urban planning. Areas
where surface runoff is high because of elevation change should be used for agriculture and
not buildings, drainage systems should be implemented in high-risk areas, and houses built
in high-risk areas should have a concrete foundation. Although the method of combing
SWAT and machine learning still needs more verification, it has the potential to be applied
to other data-scarce communities.

Figure 16. A small study area of Dzaleka Refugee Camp through flood analysis processing: (a) DTM; (b) land use map;
(c) initial flood model; (d) erosion patterns; (e) erosion patterns compared to flow direction; (f) comprehensive flood model.
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Figure 17. Comprehensive flood model of Dzaleka Refugee Camp, created by combining the normal-
ized 10% exceedance probability of surface runoff and WCEP.

5.4. Relating Roof Type to Flood Risk

The comprehensive flood analysis is much more useful for urban planning and future
building, but it is not incredibly helpful to the 41,000 refugees that already have homes.
Drone imagery can provide some information about the conditions of a building based on
the roof type. There are two types of roofs used at Dzaleka refugee camp: tin and thatched.
Figure 18 provides an example of each of these.
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Figure 18. Examples of the two types of roofing at Dzaleka Refugee Camp: tin and thatched.

Minimal ground-truthing was completed at Dzaleka Refugee Camp to compare the
risk of building collapse to building roof type. The risk of building collapse was given
one of three qualitative ratings: little to no risk of failure, risk of failure, and large risk of
failure. Although these are qualitative ratings, all buildings were evaluated by one person
so the comparison between buildings should be consistent. Table 2 shares the findings from
visually analyzing 15 buildings. More ground-truthing needs to be completed, but from
Table 2 it is clear that thatched roofs have a higher risk of failure than tin roofs.

Table 2. Ground-truthing of 15 buildings, comparing roof type to risk of building collapse.

Risk of Collapse Thatched Roof Tin Roof

Large Risk of Failure 6 0
Risk of Failure 2 1

Little to No Risk of Failure 2 4

Using a model trained with Picterra, buildings were found and classified as either tin
or thatched in the drone imagery (Figure 19a). Tin roofs (blue) were then given a weight of
0.2 while thatched roofs (red) were given a weight of 1. This weight was then multiplied by
the comprehensive flood model (Figure 17) to find which buildings were at the highest risk.
These weights were selected because of the initial ground-truthing results. As mentioned
earlier, more ground-truthing still needs to be completed. Figure 19b maps the risk of each
building collapsing from 0 to 1, with 1 being the most likely to collapse. The smaller study
area explored in Section 5.3 is shown in Figure 20, where Figure 20a classifies the building
type and Figure 20b maps the risk of building collapse.

Building risk was split into four categories: very low, low, high, and very high. Table 3
provides corresponding risk values and the percent of building area covered by each risk
category. The approximate population living in a structure of each category was also
calculated and shown in Table 3.
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Figure 19. (a) Picterra found buildings classified as thatched (red) or tin (blue); (b) Building
risk map normalized from 0 (white) to 1 (red), where 1 are locations of highest risk.

Figure 20. A small study area of Dzaleka Refugee Camp through building analysis processing: (a) buildings classified as
thatched or tin; (b) building risk map created by combining building classifications (Figure 20a) and the comprehensive
flood model (Figure 16f).

Table 3. Percentage of area covered for each risk category, along with the approximate population
living there.

Risk Building Risk Value % of Area Population

Very Low 0–0.25 70.19 28777
Low 0.25–0.5 13.66 5602
High 0.5–0.75 9.45 3874

Very High 0.75–1 6.70 2747

Even though more ground-truthing and validation needs to be completed for the
study done at Dzaleka Refugee Camp, the results have the potential to support data-scarce
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communities with a method for flood modeling and building risk (in relation to flood
modeling) analysis. Using drone imagery to create a comprehensive flood model and then
combining the comprehensive flood model with building type creates modeling potential
for small areas that do not have any data.

6. Discussion and Conclusions

In this work, we present a concept of simplified data collection, 3D cadastre modeling,
and natural disaster risk assessment through the use of low-cost drones and adapted
open-source software. The complete solution architecture includes data collection with
low-cost drones, 3D cadastre modeling with the drone data, and natural disaster risk
quantification for buildings. To collect high-resolution aerial imagery, a small, low-cost,
and autonomously flown drone was developed. The collected aerial imagery can be used
to produce 3D cadastre models in order to contextualize and quantify potential natural
disaster risk to infrastructure and property. The aerial imagery is first processed to produce
georeferenced 3D reconstructions, digital elevation models, and orthomosaics. These
can be combined with cadastre data in order to produce 3D cadastre models. While
many studies have used 3D visualization and drone imagery with cadastre modeling
and mapping [46,48,53,54], our work additionally processes the drone imagery to help
determine risk data so that this can be contextualized with the 3D cadastre. In this work,
the drone imagery was used as an input for flood modeling in order to produce risk
data for a refugee camp. While our risk assessment work has focused on flood modeling,
the collected data can be used to assess and contextualize many other potential natural
disasters as well. Future work will need to be done to overlay the risk data on the 3D
cadastre models. The combined risk and 3D cadastre data can help pinpoint exactly how
specific buildings may be impacted. With flooding, for example, the 3D visualization
would enable possible flood depth to be understood relative to the height of the buildings.

Using a drone, high-resolution aerial imagery was captured of the Dzaleka Refugee
camp in Malawi. This aerial imagery was used to produce a digital terrain model and
orthomosaic of the refugee camp. By classifying the land types in the orthomosaic, a land
use map was created in order to be used as an input to the SWAT model. Despite these
high-resolution data, the SWAT model was limited by the much lower resolution of the
weather and soil data for the area. As a result, we combined the SWAT model with
geomorphological information to create a comprehensive flood model. Lioi et al. [55]
and Lastra et al. [56] both found that geomorphological information can enhance a flood
model, especially in data-scarce areas. A machine learning program, Picterra, was then
used to find erosion patterns in the drone imagery. The detected erosion patterns were
compared to the flow direction of the DTM to determine which erosion patterns were
WCEPs. A more comprehensive flood model was produced by combining the WCEP map
and the 10% exceedance probability for surface runoff. The comprehensive flood model
enables the inclusion of ground-truthed data using found WCEPs. Although this method
still needs more verification, the resulting comprehensive flood model is very useful for
future urban planning and has the potential to be applied to other data-scarce communities.
Additionally, a flood damage metric can be scaled by property value estimates to produce
individual and community property risk assessments.

In order to assess the condition of the buildings which are already in the refugee camp,
the aerial imagery helped to examine the types of roofs on these buildings. The drone
imagery was used to classify building types based on roof condition, which can help
determine building integrity. Minimal ground-truthing was completed at the refugee camp
to compare the risk of building collapse to the roof type, although more will still need
to be completed. Using a machine learning model in Picterra, the buildings were found
and classified based on their roof types, tin or thatched, in the drone imagery. Each roof
type was given a weight and this was combined with the comprehensive flood model
to determine the buildings at the highest risk. This produced building risk data which
can be viewed and analyzed at both the community level and for individual properties.
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This building risk data could then be combined with the 3D cadastre models in order to
provide context to this data and present it in a format that is easy to view and understand
for specific properties in a community. Additional future work will need to be completed
to incorporate more ground-truth data and further validate these results, but the risk
data are already extremely useful. This combination of the comprehensive flood model
and building type analysis using drone imagery produces great risk modeling potential,
particularly for data-scarce communities.
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