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Abstract: Northern China has been long threatened by aeolian desertification. In recent years,
all levels of the Chinese government have performed a series of ecological protection and sand
control projects. To grasp the implementation effects of these projects and adjust policies in time,
it is necessary to understand the process of aeolian desertification quickly and accurately. Remote
sensing technologies play an irreplaceable role in aeolian desertification monitoring. In this study,
the Zhenglan Banner, which is in the hinterland of the Hunshandake Sandy Land, was considered
as the research area. Based on unmanned aerial vehicle (UAV) images, ground survey data, and
Landsat images called in Google Earth Engine (GEE), the aeolian desertified land (ADL) in 2000,
2004, 2010, 2015, and 2019 was extracted using spectral mixture analysis. A desertification index
(DI) was constructed to evaluate the spatial and temporal dynamics of the ADL in the Zhenglan
Banner. Finally, a residual analysis explored the driving forces of aeolian desertification. The results
showed that (1) the ADL area in the Zhenglan Banner has been trending downwards over the past
20 years but rebounded from 2004 to 2010; (2) over the past 20 years, the area of slightly, moderately,
and severely desertified land has decreased at annual rates of 0.4%, 2.7%, and 3.4%, respectively;
(3) human activities had significantly positive and negative impacts on the aeolian desertification
trend for 20.0% and 21.0% of the study area, respectively, but not for the rest. This paper explored
new techniques for rapid aeolian desertification monitoring and is of great significance for controlling
and managing aeolian desertification in this region.

Keywords: aeolian desertification; Google Earth Engine (GEE); unmanned aerial vehicle (UAV);
human activity; climate change

1. Introduction

According to the definition of the United Nations Convention to Combat Desertifi-
cation, desertification is defined as land degradation in arid, semi-arid, or dry subhumid
regions as caused by various factors including climate variability and human activities [1].
Desertification can be divided into aeolian desertification, water erosion, soil salinization,
and freezing. In China, most of the desertification belongs to aeolian desertification, which
is land degradation caused by the uncoordinated human–land relationship and is marked
by sandstorm activities [2]. China is among the countries most seriously affected by aeolian
desertification throughout the world. The results of the Fifth Chinese National Desertifi-
cation Monitoring from 2014 showed that the area of aeolian desertification land (ADL)
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was 1,721,200 km2, which accounts for 17.93% of the national land area [3]. In the face of
severe aeolian desertification, all levels of government have made tremendous efforts and
a series of ecological projects for sand prevention have been launched such as the Three
North Shelterbelt Project, the Beijing–Tianjin Sandstorm Source Control Project, and the
Return Grazing to Grassland Project. Many studies [4,5] have shown that the trend of
aeolian desertification in several regions have been effectively curbed, the overall ecological
situation has been continuously improved, and the ADL area has continued to decrease.
Data released by NASA in 2019 show that China has increased the global “greening” over
the past 20 years [6].

Remote sensing technologies have become the primary method of desertification
monitoring due to the fact of its large-scale data acquisition and continuous observation
capabilities as well as the advantages of large and repeated coverage, substantial informa-
tion, and low cost. The main analysis methods include visual interpretation, supervised
classification, and use of single-index or multi-index methods. Visual interpretation is a
traditional but widely used method to monitor desertification [7]. It is performed through
the establishment of interpretation signs and the comprehensive use of the spectrum, tex-
ture, shape, and other characteristics of imagery. However, visual interpretation relies
on the interpreter’s understanding of aeolian desertification in the study area, which is
time-consuming and has difficulty meeting the quantitative development needs of deserti-
fication monitoring. The supervised classification method uses known areas as the basis
for image classification and classifies imagery using various classifiers including machine
learning algorithms [8,9]. In recent years, more complex deep learning algorithms have
been applied in desertification monitoring [10]. However, supervised classification has
high requirements for the quantity and quality of training samples, which are prone to
problems of poor sample representativeness, high sample subjectivity, and insufficient
quantitative evaluation capabilities. Many researchers have chosen a representative indica-
tor to classify ADL, where the most widely used are the fractional vegetation coverage [11],
normalized difference vegetation index [12], modified soil adjusted vegetation index [13],
and others. However, aeolian desertification is a complex and dynamic process and a
single indicator can only reflect changes in one aspect of the desertification, making it
difficult to achieve high accuracies. Some researchers have comprehensively used multiple
indicators for desertification monitoring including decision trees [14], feature space [15],
principal component analysis [16], and the analytic hierarchy process [17]. However, a
relatively unified comprehensive indicator system and monitoring method has not yet
been formulated.

The causes of aeolian desertification have long been a research focus, and the explo-
ration of the driving forces helps adjust sand prevention and control strategies. Climate
change and human activities have been recognized as the two primary driving forces of ae-
olian desertification. However, accurately and quantitatively analyzing the relative effects
of human activities and climate change in aeolian desertification is still difficult. Commonly
used methods include qualitative and semi-quantitative assessments [18], regression mod-
eling [19], principal component analysis [20], and residual analysis [21]. Qualitative and
semi-quantitative assessments analyze meteorological and social factors based on changes
in aeolian desertification and use experienced experts to judge the relative effects. However,
this method is subjective and may cause significant differences in the results. The method
based on regression modeling analyzes the regression relationship between desertification
and climate and social factors. However, the development process of aeolian desertification
is complex and nonlinear, making it difficult to simulate using simple regression models.
Although the method of principal component analysis has a solid mathematical foundation,
it only analyzes the driving forces and does not consider desertification development. In
addition, principal component analysis considers the study area without incorporating
differences in the continuous space. Residual analysis simulates aeolian desertification
conditions without the influence of human factors and uses differences in actual situations
to determine the influence of human activities.
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The Google Earth Engine (GEE) cloud platform was jointly developed by Google,
the United States Geological Survey, and Carnegie Mellon University. The GEE platform
stores MODIS data from 2000 to present, Landsat data from 1984 to present, Sentinel data
from 2014 to present, and massive amounts of other data such as elevation, meteorology,
and land use. The remote sensing data in the GEE platform can be processed in parallel
with millions of servers, which significantly reduces the computational time and cost.
With its powerful computing capabilities, abundant remote sensing data sources, and
convenient processing methods, GEE has advantages in long-term time series and large-
scale research and has been widely used to monitor forests [22], agriculture [23], urban
areas [24], water [25], etc.

Unmanned aerial vehicles (UAVs) have been developed in recent years as a new
type of near-ground remote sensing platform. UAVs have the advantages of low cost and
fast acquisition of imagery with high spatial resolutions. They are suitable for acquiring
images in areas with complex topographical conditions and that are difficult to access.
They effectively compensate for the gap between the regional scale of satellite remote
sensing and the sample scale of ground surveys. UAVs can be used for high-precision
monitoring of ADL in small areas, which can largely replace traditional manual ground
surveys and reduce workloads. To date, UAVs are widely used in vegetation monitoring,
habitat monitoring, wildlife protection, etc. [26,27]. However, few studies have applied
them to research aeolian desertification [28].

This paper takes the Zhenglan Banner as the research area, which is located within the
source of Beijing–Tianjin sandstorms and is in the hinterland of Hunshandake Sandy Land.
The Landsat5 and Landsat8 satellite images collected from GEE were used as the primary
data resource. Based on the sample points and UAV images obtained in the field, the ADL
over the past 20 years was quickly and accurately extracted through spectral unmixing,
and a desertification index was established to analyze dynamic changes in the ADL. Finally,
the driving forces of aeolian desertification were analyzed.

2. Materials and Methods

The methodological framework of this study is shown in Figure 1, with the key steps
of calculation in GEE cloud platform environment. All abbreviations and definitions are
shown in Table A1.

2.1. Study Area

The Zhenglan Banner is in the central part of Inner Mongolia and the hinterland of
the Hunshandake Sandy Land. It is within the scope of the Beijing–Tianjin sandstorm
source control project and is only 180 km away from Beijing. It is approximately 138.7 km
long from north to south (41◦46’–43◦7’N) and 122 km from east to west (114◦55’–116◦38’ E)
with a total area of 10,182 km2 (Figure 2). The average annual precipitation of the study
area is approximately 365 mm, where the precipitation season is unevenly distributed and
concentrated from June to August. The terrain is high in the southwest and low in the
northeast with an average altitude of approximately 1300 m. The south part of the study
area is mostly low mountains and hills, which is the intersection between the southern edge
of Daxinganling and the northern edge of Yanshan Mountains. The north part of the study
area is the middle and eastern section of the Hunshandake Sandy Land, which is composed
primarily of fixed and semi-fixed sand dunes with a small number of crescent-shaped
mobile dunes and low-vegetation coverage.
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Figure 1. Research flow chart. The first part shows the preprocessing step of Landsat and UAV
images. The second part shows the image processing steps to obtain the extent of the ADL. The third
part shows the dynamic change evaluation of the ADL based on the desertification index (DI). The
last part mainly focuses on the driving forces of aeolian desertification.

The vegetation in the Hunshandake Sandy Land is sensitive to climate change and
shows the effects of human influence and control, giving it obvious ecological vulnera-
bility [29]. The relatively arid climate and long-term uncontrolled grazing in the study
area have made aeolian desertification increasingly serious. The research results on the
development status and driving forces of aeolian desertification in the study area will
provide a reference for sand prevention projects over the entire Hunshandake Sandy Land
and the Beijing–Tianjin Sandstorm Project area.
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Figure 2. Location and topographic map of the Zhenglan Banner.

2.2. Construction of the ADL Classification System

Based on the field survey and previously related research, a land classification system
in the Zhenglan Banner was established to include terrain, vegetation, and soil characteris-
tics (Table 1). The land was divided into non-desertified land (NDL), slightly desertified
land (SlDL), moderately desertified land (MDL), and severely desertified land (SeDL).

Table 1. Land classification system in the Zhenglan Banner.

ADL Classification Terrain Vegetation Soil

NDL
The terrain is generally flat

with open grasslands or
lowlands between hills

Psammophytes are companion or
occasional species, and the

vegetation coverage is greater
than 80%

There is no obvious sand-drift
activity, the biological crust

coverage and silt and clay content
are high, and the mobile sand area

is less than 15%

SlDL
The topography is not strong
and is usually flat inter-dunes

or fixed dunes

Psammophytes become the main
companion species, and the

vegetation coverage decreases to
between 50% and 80%

A small amount of sand-drift
activity occurs, which is mostly

covered by a biological crust or soil
layer; the area of mobile sand is

between 15% and 40%

MDL Semi-fixed dunes with small
blowouts

Psammophytes become the
dominant species, and the

vegetation coverage is from 30%
to 50%

Sand-drift activity is strong, the
biological crust area is greatly

reduced, and the mobile sand area
is between 40% and 60%

SeDL

The topography is undulating,
which includes semi-mobile
and mobile sand dunes with

large blowouts

There are only psammophytes
with a coverage less than 30%

Sand-drift activity is strong, the
content of silt and clay particles is

extremely low, the mobile sand area
exceeds 60%, and the crust surface

is small

2.3. Monitoring Period Selection

The five periods of 2000, 2004, 2010, 2015, and 2019 were selected to analyze the aeolian
desertification dynamics in the study area. These dates were selected for the following
two reasons: First, precipitation is one of the most important factors that affect vegetation
conditions and plays an important role in the development of aeolian desertification. Thus,
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it is only meaningful to analyze changes in desertification under the same precipitation
level, otherwise it is difficult to determine land degradation within a certain period. The
standardized precipitation index (SPI) from 2000 to 2019 was calculated in R studio by
collecting monthly precipitation data for meteorological stations in the study area as shown
in Figure 3. We found that the mean SPI values of vegetation growth for 2000, 2004, 2010,
2015, and 2019 were all moderately moist. Second, 2000 was the first year of the Beijing–
Tianjin Sandstorm Source Control Project. The five time periods were relatively evenly
spaced with a difference of approximately 5 years. Thus, these years represent the overall
aeolian desertification conditions over the 20 years of project implementation.
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The time scale in this study of the SPI was 3 months.

2.4. Data Sets and Preprocessing

This study was conducted at a county level in Zhenglan Banner where medium-
resolution remote sensing data was appropriate. The Landsat series of satellites have
a long running time, comprehensive image coverage, and rich band information. The
surface reflectance products for Landsat5 and Landsat8 are provided in GEE, and the
pixel values of each band are the corrected surface reflectance, which can be used directly.
In this study, the Landsat5 SR Tier1 and Landsat8 SR Tier1 products were used for the
“greenest” composite. First, all images from June to September in the study area were
filtered. The clouds and shadows in all images were then masked. Finally, the normalized
difference vegetation index (NDVI) of the images was calculated and added to the image
as a new band. The “qualityMosaic” function was used to composite all images based
on the maximum NDVI, and the annual remote sensing image was obtained by cropping
the boundary of the Zhenglan Banner. As this paper focused on the ADL, water bodies,
salinized land, and human settlements were extracted and masked in advance to avoid
interference from these land-use types.

Precipitation and temperature are important meteorological factors in the aeolian
desertification development process. To perform the residual analysis in Section 2.6, this
study collected Chinese monthly total precipitation and average temperature images from
2000 to 2017, with a resolution of 250 m. These images were based on the data of more
than 1000 meteorological stations and interpolated by AUSPLINE. We selected images of
vegetation growth period (May to September) in Zhenglan Banner for further analysis. The
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MOD13Q1 NDVI data were called in GEE, which was also used for the residual analysis.
In addition, statistical data from Zhenglan Banner meteorological station from 2000 to 2019
were collected for analysis.

A field investigation of the Zhenglan Banner was performed along with photographs
collected using a UAV in early August of 2019. Global positioning system (GPS) equipment
was used to locate various ADL types as classified using Table 1, and a total of 130 sample
points were collected. In addition, a same field investigation was performed in the Zhenglan
Banner in early September 2010 and 12 sample points were collected. In the follow-up
study, these 142 sample points were used to verify the accuracy of ADL classification in
Landsat images.

A variety of studies [30,31] have used the DJI Phantom Series UAVs for collection
of aerial photographs due to the low cost, simple operation, and mature system. The
DJI Phantom4 pro v2 UAV was selected for image acquisition, and 10 representative
aerial sample plots with different ADL types were selected (Figure 4). A total of 20 aerial
photography sorties were performed. The UAV operated at a height of 80 m with a 75%
overlap of the heading and a 65% side overlap. A total of 4382 images were obtained, and
the UAV image preprocessing was based on the structure from motion (SfM) method in the
pix4dmapper. The digital orthophoto map (DOM) and digital surface model (DSM) were
generated, and the pixel size was within 4 cm. Finally, 13 high-quality UAV images were
obtained that covered a total area of 1.85 km2.
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Figure 4. Sample plot distribution taken with a UAV. The 10 aerial sample plots included all levels of
the ADL and were evenly distributed in the study area, which were representative of the aeolian
desertification status in Zhenglan Banner.

2.5. UAV Image Processing

The UAV images can attain high-precision classification results because of their high
spatial resolution. In this study, UAV images were classified as mobile sandy land and non-
mobile sandy land. The classification results were then upscaled to obtain the mobile sand
ratio (MSR) of the corresponding pixels in the Landsat images, which were used to verify
the accuracy of the linear spectral mixture model (LSMM). A total of 11 features were used
for the UAV image classification: the original RGB bands, DSM, gray level co-occurrence
matrix (GLCM) mean, and 5 vegetation indices (Table A2). Before classification, visual
interpretation was used to select samples based on the UAV images. A total of 255 samples
were obtained, including 131 mobile and 124 non-mobile sand samples. In R studio, the
samples were randomly divided into two subsets at a ratio of 1:2 and 75 verification
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samples, and 180 training samples were obtained. Then, the random forest (RF) model was
built based on the “randomForest” package in R studio. This package has two primary
parameters to adjust: the number of trees (ntree) and the number of variables (mtry). The
grid search method was used to optimize the parameters, showing that the optimal model is
obtained when ntree is 600 and mtry is 1. RF can obtain high accuracy classification results
when the number of samples is limited, which is suitable for UAV image classification in
this study.

A total of 13 UAV images were classified in R studio using the optimal RF model.
The method developed by Kattenborn et al. [32] was used to upscale the classification
results to match the Landsat pixels. First, the mobile sand pixels were assigned a value of 1
and the non-mobile sand pixels were assigned 0. Second, the results were input into GEE,
and the “reduceResolution” command was used to calculate the mean value of it in the
corresponding Landsat pixels to obtain the UAV-MSR.

2.6. ADL Extraction Based on Spectral Mixture Analysis

The southern part of the study area is part of the farming pastoral ecotone, where a
large area of bare soil appeared from the field survey. Although the vegetation coverage in
these areas was relatively low, there was no sand-drift activity, so it could not be classified
as ADL. The spectral mixture analysis (SMA) can obtain proportions of various land-use
types to give an abundance of each endmember. This method can distinguish mobile sand
from other land cover types, and the increase in MSR can represent the enhancement of
sand-drift activity and the aggravation of aeolian desertification. In this paper, the range of
ADL in the study area was extracted from the endmember abundance of the mobile sand
obtained from the LSMM (LSMM-MSR).

In an LSMM, the reflectance of each pixel over the spectral bands is presented as a
linear combination of the reflectance of each endmember and its relative abundance, which
is defined as

ρ(λi) =
m

∑
j=1

Fjρj(λi) + ε(λi) (1)

where j = 1,2, . . . , m is the endmember; i = 1,2, . . . , n is the spectral band; ρ(λi) is the
reflectance of mixed pixels; ρj(λi) is the reflectance of endmember j in band i; Fj is the
abundance of endmember j in the pixel; and ε(λi) is the difference between the actual and
modeled reflectance. Field investigations suggested that the three endmembers of mobile
sandy land, vegetation, and bare soil can represent the land cover in this area. To find “pure”
spectral endmembers, the preprocessed Landsat8 images in 2019 and Landsat5 images
in 2010 were output from GEE and were processed using the minimum noise fraction
(MNF) rotation in ENVI5.3. Finally, the abundance images of the three endmembers were
calculated using the “unmix” command in GEE.

2.7. Dynamic Change Evaluation of ADL
2.7.1. Construction of Desertification Index

To select the most suitable indicators for desertification monitoring and construct the
desertification index (DI), 14 indicators (Table A3) were initially selected from the aspects of
vegetation, soil, humidity, and surface radiation. These indicators were calculated in GEE
based on the Landsat image of 2019 (Figure A1). However, selecting too many redundant
indicators reduces the accuracy and efficiency of aeolian desertification monitoring. A total
of 130 samples obtained from a field investigation in 2019 were used for the gain ratio
(Figure A2) and RF (Figure A3) feature selection, and a correlation analysis (Figure A4)
was performed for all indicators. Finally, 4 indicators (albedo, NDVI, wetness, and TGSI)
with high importance and low correlation were selected to construct the DI.

The albedo is one of the most frequently used indicators in ADL monitoring [33,34]
and represents the ratio of the solar radiation flux that is reflected by the surface to the
incident solar radiation flux. The topsoil grain size index (TGSI) was proposed by Xiao
et al. [35], which reflects the mechanical composition of the topsoil and is positively
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correlated with the fine sand content. Land surface humidity also has a strong correlation
with the degree of aeolian desertification. The wetness of the tasseled cap transform can
reflect the humidity status of the soil and vegetation, which has been often used to monitor
ecological environments [36]. The NDVI is sensitive to vegetation changes and can reflect
the growth status of vegetation on the ADL.

The analytic hierarchy process (AHP) has been widely used in the study of aeolian
desertification [37,38] and can reveal the relative importance of different desertification
indicators based on the study area. The weight of each variable in the AHP is determined
from the matrix of pairwise comparisons, where the importance of indices is ranked from 1
to 7, otherwise they are assigned 1/2 to 1/7 (Table 2). Based on many relevant experts and
previous research results [17], the final comparison matrix is as shown in Table 3.

Table 2. Relative importance of two indicators.

1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7

Extremely low Strong Moderate Equal Moderate Strong Extreme important

Table 3. Index comparison matrix.

Albedo NDVI TGSI Wetness Weights

Albedo 1 2 3 5 0.482
NDVI 1/2 1 2 3 0.272
TGSI 1/3 1/2 1 2 0.157

Wetness 1/5 1/3 1/2 1 0.088

As the dimensions of each index are not unified, they should be standardized before
any analysis. The standardization methods for the NDVI sand wetness are shown in
Equation (2), those for the TGSI and albedo are shown in Equation (3), and the DI is shown
in Equation (4):

Pi =
maxXi − Xi

maxXi −minXi
(2)

Pi =
Xi −minXi

maxXi −minXi
(3)

DI =
n

∑
i=1

Wi × Pi (4)

where Xi represents the ith index, Pi is the standardization value of Xi, Wi is the weight
of the ith indicator, and DI is a dimensionless value. A larger DI gives a higher degree of
aeolian desertification and a worse ecological status.

2.7.2. Classification and Dynamic Change in ADL

The ADL extracted in Section 2.4 was classified into SlDL, MDL, and SeDL based on
the DI. The accuracy of the classification results was verified using 142 samples obtained
from the field investigation, and the area of each ADL type was counted in GEE. In addition,
the annual change rate for each type of ADL was calculated as

∆U =
U(b,i) −U(a,i)

U(a,i)
× 1

T
× 100% (5)

where ∆U is the change rate of a land type, U(a,i) is the area of type i at the beginning of a
certain period, U(b,i) is the area of type i at the end of a certain period, and T is the duration
of the study period.

To further analyze the spatiotemporal dynamic change of the ADL in the study area
over the past 20 years, the change patterns were classified into significantly reserved,
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reserved, stable, developed, and seriously developed. Reserved is the desertification
degree in a certain pixel decreased by a level. Significantly reserved is the desertification
degree in a certain pixel decreased by two or more levels (e.g., a change from SeDL to
SlDL). Stable is the desertification degree in a certain pixel with no change. Developed is
the desertification degree in a certain pixel increased by one level. Seriously developed is a
certain pixel with a cross-level increase in the degree of desertification.

2.8. Residual Analysis

Residual analysis judges the effects of human activities on aeolian desertification.
The impact of human activities is reflected primarily on vegetation. Based on previous
studies [21,39], this paper selected the NDVI to characterize the effects of human activities
on aeolian desertification. The mean of the NDVI in the growing season from 2000 to 2017
was calculated in GEE. The regression model for the meteorological factors (average tem-
perature and total precipitation during the growing season) and the NDVI was established
using the random forest algorithm in GEE to obtain the NDVI prediction (NDVIpredict).
The NDVIpredict represents the aeolian desertification as affected only by climate. The
calculation method of ResidualNDVI is shown in Equation (6), which represents the degree
of influence of human activities on aeolian desertification.

ResidualNDVI = NDVI − NDVIpredict (6)

The Sen slope of the ResidualNDVI from 2000 to 2017 was then calculated, and the
Mann–Kendall (M–K) significance test was performed. This paper divides human activities
into significant positive, insignificant, and significant negative effects based on the impact
on the ecological environment. When the Sen slope is >0 and p < 0.05 in the M–K test, it
was considered a significant positive effect, which indicates that human activities positively
influence ecological conditions and may promote the reversal of aeolian desertification.
When p > 0.05, it was considered an insignificant effect, indicating that human activities
have no meaningful impact on aeolian desertification. When the Sen slope is <0 and
p < 0.05, it was considered as a significant negative effect, indicating that human activi-
ties negatively influence ecological conditions, and unreasonable land use may promote
aeolian desertification.

3. Results
3.1. UAV-Based Mapping of MSR

Based on the input features and the RF model after parameter adjustments, the overall
classification accuracy of 13 UAV images reached 97.6% and the kappa coefficient reached
0.95. The high-precision classification results helped to obtain accurate UAV-MSR samples
(Figure 5). After manually deleting pixels with abnormal values and incomplete coverage,
a total of 2428 pixels were used to determine the UAV-MSR samples, which was then used
to verify the accuracy of the LSMM. Compared with selecting samples from the field and
visually determining the MSR in previous aeolian desertification studies [40,41], UAVs
provide a larger number of more objective and accurate samples with faster acquisition
speeds. This effectively compensates for the scale gap between the samples and remote
sensing image pixels.
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Figure 5. Results of the UAV-MSR: (A) and (B) are two UAV images and their UAV-MSR. Image (A)
is composed of large mobile dunes. In image (B), the semi-fixed dunes and inter-dune land with
higher vegetation coverage are the main land types.

3.2. Extraction of the ADL
3.2.1. Accuracy Analysis

Based on the UAV-MSR sample pixels obtained in Section 3.1, we obtained the cor-
responding LSMM-MSR pixels for the Landsat images in GEE. Then, we analyzed the
LSMM-MSR based on the UAV-MSR to verify the accuracy of the LSMM. The regression
analysis results show that the two data sets had a good linear relationship with an R2 value
of 0.7648 and RMSE of 0.1383 (Figure 6). This indicates that the LSMM accurately obtained
the MSR.

The LSMM-MSR was used to extract the ADL. The experiments showed that the ADL
of the study area could be accurately extracted when the LSMM-MSR was 10–20%. To
further determine the optimal threshold, 142 samples obtained from field surveys in 2019
and 2010 were used to verify the classification accuracy as shown in Table 4. The highest
classification accuracy was obtained when the LSMM-MSR was greater than 18%. Based
on this threshold, the preprocessed images were used to extract the ADL of the study area
in GEE.
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Figure 6. Linear regression analysis of the UAV-MSR and LSMM-MSR.

Table 4. Extraction accuracy of the ADL.

LSMM-MSLA 10% 12% 14% 16% 18% 20%

Correctly classified samples 108 115 120 127 129 121
Accuracy 76.1% 81.0% 84.5% 89.4% 90.8% 85.2%

3.2.2. Extent of the ADL

The ADL extraction results of the study area from 2000, 2004, 2010, 2015, and 2019
are shown in Figure 7. ADL was mainly distributed in the north of Zhenglan Banner and
concentrated in the eastern and western parts. Over the past 20 years, the ADL area in the
east decreased significantly, and now it is mainly concentrated in the northwest. Statistical
results of the ADL, shown in Figure 8, indicate a decreasing trend in the study area over
the past 20 years. In 2000, the ADL reached 5161.1 km2, which accounts for 50.5% of the
study area. From 2000 to 2004, the ADL rapidly decreased to 3097.5 km2, and its proportion
decreased to 30.3%. From 2004 to 2010, the desertification showed a rebounding trend,
and the ADL grew to 4462.9 km2, which accounts for 43.7%. After 2010, desertification
continued to reverse. In 2015, the ADL decreased to 3736.6 km2, which accounts for 36.6%,
and in 2019, it decreased to 3179.7 km2, which accounts for 31.1%. Although there were
some fluctuations, the desertification trend in Zhenglan Banner was noticeably reversed.
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3.3. Aeolian Desertification Dynamics from 2000 to 2019

Based on the results in Section 3.2.2, the NDL was masked and the DI was used to
evaluate the ADL dynamics in the study area. The DI results are shown in Figure 9.
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3.3.1. Classification and Time Variation Characteristics of ADL

According to experiments, ADL could be classified into 3 types by DI: SlDL (DI ≤ 0.35),
MDL (0.35 < DI ≤ 0.41), and SeDL (0.41 < DI). The confusion matrix of the four land types
(Table 5) was obtained, showing an overall accuracy of 78.9%. The classification results
over the considered years are shown in Figure 10.

Table 5. Classification accuracy of ADL.

NDL SlDL MDL SeDL

NDL 39 9 0 0
SlDL 4 27 3 2
MDL 0 4 21 4
SeDL 0 1 3 25

Overall accuracy 78.9%

Figure 11 shows the proportions of various land types. The SeDL area decreased from
1410.2 km2 in 2000 to 497.8 km2 in 2019, with a decrease of 9.0% of the total area. From 2010
to 2015, the SeDL area decreased by 5.4%, and the restoration of aeolian desertification was
significant. The MDL area exhibited a decreasing trend; however, this area surged by 8.1%
from 2004 to 2010. The SlDL area decreased from 1977.1 km2 in 2000 to 1810 km2 in 2019; it
has changed little but continued to increase from 2004 to 2015.
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The annual change rates (Figure 12) of SlDL, MDL, and SeDL from 2000 to 2019 were
–0.4%, –2.7%, and –3.4%. The annual change rates of SeDL for the four periods were –5.5%,
0.2%, –10.0%, and –2.6%. It was the ADL type with the fastest decline over the 20 years.
The annual MDL change rate fluctuated greatly; it decreased annually by 12.4% from 2000
to 2004 and increased annually by 15.3% from 2004 to 2010. The annual rates of SlDL
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were –11.1%, 8.0%, 6.6%, and –4.2% for the four periods. The three types of ADL showed a
downward trend over the past 20 years, especially the areas of SeDL and MDL dropped
rapidly. This indicates that the aeolian desertification of Zhenglan Banner reversed and the
grassland vegetation status achieved marked improvement.Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
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Figure 12. Annual change rate of the ADL area.

3.3.2. Spatial Variation Characteristics of ADL

The spatial dynamics of the ADL in the study area are shown in Figure 13. The
statistics in Figure 14 show that the area of stable during the two periods is the largest,
which suggests that the change in aeolian desertification was relatively smooth and there
were no particularly drastic changes. Between 2000 and 2004, there was a strong reverse
trend in aeolian desertification, and the areas of reversed and significantly reversed land
were larger than in other years. The areas of developed and seriously developed land
were smaller than in other years and were concentrated mostly in the eastern region. From
2004 to 2010, both the developed and seriously developed land areas were significantly
larger than those in other years, which took up the majority of the image as illustrated in
Figure 13. The reversed area was distributed mostly in the original SeDL in the northwest
and east. From 2010 to 2015, the reversed area accounted for 20.9% of the total, and the
significantly reversed area accounted for 6.5%. Few developed areas were distributed
in the middle of the study region. From 2015 to 2019, the stable area was larger than in
other years, and aeolian desertification still showed a reversed trend. However, there were
some developed areas in the northwest. In general, the total proportion of reversed and
significantly reversed land from 2000 to 2019 reached 37%. The reverse of the original SeDL
area in the east and northwest was the most significant. In addition, the total proportion of
developed and seriously developed land was only 5.4% and was scattered at the eastern
and western edges.
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Figure 14. Statistical results of spatial dynamic change.

3.4. Impact of Human Activities on Aeolian Desertification

Figure 15 shows that areas with significant positive effects of human activities were
distributed primarily in the middle eastern and western parts of the study area. These
areas have the most serious aeolian desertification and are the significant reversal areas,
showing that various desertification control projects have played important roles in eco-
logical restoration. Some areas in the south also showed significant positive effects from
human activities. The visual interpretation indicates that these areas were newly increased
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cultivated land over the past 20 years, and the vegetation status was improved from crop
planting, which also explains the rationality of the residual analysis. Human activities in
the eastern and northwestern parts of the study area have significant negative effects that
may be related to overgrazing. Thus, increased human activities in these areas played a
role in promoting desertification. The significant negative effects in the south are mostly
related to the decreased cultivated land area.
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Figure 15. Spatial distribution of human activities on aeolian desertification in the Zhenglan Banner.
Human activities in the green areas were conducive to the reversal of desertification. Human activities
in the red areas made desertification more serious. Human activities in the yellow areas had no
obvious impact, and climate factors played a major role.

The statistical results showed that the area with insignificant effects accounted for
59.1% of the total, indicating that human activities had no serious impact on aeolian
desertification on more than half of the land. The proportion of the area with significant
positive effects was 20.0%, and the proportion of significant negative effects was 21.0%.
This indicates that the area with positive and negative effects of human activities in the
study area were nearly the same over the past 20 years. With the development of various
ecological projects, the original SeDL had significantly improved, but there are still large
areas that suffer from the unreasonable human activities.

4. Discussion

In this study, a ground survey, UAV images, and satellite images were used to analyze
the dynamic of aeolian desertification. Data from three different scales were effectively
integrated. In other studies of vegetation coverage [32], the satellite–aviation–ground
integration method was often used, but it was rarely used in desertification monitoring. In
addition, MSR is more effective than vegetation coverage in extracting ADL. Some existing
studies in the Zhenglan Banner used the vegetation coverage [42,43] to classify the ADL,
which gave incorrect classifications for most of the bare soil in the south as SlDL or even
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MDL. Moreover, a multi-index method can more reasonably reflect the degree of ADL. As
desertification is a complex process, a single index can only show one aspect of change [17].
The methods used in this paper can provide reference for rapid and accurate monitoring of
aeolian desertification in other areas.

The results showed that the area of ADL and the degree of desertification in the study
area decreased from 2000 to 2019. This is similar to many related studies in recent years.
Yu et al. [44] studied the vegetation change trend in the Beijing–Tianjin Sandstorm Source
Control Project area, and the results showed that 83.3% of the vegetation belonged to
restoration state from 2005 to 2015. Moreover, the monitoring results of the desertification
process in Hunshandake Sandy Land by Gou et al. [45] were basically consistent with those
in this paper. As the reversal trend of aeolian desertification is obvious in this area, it is
important for us to judge the most important driving factor behind.

The results of the residual analysis show that the aeolian desertification was not
significantly affected by human activities for 59.1% of the land area in the study region.
This means that the dynamic of aeolian desertification in most areas was affected by
climate. Statistical data (Figures 16–18) from Zhenglan Banner meteorological station in
the past 20 years show that the annual precipitation and average temperature present
an upward trend. The warm and humid climate was beneficial to the reversal of aeolian
desertification [46]. Although the average annual wind speed increased significantly from
2005 to 2011, it showed a downward trend over the entire 20 years, which reduces wind
erosion. Thus, we believe that climate is the most important factor in the change of aeolian
desertification in the study area, which is consistent with recent relevant studies. For
example, Yang et al. [47] considered the meteorological factor in Hunshandake Sandy Land
was the key factor that affects aeolian desertification, while human activities may be the
most important factor in other sandy lands throughout China. The increase in ADL area
in 2010 may be related to the arid climate in 2009. The total precipitation in 2009 was the
lowest in 20 years. At the same time, the annual average wind speed also reached the
maximum in 2009 and 2010.
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Human activities also had an important impact on aeolian desertification in the study
area. The proportion of the total land area with significant positive effects from human
activities was 20.0%, most of which was in the SeDL. This indicates that since 2000, sand
control measures, such as aerial seeding and grazing prohibition, have played an important
role in promoting the reversal of SeDL. However, 21.0% of the area was still affected by
the significant negative effects of human activities, which indicates that there are still
large areas of damaging land-use practices in the study area. It is still necessary to reduce
unreasonable human activities in the future and adjust resource utilization to maintain the
restoration of ecological environment and further reduce the ADL area.

5. Conclusions

This paper took the Zhenglan Banner as the research area and explored the processes
and driving forces of aeolian desertification from 2000 to 2019. The main conclusions are
as follows:

(1) UAVs can quickly provide the MSR. In this paper, the UAV images were divided
into mobile sandy land and non-mobile sandy land with an accuracy that reached 97.6%.
The classification results were used for resampling in GEE, and a total of 2428 UAV-MSR
samples corresponding to the Landsat pixels were obtained to verify the LSMM accuracy.

(2) The ADL area in the study area decreased over the past 20 years. The ADL area
decreased from 5161.1 km2 in 2000 to 3179.7 km2 in 2019 but increased by 1365.4 km2 from
2004 to 2010.
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(3) Over the past 20 years, the aeolian desertification of the study area showed a
reversing trend. The area of SlDL, MDL, and SeDL decreased at annual rates of 0.4%,
2.7%, and 3.4%. In terms of spatial dynamic changes, the total proportion of reversed and
significantly reversed lands from 2000 to 2019 reached 37%, and the total proportion of
developed and seriously developed lands was only 5.4%.

(4) Climate change and human activities have jointly promoted the reversal of aeolian
desertification in the study area, where climate factors played a major role. The results of
residual analyses showed that aeolian desertification was positively affected by human
activities over 20.0% of the land area, and 21.0% was affected by the negative effects of
human activities.

In order to further control aeolian desertification in the study area, it is still necessary
to reduce unreasonable human activities and increase project investment in SeDL areas.
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Appendix A

Table A1. Definition of main abbreviations.

Abbreviations Definition

GEE Google Earth Engine
UAV Unmanned aerial vehicle
ADL Aeolian desertification land

DI Desertification index
NDL Non-desertified land
SlDL Slightly desertified land
MDL Moderately desertified land
SeDL Severely desertified land
DSM Digital surface model
DOM Digital orthophoto map

SPI Standardized precipitation index
GLCM Gray level co-occurrence matrix
MSR Mobile sand ratio

LSMM Linear spectral mixture model
RF Random forest

SMA Spectral mixture analysis
MNF Minimum noise fraction
AHP Analytic hierarchy process

Table A1 prevents the main abbreviations and their definitions in this paper. The
abbreviations and definitions of all indexes are given in Tables A2 and A3.



Remote Sens. 2021, 13, 1730 22 of 27

Table A2. Calculation formulas of UAV vegetation indices.

UAV Indexes Calculation Formula

Visible band difference vegetation index (VDVI) [48] 2green−red−blue
2green+red+blue

Normalized green–red difference index (NGRDI) [49] green−red
green+red

Normalized green–blue difference index (NGBDI) [50] NGBDI = green−blue
green+blue

red–green ratio index (RGRI) [50] red
green

Excess gen index (EXG) [51] 2green− red− blue

Color index of vegetation (CIVE) [51] 0.441red− 0.881green + 0.385blue + 18.78745

Table A3. Calculation formula of Landsat indices.

Landsat Indexes Calculation Formula

Normalized difference vegetation index (NDVI) [33] nir−red
nir+red

Albedo [33] 0.356blue+0.130red+0.373nir+0.085swir+0.072swir2−0.018
1.016

Modified soil adjusted vegetation index (MSAVI) [14] 2nir+1−
√
(2nir+1)2−8(nir−red)

2
Normalized difference drought index (NDDI) [52] NDVI−NDWI

NDVI+NDWI

Soil moisture monitoring index (SMMI) [53]
√

nir2+swir2√
2

Topsoil grain size index (TGSI) [35] red−blue
red+blue+green

normalized difference soil index (NDSI) [54] swir−nir
swir+nir

Bare soil index (BSI) [46] (swir+red)−(nir+blue)
(swir+red)+(nir+blue) × 100 + 100

IFe2O3 [55] lg(red)−lg(blue)
lg(red)+lg(blue)

Tables A2 and A3 are the calculation formulas of the indexes mentioned in the paper.
In Table A2, green is green band reflectance, red is red band reflectance, and blue is blue
band reflectance. In Table A3, blue, green, red, nir, swir, and swir2 represent the surface
reflectance derived from Landsat8 bands 2, 3, 4, 5, 6, and 7 and Landsat5 bands 1, 2, 3, 4, 5,
and 7.

In addition to the above indices, wetness, brightness, and greenness were obtained by
using tasseled cap transform in GEE. GLCM mean was obtained using the “glcmTexture”
command in GEE. The LST images were from the Landsat land surface temperature App
developed by Parasatidis et al. [56].
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