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Abstract: Lidar observations are very useful to analyse dispersed volcanic clouds in the troposphere
mainly because of their high range resolution, providing morphological as well as microphysical
(size and mass) properties. In this work, we analyse the volcanic cloud of 18 May 2016 at Mt.
Etna, in Italy, retrieved by polarimetric dual-wavelength Lidar measurements. We use the AMPLE
(Aerosol Multi-Wavelength Polarization Lidar Experiment) system, located in Catania, about 25 km
from the Etna summit craters, pointing at a thin volcanic cloud layer, clearly visible and dispersed
from the summit craters at the altitude between 2 and 4 km and 6 and 7 km above the sea level.
Both the backscattering and linear depolarization profiles at 355 nm (UV, ultraviolet) and 532 nm
(VIS, visible) wavelengths, respectively, were obtained using different angles at 20◦, 30◦, 40◦ and
90◦. The proposed approach inverts the Lidar measurements with a physically based inversion
methodology named Volcanic Ash Lidar Retrieval (VALR), based on Maximum-Likelihood (ML).
VALRML can provide estimates of volcanic ash mean size and mass concentration at a resolution of
few tens of meters. We also compared those results with two methods: Single-variate Regression
(SR) and Multi-variate Regression (MR). SR uses the backscattering coefficient or backscattering and
depolarization coefficients of one wavelength (UV or VIS in our cases). The MR method uses the
backscattering coefficient of both wavelengths (UV and VIS). In absence of in situ airborne validation
data, the discrepancy among the different retrieval techniques is estimated with respect to the VALR
ML algorithm. The VALR ML analysis provides ash concentrations between about 0.1 µg/m3 and
1 mg/m3 and particle mean sizes of 0.1 µm and 6 µm, respectively. Results show that, for the SR
method differences are less than <10%, using the backscattering coefficient only and backscattering
and depolarization coefficients. Moreover, we find differences of 20–30% respect to VALR ML,
considering well-known parametric retrieval methods. VALR algorithms show how a physics-based
inversion approaches can effectively exploit the spectral-polarimetric Lidar AMPLE capability.

Keywords: Lidar measurements; retrieval algorithms; dual wavelength scanning light detection;
volcanic ash size and concentration

1. Introduction

One of the major hazards associated with volcanic explosive eruptions is the injection
of volcanic ash into the atmosphere and its subsequent dispersion and deposition. Volcanic
ash mainly affects aviation safety, although the impact could be reduced using real time
observations and characterization of eruptive activity [1]. A variety of ground impacts also
exist that change with distance from the volcanic vent (e.g., [2,3]).
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Light detection and ranging (Lidar) techniques represent the optimal tool to provide
the range-resolved aerosol data [4]. Lidar systems are powerful techniques for monitoring
dispersed particles in the troposphere and lower stratosphere because of their profiling
capability at very high range resolution.

In order to mitigate from the impact associated with volcanic ash, Lidar observations
allow to perform immediate and accurate detection of volcanic plumes, quantify volcanic
ash concentration and characterize optical properties of volcanic particles [1], improving
modelling of dispersed volcanic ash clouds [5,6]. Lidar systems have been widely used
to monitor the vertical profile of the volcanic aerosol and study aerosol associated with
volcanic clouds [7]. Lidar observations can also provide cloud morphological properties
(such as top and bottom levels as well as thickness) and microphysical properties such
as mass concentration and effective diameters [8]. Using the depolarization channel, ash
particle shape can be in principle discriminated [6,9,10]. The capability of Lidar systems
to detect the finest particles in volcanic plume and reliably estimate the ash concentration
mainly depends on instrumental characteristics and the type of volcanic explosive activity.

This work aims at exploring the potential of the Lidar dual-wavelength methodology
compared to a single wavelength methodology to better describe both ash concentration
and size using the 18 May 2016 explosive event at Etna Volcano (Italy). Etna is one of
the most active volcanoes in the world, and for this reason, it is regularly monitored
mainly by several ground-based instruments of the Istituto Nazionale di Geofisica e Vul-
canologia, Osservatorio Etneo (INGV-OE) [11]. The Lidar instrument, named Aerosol
Multi-Wavelength Polarization Lidar Experiment (AMPLE), was upgraded in 2016 to per-
form dual-polarization and dual-wavelength measurements of the Etna explosive activity,
extending the capability of the already existing Lidar [6,12,13]. The main limitation in using
Lidar techniques is the decrease of the signal due to the presence of optically thick cloud
layers. However, this limitation is mainly related to large explosive volcanic eruptions [14].

In this work, we analyse the medium-intensity explosive activity produced in the
afternoon of 18 May 2016 at Mt. Etna, in Italy, from the Etna summit craters. Lidar mea-
surements are performed at the INAF- Catania Astrophysical Observatory (37◦31′43.8” N,
15◦4′18.5” E, 196 m above sea level (asl) about 25 km from the Etna summit pointing at two
thin volcanic layers clearly visible and dispersed at the altitude of 2–4 km (two layers) and
6–7 km (one layer) above sea level. Both ash particle backscattering and particle linear de-
polarization profiles (called also cross-polarization ratio [6]) at 355 nm (hereinafter W0) and
532 nm (hereinafter W1) wavelengths, respectively, are obtained using different pointing
elevation angles at 20, 30, 40 and 90 degrees. For the first time, a combined dual-polarized
dual-wavelength Lidar measurement at Etna volcano is here investigated using VALR ML.
Uncertainties in the volcanic ash concentration and mean size estimations using different
methods are also discussed.

The paper is organized as follows: Section 2 is devoted to describing the Etna case-
study event as well as the dual wavelength polarimetric Lidar instrument and related
measurements; Section 3 presents an overview of the retrieval methodologies developed to
analyse the dispersed ash layers; Section 4 discusses the results, whereas the conclusions
are drawn in Section 5.

2. Etna Case Study and Polarimetric Lidar Observations
2.1. Etna Case Study

Etna volcano generated an intense and complex eruptive activity between 16 and
25 May 2016, affecting several summit craters: North-Eastern Crater (NEC), Voragine
(VOR), Bocca Nuova (BN), and Southeast Crater (SEC). In the night between 15 and 16 May,
Strombolian activity was observed at the SEC and the day after intra-crater activity from
the NEC was also visible by the INGV-OE monitoring network. In the morning of 18 May,
ash emission from the NEC was mainly dispersed toward the south-east direction. At about
10:50 UTC, Strombolian activity from the VOR was clearly visible by the video-surveillance
system. This activity anticipated by about less than 15 minutes the lava fountain that
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formed an ash plume directed toward ESE and having an altitude between of about 6.5 km
above sea level [15]. The lava fountain activity ended after about 14:00 GMT and was
replaced again by the Strombolian activity. This eruption was also characterized by the
formation of lava flows, one of them formed on 18 May, and by two other lava flows on 19
May. The Etna explosive activity on May 18, 2016, at 11:46 UTC, observed by the EMOV
and EMOT cameras of INGV-OE is shown in Figure 1a,b, respectively.
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Figure 1. The Etna explosive activity on the morning of the 18 May 2016 at the VOR crater (identified in each panel with
a purple hatch ellipse) at 11:46 UTC from the EMOV (panel a), and EMOT (panel b) cameras. The main location of four
summit craters, Bocca Nuova (BN), Voragine (VOR), Nord Est Crater (NEC) and South East Crater (SEC), is also indicated.

2.2. Dual Wavelength Polarimetric Lidar

The capability of Lidar systems to detect the smallest particles (from 0.1 to 100 µm)
in volcanic plumes as well as to reliably estimate the ash concentration depends on the
instrumental characteristics and style of eruptive activity. Lidar measurements, in terms
of particle backscattering coefficient and cross-polarization ratio profiles, can be carried
out in regions where the Lidar signal is not extinguished due to the volcanic plume optical
thickness even though some path corrections can be applied [6].

Figure 2a shows an image obtained by MODIS spectrometers (Moderate Imaging
Spectroradiometer) in which the dispersed ash cloud is observed in the morning of 18 May
2016, and the Mt. Etna area is shown in the cartographic data derived from satellite images,
from Google Maps, Figure 2b.

The dual wavelength Lidar employed in this case study is a ground-based remote
sensing system, permanently monitoring dispersed Etna ash plumes, with elevation
and azimuth scanning abilities, as highlighted in the Figure 2c. This innovative Li-
dar system was developed in the framework of the VAMOS SEGURO project (http:
//www.vamosseguro.eu), with the aim of studying and forecasting volcanic ash plumes.
The Lidar, shown in Figure 2d, named Aerosol Multi-Wavelength Polarization Lidar Ex-
periment (AMPLE) and developed by the Consorzio Inter-Universitario per le Scienze
Fisiche della Materia (CNISM), is a compact multi-wavelength elastic/Raman scanning
system with cross-polarization capability. At present, the AMPLE system is part of the
European Aerosol Research Lidar Network (EARLINET) network [4], and it is devoted
to special measurement campaigns at Etna volcano. The Lidar system is operated at the
Istituto Nazionale di Astrofisica (INAF) in Catania about 25 km away from the Etna summit
craters [1].

http://www.vamosseguro.eu
http://www.vamosseguro.eu
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The detection system can measure both the polarimetric elastic Lidar returns at W0
and W1 (horizontal and vertical polarized signals) and the nitrogen (N2) Raman Lidar
echoes at 386 nm. Each detected signal is acquired by a multi-channel scaler with a raw
spatial resolution of 15 m [1].

The cross-polarization ratio is one of the primary parameters able to discriminate
different aerosol components. The accuracy in the retrieval of cross-polarization ratio is the
driving factor for assessing and improving this capability [16] and can be estimated using
methods accepted by the scientific community [4,14].

2.3. Polarimetric Lidar Observations during the May 2016 Etna Eruption

Using the notation adopted in [6], Lidar elastic observations can be expressed in terms
of the backscattering coefficient βxy (m−1 sr−1), hereinafter O1, i.e., first observable, where
x = h, v (horizontal and vertical respectively) stands for the receiving mode and y = h, v for
the transmitting mode polarization, as well as in terms of cross-polarization ratio coefficient
δcr = βvh/βhh (dimensionless), hereinafter O2, i.e., second observable. In this work, we
focus on the processing of copolar horizontally polarized backscattering coefficient βhh and
cross-polarization ratio βvh to derive δcr.

The βhh coefficient from daytime measurements can be obtained by using the Klett–
Fernald algorithm [1,17,18], known as the Lidar Ratio LR that is the ratio between the
extinction coefficient and the backscatter coefficient. This parameter varies for aerosol
types depending on the aerosol microphysical properties such as refractive index, size
distribution, structure and chemical composition. In combination with other parameters, it
can be used to distinguish between different aerosol typologies. This parameter is essential
in the optical properties retrieval, and it is generally assumed to be known in the inversion
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procedure using the Klett–Fernald algorithm [1,6,18,19]. The Elastic/Raman technique,
employed in the AMPLE system, allows for direct measurement of the LR in the volcanic
plume, estimated to be 48 sr [1].

The δcr value, generally referred to as δa to show that it is an aerosol, is obtained from
the elastic Lidar profiles measured in the horizontal and vertical-polarized channels at
W0 and W1 according to inversion procedures in [20,21]. The cross-polarization ratio of
the finest ash particles can be used to identify the presence of non-spherical particles with
higher cross-polarization ratio in the atmospheric sample sounded by the Lidar [9]. Never-
theless, polarimetric measurements, whose uncertainty can affect the derived parameters
accuracy, need a calibration procedure that takes into account the different efficiencies of
the detection for the parallel and perpendicular polarization channels. In order to calibrate
the depolarization channels of our system, we used a two-step procedure already described
in [1].

Polarimetric Lidar observables in the W1 during the 2016 Etna case study are shown in
the panels of Figure 3. In the upper panel, the altitude-time diagrams of the range-corrected
Lidar backscattered signal (RCS). RCS is the Lidar signal multiplied by the square of the
distance and is provided as arbitrary unit (a. u.). The cross-polarization ratio (DEP) allows
to highlight the dispersed ash layer using four elevations: (1) 90◦ in the time range between
13:45 and 15:16 and between 16:17 and 16:35 UTC, with the altitude limit of 15,400 m (all
the heights are above sea level for 90◦); (2) 20◦ between 15:20 and 15:55 UTC, with the
distance limit of 15,400 m; (3) 30◦ between 15:55 and 16:07 UTC, with distance limit of
15,400 m and (4) 40◦ between 16:07 and 16:17 UTC, with distance limit of 15,400 m. Note
that the maximum distance observed from the Lidar along the beam direction is always
15,400 m. By varying the pointing angle, the same ash layer is seen at different distances.
The different elevations were chosen in order to observe different portions of the ash cloud
and to probe the various stratifications, taking into account the attenuation that the signal
undergoes when it crosses the atmospheric particulate along the path between the Lidar
and the volcanic cloud.

In Figure 3a,b, we also identify two ash layers as observed by Lidar at different
elevation pointing angles and between 2–4 km and 6–7 km of altitude. The horizontal
structure of the ash cloud layer is producing a signature whose range is indeed increasing
as the elevation angle decreases. In fact, the two layers are fairly distinguishable for a
zenith pointing. For lower pointing angles, we observed an increase in the optical thickness
due to the greater amount of ash layer crossed. This fact does not allow distinguishing
the highest ash layer between 6 and 7 km due to strong attenuation of the Lidar signal.
Lidar returns before 2 km are mainly due to aerosols of anthropogenic origin and very fine
particles of water that constitute the particulate of atmospheric boundary layer (within
2 km). This horizontal stratification generated a strong backscatter return before 14:15
UTC, probably associated with cirrocumulus clouds of ice. However, a thin layer between
6 and 7 km could be related to the volcanic clouds of the VOR, which reached 6.5 km as
estimated by the satellite [15]. It is worth noting that for this event no dust cloud load was
forecasted over Catania area (https://ess.bsc.es/bsc-dust-daily-forecast), confirming that
the layering observed by Lidar is of volcanic origin.

In order to deepen the characterization of the detected ash layers, Figure 4 shows the
vertical profiles of backscattering coefficient and cross-polarization ratio, analysed at 15:02
using an elevation angle of 90◦ at W0 (red line) and W1 (blue line) [1]. The panels in the
middle and in the right show the zoom of profiles including the signature between 2 and
4 km and between 6 and 7 km, respectively.

https://ess.bsc.es/bsc-dust-daily-forecast
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Figure 3. Range-time diagram of the AMPLE Lidar range-corrected Lidar backscattered signal (RCS) (panel a) and cross-
polarization ratio (panel b) at W1 of ash layers dispersed between 2 and 4 km (identified by A) in each picture, and between
6 km and 7 km (identified by B). Measurements were carried out in Catania on 18 May 2016 between 13:45 and 16:35 UTC at
different elevation angles (90◦, 20◦, 30◦, 40◦). The colour scale on the right side is in arbitrary units ranging between 0 and
100. See text for details.

We note that the backscattering coefficient at W1 ranges between 0 and 2.5 m−1 sr−1

and at W0 between 0.5 and 3.3 m−1 sr−1 between 2 and 4 km (green dashed square). The
cross-polarization ratio at W1 ranges between 0.05 and 0.22% and at W0 between 0.13
and 0.1%. Between 6 and 7 km (blue dashed square), the backscattering coefficient at W1
ranges between 0 and 0.6 m−1 sr−1 and at W0 between 0.8 and 1.6 m−1 sr−1, whereas
the cross-polarization ratio at W1 ranges between 0.1 and 0.5 % and at W0 between 0.08
and 1.6%.

We can highlight how both cross-polarization ratios at W1 and W0 show their maxi-
mum value, indicating the presence of larger aspherical ash particles whose abundance is
also manifested by larger backscattering values.
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ash layers. The purple hatched ellipses identify the peaks where the ash layers are present in the panels (e,f).

3. Retrieval Methods from Lidar Data

A physically based inversion methodology, named Volcanic Ash Lidar Retrieval
(VALR) and previously developed [6], is applied to estimate ash particle mean size and
mass concentration in the investigated volcanic ash cloud. Several retrieval approaches,
such as the VALR Maximum-Likelihood (ML), Single-Regressive (SR) and Multi-Regressive
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(MR) algorithms, are implemented in this analysis in order to explore potentialities and
differences for retrieving ash profiles and compare their results. The goals are: (i) using the
VALR ML forward model for dual-polarization and dual-wavelength Lidar observations
and (ii) comparing VALR ML with SR and MR retrieval techniques and parametric rela-
tionships. For this analysis, we assume that the VALR ML is the reference one due to its
capability to deal with non-linearity of the inversion processes.

In order to infer volcanic ash parameters from Lidar measurements, we need to solve
an ill-posed inverse problem [22]. The latter can be approached by resorting to a physically
based approach that translates into the solution of the related forward problem, i.e., the
modelling of the Lidar multi-wavelength and polarimetric response from a microphysical
description of the volcanic particle distribution within ash cloud layers [6]. Note that the
pre-processing of the Lidar signal is also devoted to the elimination of possible sources of
error (e.g., path attenuation, ground clutter, target blocking).

The physically based approach requests an ash particle microphysical model. Hence,
we here adopt a scattering model based on the T-Matrix solution method for spheroidal
particles [23]. The numerical implementation, previously developed and named Tephra
Particle Ensemble Scattering Simulator (TPESS) numerical simulator [6], considers volcanic
particles features (size, density, shape, refractivity), derived from in situ experimental data
and the available literature. The rationale of TPESS forward modelling is that using a Monte
Carlo approach with a uniform probability, we let all the microphysical and morphological
driving parameters of ash dimensional spectra to vary within a constrained range of values.
Assuming equivalent-spheroid shapes, we apply the T-matrix backscattering simulator to
compare Lidar observations. For Lidar applications, we identify possible 180 classes as a
combination of three different particle sizes (VA, FA, CA), five different orientations (TO.1,
TO.2, TO.3, OO, PO), four ash mass concentrations (VC, SC, MC, IC) and three axis ratios
rax = l/w, length l over width w of particle [24] (RB, RR and SR) as shown in the Table 1
(see [6] for more details).

Table 1. The microphysical particle features used in the simulations have been marked with an asterisk.

Ash Particle Ensemble Property Very Fine Ash (VA) Fine Ash (FA) Coarse Ash (CA)
Ash diameter variability range

DDn (mm)
Uniform PDF DDn

0.125–8
Uniform PDF DDn

8–64
Uniform PDF DDn

64–512
Ash particle concentration
variability range (mg/m3)

VC: Very small Conc.
SC: Small Conc.

MC: Medium Conc.
IC: Intense Conc.

Uniform PDF

VC: 10−3–100 (*)
SC: 100–102 (*)
MC: 102–103

IC: 103–104

Uniform PDF

VC: 10−3–100 (*)
SC: 100–102 (*)
MC: 102–103

IC: 103–104

Uniform PDF

VC: 10−3–100

SC: 100–102

MC: 102–103

IC: 103–104

Ash size distribution shape
parameter

mp (dimensionless)

Scaled Gamma PSD
U-PDF

mp = 1–2

Scaled Gamma PSD
U-PDF

mp = 1–2

Scaled Gamma PSD
U-PDF

mp = 1–2
Ash particle density

rp (g/cm3)
Uniform PDF
rp = 0.5–2.5

Uniform PDF
rp = 0.5–2.5

Uniform PDF
rp = 0.5–2.5

Ash particle canting angle mean
and deviation

mf (◦) and sf (◦)
TO.1: Tumbling Orientation
TO.2: Tumbling Orientation
TO.3: Tumbling Orientation

OO: Oblate Orientation
PO: Prolate Orientation

Gaussian-PDF

mf = 30◦; sf = 30◦

mf = 45◦; sf = 30◦ (*)
mf = 60◦; sf = 30◦

mf = 0◦; sf = 10◦ (*)
mf = 90◦; sf = 10◦ (*)

Gaussian-PDF

mf = 30◦; sf = 30◦

mf = 45◦; sf = 30◦ (*)
mf = 60◦; sf = 30◦

mf = 0◦; sf = 10◦ (*)
mf = 90◦; sf = 10◦ (*)

Gaussian-PDF

mf = 30◦; sf = 30◦

mf = 45◦; sf = 30◦

mf = 60◦; sf = 30◦

mf = 0◦; sf = 10◦

mf = 90◦; sf = 10◦

Non-spherical particle axial ratio rax:
axis ratio (dimensionless)

RB: basaltic ratio
RR: rhyolitic ratio
SR: spherical ratio

rax = AR

RB: rax-b (*)
RR: rax-r

SR: rax-s (*)

rax = AR

RB: rax-b (*)
RR: rax-r

SR: rax-s (*)

rax = AR

RB: rax-b
RR: rax-r
SR: rax-s
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The most probable classes, that we can find above the Lidar station, are the VA and
FA ones, having the smallest concentrations (VC and SC). Figure 5 shows that the classes
with the best correspondence with the Lidar measures are the classes FA-SC (yellow points)
and VA-VC (red points). Applying the VALR ML classifier, the most probable simulated
size class is the VA, with an occurrence of 95% respect to the FA (about 5%). Given the low
percentage of detected FA, we restrict the analysis only to the VA class characterized by Very
small Concentration (VC) category with values ranging between 10−6 and 10−3 g/m3 [6].
Figure 5 also shows the overlapping between the simulated (FA-SC in yellow dots, FA-VC
in blue dots, VA-SC green dots and VA-VC in red dots) and AMPLE Lidar measurements
measured (dark dots) backscattering coefficient βhhs and cross-polarization ratio δcrs (the
subscript s stands for simulated) at W0 and W1. Note that we will prefer to express
βhhs in dBβ, that is, a value in decibel equal to 10 log10(βhhs) when βhhs is expressed in
[m−1sr−1] [6].
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Figure 5. Overlapping between Lidar simulated and measured data of depolarization (percentage) and backscattering (dBβ)
coefficients: FA-SC in yellow dots, FA-VC in blue dots, VA-SC green dots and VA-VC in red dots and Lidar measurements
in dark dots at W0 and W1, panels (a,b), respectively.

The synthetic and measured signatures of the Lidar are in good agreement, confirming
that the selected VA-VC class well represents the ash particles observed by the Lidar
between 2–7 km of altitude and 25 km distance from VOR. The distribution of the coloured
points that are distributed along the axis of the backscatter coefficient of Figure 5 mainly
identifies the presence of the smallest and spherical particles that show depolarization
values close to zero.

The VALR ML can treat a variety of input data: (i) a single observable such as the
measured copolar backscattering coefficient βhhm (denoted hereinafter by O1); (ii) double
observables such as measured copolar backscattering βhhm and cross-polarization ratio
coefficients δcrm (denoted hereinafter by O2); (iii) a single or double observable at a single
wavelength W0 or W1, respectively, and at both wavelengths W0 and W1 simultaneously
(denoted hereinafter W2). Table 2 summarizes the possible combinations of the retrieval
techniques using single or double observables and wavelengths: (1) the Single Regressive
(SR) technique, using power laws with one (O1) or both observables (O2) connected to the
wavelength W0 or W1; (2) the Multiple Regressive (MR) technique, using power laws with
one O1 observable simultaneously and both wavelengths W2; (3) the Maximum Likelihood
(ML) estimation with different observable combination.
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Table 2. Overview of the different retrieval methodologies as function of observables and Lidar
wavelength combinations employed in this work.

Observable (O) Wavelength (W)
Method βhh βhh&δcr UV VIS UV&VIS

SR O1 O2 W0 W1
MR O1 W2

VALR ML O1 O2 W0 W1 W2

3.1. Maximum Likelihood (ML) Method

In the ML approach, the ash particle classification from a set of Lidar observables is
performed using a Maximum a Posteriori (MAP) probability criterion.

The VALR ML approach basically reduces to a minimization process in order to assign
the specific class to each available Lidar measurement. Under a Gaussian probability
density function of the differences between simulated and measured observables, the
VALR ML method minimizes a quadratic form. The estimated ash class c and the retrieved
microphysical parameters are those that exhibit the minimum metric, computed as the
average of first five minimum square distance d2 between the Lidar measurement set
(βhhm, δcrm) and simulated set (βhhsWX , δcrsWX) using the selected VA-VC class at the
specific wavelengths WX, i.e., W0 or W1. We can write the quadratic distance for a single
wavelength as

d2
(

C(c)
a , D(c)

n

)
=

[
βhhmWX − βhhsWX

(
C(c)

a , D(c)
n

)]2

σ2
βhhsWX

+

[
δcrmWX − δcrsWX

(
C(c)

a , D(c)
n

)]2

σ2
δcrsWX

(1)

Being each term of (1) weighted by the inverse of the variances σ2
βhhs and σ2

δcrs of the
simulated ash class dataset, whereas Ca and Dn are the mass concentration (in mg/m3)
and mean diameter (in µm), respectively.

We can improve the VALR ML estimation, considering both observables measured at
both wavelengths W0 and W1 at the same time, obtaining the following quadratic distance
at W2:

d2
(

C(c)
a , D(c)

n

)
=

[
βhhmW0−βhhsW0

(
C(c)

a ,D(c)
n

)]2

σ2
βhhsW0

+

[
δcrmW0−δcrsW0

(
C(c)

a ,D(c)
n

)]2

σ2
δcrsW0

+

+

[
βhhmW1−βhhsW1

(
C(c)

a ,D(c)
n

)]2

σ2
βhhsW1

+

[
δcrmW1−δcrsW1

(
C(c)

a ,D(c)
n

)]2

σ2
δcrsW1

(2)

In order to retrieve the ash mass concentration and mean diameter in the selected
VA-VC class, we can extract their value by minimizing the quadratic distance in (1) or (2),
that is,

Ĉ(C)
a = C(C)

a

∣∣∣Min
(C(c)

a ,D(c)
n )

{
d2
(

C(c)
a , D(c)

n

)}
(3a)

D̂(C)
n = D(C)

n

∣∣∣Min
(C(c)

a ,D(c)
n )

{
d2
(

C(c)
a , D(c)

n

)}
(3b)

where Min is the minimum function. The symbol “|” in (3a) and (3b) indicates that the
estimated concentration and mean diameter are those values minimizing the quadratic
distance as a function of the possible parameters of the simulated class. It is worth noting
that these retrievals are conditioned by microphysical-electromagnetic assumptions in the
TPESS numerical model and their representativeness with respect to the observed scene.

3.2. Single and Multiple Regression (SR and MR) Methods

Starting from TPESS simulated data for the VA-VC class, we can derive the regressive
power laws correlating ash concentration Ca and mean diameter Dn.
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For the single-wavelength regression (SR), the Equations (4a) and (4b) use only the
measured backscattering coefficient or both backscattering coefficient and cross-polarization
ratio, respectively, for each wavelength that is considered separately:

Ĉ(c)
a = a βb

hhWX D̂(c)
n = d βe

hhWX (4a)

Ĉ(c)
a = a βb

hhWXδc
crWX D̂(c)

n = d βe
hhWX δ

f
crWX (4b)

where the coefficients a, b, c, d, e, and f are the SR regression coefficients and WX can be W0
or W1.

For the multiple-wavelength regression (MR), the following Equation (5) employs only
the backscattering coefficient at both wavelength W0 and W1 together (MR) to estimate Ca
and Dn:

Ĉ(c)
a = a′ βb′

hhW0 βc′
hhW1 D̂(c)

n = d′ βe′
hhW0 β

f ′

hhW1′
(5)

where a′, b′, c′, d′, e′, f′ are the MR regression coefficients. The choice to use only the
backscattering coefficient in MR is due to the difficult use of the cross-polarization ratio
with the regressive models.

To evaluate the discrepancy ε of Ca and Dn estimations, expressed in percentage and
due to the different retrieval methods, we can compute the normalized absolute value of
the difference between SR and VALR-ML as well as between MR and VALR-ML retrievals.
We then calculate the average εCa%, εDn% along the vertical profile of all discrepancies
within the detected ash layers (2, 4, 6 and 7 km). The dispersion of these values around the
mean value ε is expressed in terms of standard deviation σCa%, σDn%. In formulas we have

εCa = 100
|CaXR − CaML|

CaML
, εCa% = Meanz(εCa%), σCa% = Stdz(εCa%) (6a)

εDn = 100
|DnXR − DnML|

DnML
, εDn% = Meanz(εCa%), σDn% = Stdz(εDn%) (6b)

where Meanz and Stdz are the mean and standard deviation function, respectively, along
the vertical coordinate z. Note that in (6), in absence of in situ airborne data, we consider
the VALR ML estimates as the ‘reference approach’ because it can deal with non-linearities
of the inverse problems much better than statistical regression methods. In this respect, we
expect that the VALR ML estimates are more realistic than SR and MR methods.

3.3. Parametric Inversion Methods at Visible Wavelength

We also apply two parametric models, available in literature, using only measured
backscatter coefficient (O1) in the visible wavelength (W1) [6,7,11,13]. The first retrieval
parametric model (hereinafter P1) is expressed by

ĈaP1 = kc LR ρa βhhW1 (7)

where kc is the ash conversion factor, function of the PSD and mainly dependent on the
ash effective radius re kc =

2
3 re [6,9,11,25] with re equal to half value of Dn from the VALR

ML algorithm. In this case, we can use the point estimates of Dn (hereinafter PML1) or
the average of its values within the ash layer (hereinafter PML2). LR is the mean value of
Lidar ratio (48) [7,26]; ρa is the density of volcanic ash fixed to 2450 kg/m3 [27], and βhhW1
is the measured volcanic ash backscatter coefficient at W1.

The second parametric method [6,9] used to derive Ca (hereinafter P2) employs the
measured backscattering coefficient at W1 and can be written as

ĈaP2 = [1.346 re − 0.156] LR βhhW1 (8)

The expression between square brackets is known as the mass–extinction conversion
factor for volcanic ash concentration, depending on the particle effective radius in this
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case equal to half mean diameter previously retrieved. [6,9,28]. Both parametric P1 and P2
models need some a priori information.

4. Results

In this section, we summarize the ash mass concentration and/or mean diameter
estimates obtained from the previously described retrieval algorithms, and we show the
main differences among the various estimates. In the model-based approach, we have the
ML, SR and MR techniques using only one or more combinations of backscattering and
cross-polarization ratio (O1, O2) at different wavelengths (W0, W1 or W2; see Table 2). We
finally apply four parametric approaches, named P1, P2, PML1 and PML2. Hence, we
evaluate the discrepancies through the metrics defined in Equation (6). Figure 6 shows the
different retrievals of Ca and Dn, respectively, observed at the zenith angle (90◦) using all
the retrieval approaches.

Figure 6b,d,f,h,j,l shows a variability of the estimated values falling within the VA-VC
simulated class boundaries. We compute the standard deviation of first five minimum
square distance d2 (Equation (2)) in order to show an uncertainty (±σ), closest to ML
estimates, plotted as coloured area bounded by the blue dashed line. The peaks observable
in the profiles of the mass concentration estimates (6.9, 6.7 and 6.3 km, between 3.8 and
3.2 km and between 2.8 and 2.2 km of altitude, panels (f) and (h), respectively) show a
stratification of ash clouds in thin layers of ash.

The SR retrieval models (O1-purple line and O2-yellow line) show results with less
variable values. The estimates are consistent with each other and with the ML estimates,
using the various combinations. We consider the parametric models only at W1, Figure 6f,h.
P1 model shows the same variability of the vertical profile typical of the ML method,
whereas the other two models P2, PML1 and PML2, using a fixed re, show a more uniform
trend. In all cases, Ca estimates vary between 1 and 400 µg/m3. The P1 estimates are
greater than the ML and SR estimates, reaching values of 400 µg/m3, whereas the P2, PML1
and PML2 models do not exceed 200 µg/m3. At W0, the Ca estimates, Figure 6b,d, are
more consistent. The ML estimates are more variable, probably due to a stratification of the
observed layer along the vertical profile, as highlighted by the ML method.

Combining the measurements at W0 and W1, that is W2, the ML-O2 and MR-O1
estimates are shown in Figure 6j,l. The ML estimates show a greater variability (with a
minimum around 1 µg/m3 and a maximum at 300 µg/m3) than the MR estimates (with a
minimum trend around 10 µg/m3 and a maximum at 50 µg/m3). For the mean diameter
Dn estimates, shown in the left side panels of Figure 6, we always consider the bands
W0, W1 and W2. In W1, the ML estimates with two observables (O2), as a function of
uncertainty σ, and the SR estimates with one or two observables (O1) and (O2) are shown
in Figure 6e,g. For the ML method Dn the values range between 1 µm and 6 µm, as seen in
the blue area of each panel, whereas for the SR method between 1 µm and 2 µm.

Using W0, Figure 6a,c, the Dn estimates show a narrower variation of size values.
The retrieved Dn values vary between 0.5 µm and 3.5 µm, whereas SR-O1 and SR-O2
between 0.2 µm and 1.3 µm. Figure 6i,k shows the ML-O2 and MR-O2 estimates with
estimated Dn range between 0.1 µm and 6 µm and oscillating between 0.5 µm and 1.5 µm,
respectively. We note a reduction in the fidelity of ML, SR and MR estimates, both in the
mass concentration and mean diameter, with increasing observation distance and with the
degrading of the measured signal. Moreover, in this case, the Dn estimates of the ML with
their uncertainty allow to collect the regressive estimates in their dynamics.

The AMPLE Lidar can scan and observe along different azimuth and elevation, as
shown in Figures 2 and 3. Figure 7 shows Ca (panels (a), (c) and (d)) and Dn (panels (b),
(d) and (f)) retrievals, applying the various methodologies, previously discussed, to Lidar
measurements performed only at W1, coinciding with the thin stratification of ash at low
altitude (between 2 and 4 km with a zenith point). By increasing the pointing angle from
20◦ to 30◦ and 40◦, the Ca and Dn retrievals become more similar. This behaviour is strictly
due to the increase of the atmospheric boundary layer crossed along the distance between
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the ash layer and Lidar and consequently of the optical thickness which attenuates the
Lidar signal, not allowing to discriminate the ash stratification.
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backscattering coefficient O1), only the P1 method is confirmed as the one that reaches the 
greatest values (about 103 ߤg/m3), followed by PML1 and PML2. ML-O2, SR-O1 and O2 
show a similar trend with a variability between 1 ߤg/m3 and peaks reaching 400 ߤg/m3. At 
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Figure 6. Vertical profile of mean diameter Dn (panels (a,c,e,g,i,k)) and ash mass concentration Ca (panels (b,d,f,h,j,l))
retrievals observed at 15:02 UTC on 18 May 2016. The panels on the right show Ca retrievals performed at W1, panels (b,d);
at W0, panels (f,h) and combining both wavelengths (W2), panels (j,l), respectively, and related to layers between 2 and
4 km (panels (d,h,l)) and between 6 and 7 km, (panels (b,f)); ML uses both observables (O2, backscattering coefficient and
cross-polarization ratio) and the coloured area bounded by the blue dashed line is obtained considering the discrepancy ±σ
around the estimated value (line blue); SR uses only the backscattering coefficient (O1) and both Lidar observables (O2); MR
uses only the backscattering coefficient (O1); PM1, PM2, PML1 and PML2 use only the backscattering coefficient. The six
panels on the left show the Dn retrievals performed at W1, panel (a,c), W0, panel (e,g) and combining both wavelengths W2,
panel (i,k), respectively, and related to layers between 2 and 4 km, panels (c,g,k)) and between 6 and 7 km, panels (a,e,i).
The employed retrieval methodologies are: ML using both observables (O2); SR-O1 and O2; MR-O1.

Regarding the ash mass concentration, at 20◦ elevation, the profiles show a distance
between 6 and 10 km. Among the parametric models (P1, P2, PML1 and PML2, using
backscattering coefficient O1), only the P1 method is confirmed as the one that reaches
the greatest values (about 103 µg/m3), followed by PML1 and PML2. ML-O2, SR-O1
and O2 show a similar trend with a variability between 1 µg/m3 and peaks reaching
400 µg/m3. At an altitude of 30◦, the estimates between 4 and 8 km tend to be comparable
between different methods, with the exception of the P1 method which also in this case
is confirmed as the one with the highest values (about 103 µg/m3). The ML method
ranges include the other estimates (SR and P2, PML1 and PML2), with values ranging from
1 µg/m3 to 300 µg/m3. At 40◦ of elevation, we find the same dynamics observed in the
other two elevations for a distance between 3 and 6 km, that is, the overlap between the
various regressive and parametric methods with the ML one, probably related to the best
observation geometry of the AMPLE Lidar.
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Figure 7. Vertical profile of concentration Ca retrievals, panels (b,d,f), and mean diameter Dn retrievals, panels (a), 9 (c,e),
observed at 20◦ (15:40 UTC), 30◦ (15:57 UTC) and 40◦ (16:08 UTC) on 18 May 2016, respectively. ML uses both observables
(O2, backscattering coefficient and cross-polarization ratio), and the coloured area bounded by the blue dashed line is
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The detection approach discussed for the Ca estimates can be basically proposed for
the Dn estimates. For a Lidar elevation angle of 20◦, 30◦ and 40◦, the ML method has
significant oscillations. In contrast, the Dn estimates with SR-O1 and O2 are quite similar.
In both cases, the estimates show a variability between 10−1 and 6 µm. The Dn retrievals at
40◦ are more consistent ranging between 10−1 and 5 µm. It should be noted that for the
different elevation angles (20◦, 30◦ and 40◦), we took into account only the distance relative
to the two lowest ash layers, because the lidar signal is not degraded.

In Table 3 are listed the discrepancies and the standard deviations for Ca and Dn
estimates in percentage, using indices defined in Equation (6). The addition of the second
observable (depolarization or cross-polarization ratio, the latter used hereinafter) in the
regressive SR and MR estimates increases the discrepancy for both Ca and Dn estimates.
Regarding the estimates at zenith pointing, for W1 case, this effect is more evident, whereas
for W0 case, there is an opposite behaviour, i.e., a reduction in discrepancy when two
observables are considered. Although the SR method shows low discrepancy, combining
W0 and W1 and using a single observable (O1) in MR shows a greater discrepancy for both
Ca and Dn estimates respect to SR methods. This trend is quite intuitive considering the
different sensitivity of W0 and W1 radiation to particle size.

Table 3. Overview of the mean discrepancies εCa% and εDn% and the relative dispersions σCa and σDn, expressed in
percentage and related, respectively, to Ca and Dn, using the 4 different angles (20◦, 30◦, 40◦ and 90◦) performed during
Lidar measurements and considering the possible combinations of observables (O1 and O2) and wavelengths (W0, W1 and
W2) for the ML, SR, MR and parametric retrieval methods. Green colours indicate low discrepancy (εCa%, εDn% ≤ 10), blue
moderate discrepancy (10 < εCa%, εDn% ≤ 30), yellow large discrepancy (30 < εCa%, εDn% ≤ 60), and finally, red extreme
discrepancy (εCa%, εDn% > 60).

Altitude
(km)/Elevation (◦)/

Discrepancy
(%)

SR
O1 W0

SR
O2 W0

SR
O1 W1

SR
02 W1

MR
O1 W2

P1
O1 W1

P2
O1 W1

PML1
O1 W1

PML2
O1 W1

εCa% 4.68 2.74 1.74 3.14 8.86 100 11.32 31.40 32.89
σCa% 25.90 17.30 8.13 14.20 40.74 100 58.62 100 76.51
εDn% 0.38 0.06 0.07 0.38 0.01

2–4
km 90◦

σDn% 1.18 0.89 1.10 1.46 1.24
εCa% 1.15 3.21 2.70 2.63 2.41 100 0.46 5.34 7.73
σCa% 2.17 20.99 20.21 18.40 15.14 100 12.68 38.29 37.51
εDn% 0.78 0.86 1.45 2.65 0.96

6–7
km 90◦

σDn% 1.27 1.48 1.11 1.69 1.36
εCa% 3.18 5.12 100 4.94 18.00 22.55
σCa% 16.78 21.76 100 36.90 86.38 59.82
εDn% 0.02 0.18

2–4
km 40◦

σDn% 0.88 1.19
εCa% 25.89 5.66 100 0.72 26.93 9.91
σCa% 54.00 5.52 100 2.09 77.83 14.86
εDn% 1.10 3.90

2–4
km 30◦

σDn% 1.15 12.30
εCa% 7.40 9.02 100 7.38 26.14 43.08
σCa% 30.01 31.25 100 33.34 80.89 100
εDn% 0.62 2.43

2–4
km 20◦

σDn% 1.18 10.32

Considering the parametric models, the estimates obtained using only the backscat-
tering coefficient measured with a pointing of 90◦ show variable discrepancy values. The
greater Ca values derived from the P1 are probably due to the value of re associated a
priori, compared to the other parametric models that use re values deduced from the
Dn estimates by the ML method. If we look at the estimates and errors associated with
the measurements in the W1 alone, if the pointing angle increases from 20◦ to 40◦, the
discrepancy terms relating to Ca and Dn estimates tend to decrease. This occurs, in our
opinion, because the quality of the Lidar data can increase when the observed distance
reduces affecting the regressive and parametric estimates. This confirms that, for single
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wavelength observations, the observation angle can influence this inter-comparison, being
the elevation angle of 40◦ the optimal case for a minimum discrepancy. In fact, at low
elevation, the distance at which the observed ash layer is intercepted increases, increasing
the mass of air crossed and consequently the measurement errors.

To better highlight the potential of the various methods, the boxes in Table 3 are shown
with different colours according to the different discrepancy values. All the regressive
methods (SR and MR) are those whose estimates match best with ML (εCa%, εDn% ≤ 10), as
long as the aiming angle is greater than 30◦. The parametric methods are strongly affected
by the a priori assumptions leading the Ca estimates to differ more from those ML. The P1
method is confirmed as the one that differs most from the ML method (εCa% ~100).

5. Conclusions

In this work, we have highlighted how the VALR ML algorithm, used in inversion
of lidar data to derive particle size and concentration, can offer robust results. This result
can be derived from the comparison of the results of the various regressive and parametric
estimation methods. The analysis of the 2016 explosive event at Etna volcano highlights
the potential of the Lidar dual-wavelength methodology compared to a single wavelength
one to better describe both ash concentration and size. We have shown that a more detailed
characterization of the dispersed ash layers at different altitude and distance from the
volcanic vent is possible in terms of ash mass concentration Ca and mean size Dn retrievals.
Reliable ash concentration and size retrievals from Lidars, such as AMPLE, can significantly
help improve the capability to monitor and predict the airborne distribution of the volcanic
ash clouds during transport and dispersion processes.

The VALR ML algorithm, applied to Lidar polarimetric observables, can recover the
vertical profile of ash concentration and particle size in a physically coherent framework.
The scanning capability of the dual wavelength polarimetric Lidar improves the detection
of the concentration of finer ash of scattered plumes by combining the measurements at
UV with those at VIS wavelengths. Given the flexibility of the VALR ML, it is possible
to manage the non-linearity of the inverse problem, although the estimates may show
more variability than regressive statistical approaches, such as SR and MR. On the contrary,
the regressive approach can offer the advantage of more uniform estimates than ML
ones, being less sensitive to variation, and of less intensive computational resources to
execute operationally.

In this 2016 Etna case study, the ash concentration normally observed within thin
ash layers ranges between 0.1 µg/m3 and about 1 mg/m3, whereas the very fine particle
sizes characterized by a mean diameter ranging between 0.1–6 µm is in agreement with
particle size retrieved in [11]. This different concentration is expected considering the
stratification at different levels of the finest dispersed ash. The different estimates of ash
mean size and concentration at UV and VIS is mainly related to their different spectral
sensitivity to the smaller particles present in the ash layers between 2 and 4 km and 6
and 7 km. The advantage of using both wavelengths in the estimation of Ca and Dn is
to compensate for the retrievals between the estimates at the two bands with Ca values
between 0.1 µg/m3 and about 1 mg/m3 and of Dn between 0.1 and 6 µm. A comparison
between the concentration Ca and average diameter Dn estimates has been evaluated in
terms of the discrepancy between the ML method and other regressive and parametric
methods, obtaining values below 10% in most cases, in other cases values between 20%
and 30% and only in the parametric approach P1 the discrepancy is about 100%.

Further work should be devoted to the verification of the ash cloud volcanic particle
distribution, estimated from the proposed VALR approaches, possibly using airborne-
based particle samplers flying within the ash clouds. In this respect, remotely controlled
drones and unmanned vehicles can offer a unique opportunity for Lidar product valida-
tion campaigns.
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