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Abstract: Global climate change has noticeable influences on the water vapor redistribution in 
China, which is embodied by the fact that both wetting and drying tendencies were observed across 
China. This poses the necessity to monitor and understand the water vapor evolution in China. 
However, observations of water vapor from different techniques are subjected to systematic biases, 
different spatiotemporal resolutions and coverages, and different accuracy, which would hamper 
their joint use, potentially leading to contradictory conclusions when using different techniques. 
Data fusion is a promising way to address this problem. Some scholars have proposed several meth-
ods to fuse multi-source PWV data in China region, such as the enhanced spatial and temporal 
adaptive reflectance fusion model, the hybrid PWV fusion model, and the linear calibration model. 
Although these models can produce PWV products with improved accuracy, they still have some 
shortcomings, such as no consideration for spatial or temporal variations in bias or inevitably im-
pose some biases inaccurate information since assumptions made for interpolations are imperfect. 
In this study, we use the high-quality Global Navigation Satellite System (GNSS) precipitable water 
vapor (PWV) to calibrate and optimize the Moderate-resolution Imaging Spectroradiometer 
(MODIS) and the European Centre for Medium-Range Weather Forecasts ReAnalyses 5 (ERA5) 
PWV in 2018–2019 through a Generalized Regression Neural Network (GRNN) at annual, quarterly, 
and monthly timescales. Validation results demonstrate that modifying the MODIS and ERA5 PWV 
at the monthly timescale results in the best accuracy. In the monthly experiment, the average bias, 
standard deviation (STD), and root mean square (RMS) error of modified MODIS PWV are 0.0 mm, 
2.6 mm, and 2.6 mm, respectively. The percentage improvement is as high as 50% in terms of RMS 
compared to the original MODIS PWV. It becomes 0.0 mm, 1.7 mm, and 1.7 mm for the modified 
ERA5 PWV and the percentage improvement is 40%. Since the biases among different products are 
well-calibrated and the accuracy of MODIS and ERA5 PWV is improved to the same level of GNSS 
PWV, we can fuse them by simply merging them. Finally, we generate a new product of PWV in 
China with a temporal resolution of 1 day, a spatial resolution better than 31 km, and an accuracy 
better than 2.7 mm, which will serve as a high-quality product for investigating the water vapor 
redistribution under a changing climate. 

Keywords: precipitable water vapor; data fusion; generalized regression neural network 
 

1. Introduction 
Water vapor plays an important role in climate change and water cycling at various 

scales. In the past decades, global climate change has exerted noticeable influences on the 
water vapor distribution in China, which is evidenced by the fact that some regions in 
western and southern China are becoming wetter while some regions in eastern China are 
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becoming drier [1,2]. Besides being an indicator of climate change, water vapor also affects 
the propagation of radio signals by causing path bending and time delay, which is known 
as wet tropospheric delay in radio-based geodetic techniques including Global Naviga-
tion Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). 
Namely, water vapor is an error source in radio-based geodetic techniques, and its effect 
should be corrected. Therefore, monitoring the water vapor is a basic requirement for un-
derstanding the change in climate and water cycling, and improving the accuracy of ra-
dio-based geodetic techniques. 

Precipitable water vapor (PWV) is commonly used to describe the amount of water 
vapor in the atmosphere and is defined as the vertically integrated water vapor over unit 
area expressed by equivalent water height. PWV can be retrieved from observations and 
models. The observation methods include radiosonde, satellite remote sensing [3–5], 
GNSS [6–8], and water vapor radiometer, etc. The model methods mainly refer to the nu-
merical weather prediction models, including European Centre for Medium-Range 
Weather Forecasts (ECMWF) [9,10], National Centers for Environmental Prediction [9,11], 
etc. Moderate-resolution Imaging Spectroradiometer (MODIS) PWV is one kind of satel-
lite remote sensing PWV, which has a high spatial resolution (1–5 km) but its quality is 
affected by weather and ground surface conditions. Scientists have found that the accu-
racy of MODIS PWV is 5–6 mm in the China area [12,13], which is much worse than in the 
US area (2–4 mm) [14,15]. The accuracy of GNSS PWV is typically 1–2 mm [6,7,16,17], but 
its spatial resolution is limited by the sparse station deployment. The model-simulated 
PWV has a medium spatiotemporal resolution but its accuracy is dependent on the den-
sity and quality of the assimilated observations. Because of the systematic biases among 
different methods, different spatial and temporal resolutions and coverages, care has to 
be taken for the joint use of different PWV data sources. Otherwise, contradictory conclu-
sions may be obtained when using different individual PWV data sources [15,18]. 

Data fusion is a promising way to address this problem. Li et al. [14] used a Global 
Position System-derived correction linear fit model to modify the accuracy of MODIS 
PWV and produce a regional 1 km ×  1 km water vapor field in Southern California. 
Lindenbergh et al. [19] fused Medium Resolution Imaging Spectrometer PWV and GNSS 
PWV based on ordinary kriging interpolation in western Europe and the results were ben-
eficial to numerical weather prediction. Alshawaf et al. [20] built PWV maps by fusing 
Persistent Scatterer InSAR and GNSS data over the region of Upper Rhine Graben in Ger-
many and France and used the kriging geostatistical interpolation technique to produce 
continuous grids of PWV. Alshawaf et al. [21] used a fixed-rank kriging method to fuse 
GNSS PWV, InSAR PWV, and the Weather Research and Forecasting model simulated 
PWV in Europe and found that PWV maps inferred by the data fusion have a better qual-
ity than those inferred from a single data source. Zhang et al. [15] proposed a method 
based on spherical cap harmonic model and Helmert variance component estimation to 
fuse GNSS, MODIS, and ECMWF ReAnalyses 5 (ERA5) PWV, and obtained high accuracy 
(2 mm) in North America. Li and Long [22] combined MODIS and ERA5 PWV to generate 
PWV products in the upper reaches of the Brahmaputra river from 2007 to 2013, and the 
generated PWV products had good consistency with the Global Position System measure-
ments. Zhao et al. [18] proposed a PWV fusion model in China based on the polynomial 
fitting and spherical harmonic function, and the results showed that the mean root square 
(RMS) of the hybrid PWV fusion model was less than 3 mm in any areas of China in all 
four seasons. Bai et al. [23] proposed a linear calibration model which uses GNSS PWV to 
calibrate MODIS PWV in mainland China, and the results showed obvious improvements 
in calibrated MODIS PWV. Some of the above methods are based on interpolation ap-
proach, which may inevitably impose biases or inaccurate information due to the imper-
fect assumptions made for the interpolation [24]. Some of the above methods only cali-
brate a global bias and do not consider spatial or temporal variations in bias. Moreover, 
the MODIS PWV has poor quality in China [12,13], which makes it unqualified for the 
investigation of subtle PWV variation in China. Because of these problems, efforts are 
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needed to produce high-quality PWV in China. The method proposed by Zhang et al. [24] 
does not need any prior information or assumption which could avoid introducing biases 
before fusing and can fully consider the spatial variation of the systematic biases between 
different PWV data. 

In this study, we use the Generalized Regression Neural Network (GRNN) method 
proposed by Zhang et al. [24] to fuse the PWV data from GNSS, MODIS, and ERA5 to 
generate a unified high-quality PWV dataset in the land area of China. Different from 
Zhang et al. [24] that fused PWV data in North America at an annual scale, this study 
fuses the PWV data at annual, quarterly, and monthly scales in China in an attempt to 
find out the best timescale for PWV fusion in China. Through this study, we aim to gen-
erate a unified PWV product for China with improved accuracy and spatial resolutions 
and thus providing a better PWV product. The new PWV product not only can be useful 
for the application of earth observation such as performing the tropospheric refraction 
correction of InSAR observation, but it will also allow more detailed monitoring of water 
vapor over China. Besides, this PWV product can also be a data source of numerical 
weather forecasting and help researchers better study the circulation of water vapor over 
China. 

2. Research Area and PWV Data 
2.1. Research Area 

Our research area is in the land area of China which is shown in Figure 1 with GNSS 
stations and radiosonde stations. The topography of the research area is high (>4000 m) in 
the west and decreases sharply to the east. The climate in the research area is complex and 
diverse because of the tremendous differences in latitude, longitude, and altitude. These 
conditions lead to complex variations in PWV in the research area. The GNSS PWVs used 
in this study are collected by 11 stations from the International GNSS Service (IGS) net-
work, 1084 stations from China Meteorological Administration (CMA) GNSS network, 
and 257 Crustal Movement Observation Network of China (CMONOC) GNSS stations. 
Six GNSS stations coexist in both the CMONOC and IGS network. There are 89 radiosonde 
stations used to assess the accuracy of ERA5 temperature, ERA5 pressure, and GNSS 
PWV. The radiosonde data are derived from the Integrated Global Radiosonde Archive 
Version 2 dataset and includes pressure, temperature, relative humidity, and other pa-
rameters with a temporal resolution of twice or four times daily 
(ftp://ftp.ncdc.noaa.gov/pub/data/igra/ (accessed on 25 April 2020)). 
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Figure 1. (a) Research area and the distribution of GNSS stations and Radiosonde stations; (b) the localization of study 
area (showing as red area) at a global scale. 
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2.2. Multi-Source PWV 
2.2.1. GNSS PWV 

As shown in Figure 1a, the GNSS PWVs have three sources, namely, IGS, CMA, and 
CMONOC. The CMA GNSS PWV is provided directly by the Meteorological Observation 
Center of CMA which has a time resolution of 1 h. The strategy used to process CMA 
GNSS data can be found in Liang et al. [25]. The CMONOC and IGS GNSS observations 
are processed by a Precise Point Positioning (PPP) software developed by Yao Yibing’s 
group at Wuhan University and the principle can be seen in Yao et al. [26]. The IGS Real-
Time Service IGS03 track and clock products are used for data processing. Kouba and 
Heroux [27] method is used to correct antenna phase center migration and variation, 
phase windings, earth tides, earth rotation, ocean tides, and relativistic effects. The prod-
uct of Center for Orbit Determination in Europe [28] corrects discrepancies in the differ-
ential code. The ionospheric delay is corrected to the first order by using the ionospheric 
two-frequency phase observation combination. The higher-order error of the ionosphere 
is ignored. Then, we obtain the GNSS Zenith Total Delay (ZTD) with a time resolution of 
30 min. We compare it with the IGS-released GNSS ZTD, and the bias, the standard devi-
ation (STD) and the RMS are −1.0 mm, 8.9 mm, and 9.0 mm, respectively. 

The GNSS ZTD includes zenith hydrostatic delay (ZHD) and zenith wet delay 
(ZWD). The ZHD could be obtained by the Saastamoinen model [29] which needs surface 
pressure. The transformational relation between ZWD and PWV can be found in Xiong et 
al. [11] which needs temperature. The needed temperature and pressure are interpolated 
from ERA5 data and its accuracy is assessed by the Radiosonde data. The linear interpo-
lation in the vertical direction and bilinear interpolation in the horizontal direction are 
applied to interpolate ERA5 data for a Radiosonde (GNSS) station location to obtain the 
temperature and pressure. The accuracy of temperature in terms of bias, STD, and RMS 
are 0.26 K, 2.25 K, and 2.27 K, respectively. It becomes 0.57 hPa, 1.68 hPa, and 1.77 hPa for 
pressure. 

Finally, we obtain the IGS and CMONOC GNSS PWV. We call the PWV processed 
by PPP software as PPP PWV and PWV from CMA as CMA PWV. The Radiosonde data 
are also used to assess PPP PWV and CMA PWV. The method to obtain Radiosonde PWV 
at GNSS station location can be found in Appendix A. The accuracy of PPP PWV in terms 
of bias, STD, and RMS is 0.9 mm, 1.7 mm, and 1.9 mm, respectively. It becomes −0.3 mm, 
1.6 mm, and 1.6 mm for CMA PWV. Both CMA PWV and PPP PWV have an accuracy 
within 2 mm, which indicates that the GNSS PWV can be used as the reference in the 
future to calibrate the MODIS PWV and ERA5 PWV for fusion. 

2.2.2. ERA5 PWV 
The ERA5 data are the latest generation of global climate reanalysis data released by 

ECMWF [30]. Compared with the previous generation ERA-Interim, the temporal resolu-
tion is improved from 6 to 1 h and the spatial resolution improved from 0.75° to 0.25°. The 
height information of the ERA5 grids is obtained from the Shuttle Radar Topography Mis-
sion Digital Elevation Model (STRM DEM) Version 4.1 data with a spatial resolution of 
250 m [31,32]. The height system in STRM DEM is orthometric height. Therefore, the 
height information for the ERA5 PWV is based on the orthometric height. 

2.2.3. MODIS PWV 
MOD05_L2 provides two types of MODIS PWV products: Near Infrared PWV with 

a spatial resolution of 1 km and Infrared PWV with a resolution of 5 km. We only use the 
Near Infrared PWV, since the accuracy of Near Infrared PWV is better than Infrared PWV 
[33,34]. Considering the spatial resolution of ERA5 PWV and GNSS PWV, we downscale 
the spatial resolution of Near Infrared PWV from 1 km to 5 km, which can effectively 
reduce the computational burden. In addition, the data quality of the MODIS PWV prod-
ucts is greatly affected by the weather and surface conditions. So only the Near Infrared 
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PWV on land under cloudless conditions is used. To avoid the effect of anomalous data, 
we exclude the data in the top 0.5% and negative values. We also use the SRTM DEM to 
provide height information for the MODIS PWV. 

In this study, the GNSS, MODIS, and ERA5 PWV are fused to generate a unified PWV 
product. Since the GNSS PWV is based on the ellipsoidal height while the MODIS and 
ERA5 PWV are based on the orthometric height, we need to unify the height system. We 
use the method in Li et al. [35] to make height corrections to the GNSS PWV so that all the 
PWV data are based on the orthometric height. 

3. GRNN Method for PWV Fusion 
We use the GRNN method to fuse GNSS, MODIS, and ERA5 PWV. In addition to the 

annual fusion as in Zhang et al. [24], we also implement the fusions at the quarterly and 
monthly timescales to explore more subtle variations in the PWVs. 

3.1. Generalized Regression Neural Network 
The GRNN was proposed by Specht in 1991 [36] which is based on non-parametric 

regression and uses sample data as a posterior condition. GRNN has a four-layer structure 
with an input layer, a pattern layer, a summation layer, and an output layer. The spread 
parameter in the pattern layer is the only hyperparameter in GRNN which needs to be set 
at first. 

The advantage of the GRNN model is that no model parameters need to be trained, 
so the convergence speed is fast. In addition, the GRNN is based on radial basis function 
and has good nonlinear approximation performance. The disadvantage of the GRNN is 
its high computational complexity and space complexity. 

3.2. Model Structure 
Figure 2 shows the model structure of the GRNN model for PWV fusion. The input 

layer has five neurons corresponding to the longitude, latitude, height, time, and MODIS 
(ERA5) PWV. There is only one neuron in the output layer which is the GNSS PWV or the 
modified MODIS (ERA5) PWV. The number of neurons in the pattern layer is equal to the 
number of observations. Considering that ERA5 PWV, MODIS PWV, and GNSS PWV 
have systematic differences and different error characteristics, we take GNSS PWV as the 
reference values and use them to improve the MODIS and ERA5 PWV, respectively. 

 
Figure 2. MODIS (ERA5)-GNSS PWV GRNN fusion model. 
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3.3. PWV Data Matching 
To form input-output samples, we need to interpolate the dense MODIS (ERA5) 

PWV to the location of GNSS PWV. For temporal interpolation, we interpolate the GNSS 
PWV and ERA5 PWV to the epoch of MODIS PWV using a simple linear interpolation. 
For the spatial interpolation, we use a spherical cap harmonic model to fit the MODIS 
(ERA5) PWV, which is then used to compute PWV at the GNSS stations. For the ERA5 
PWV, the pole of the spherical cap is (35.5327°N, 104.1477°E), and the half angle of the 
spherical cap is 35°. Because the area covered by MODIS PWV data at different epochs is 
inconsistent, the pole of the spherical cap is set at the center of the available MODIS PWV. 
The order of the spherical cap harmonic model is set to 5 for the MODIS PWV while it is 
10 for the ERA5 PWV. These settings guarantee that the corresponding spherical cap har-
monic model has the smallest misfit RMS error. After temporal and spatial interpolations, 
the MODIS (ERA5)-GNSS PWV pairs are obtained. Finally, we obtain 353,271 MODIS-
GNSS pairs and 960,047 ERA5-GNSS pairs in 2018 and 2019. The monthly number of 
MODIS-GNSS pairs fluctuates between 9025 and 23,667, while that of ERA5-GNSS pairs 
fluctuates between 28,474 and 61,961. 

Since the data quality of the samples affects the model performance, simple quality 
control is performed. We first calculate the bias and STD of the differences between the 
interpolated MODIS (ERA5) PWVs and GNSS PWVs and then use bias ±3 STD as the 
threshold to reject any pair whose corresponding difference is larger than the threshold. 
Finally, 7345 MODIS-GNSS PWV pairs and 10,238 ERA5-GNSS PWV pairs are removed, 
and the remaining samples are used to train the model. The remaining MODIS-GNSS 
pairs fluctuate between 8785 and 23,387 in one month while the ERA5-GNSS pairs fluctu-
ate between 28,449 and 61,599. The average bias, STD, RMS, and correlation coefficient (R) 
between the MODIS (ERA5) PWV in 2018 and 2019 after excluding outliers are given in 
Table 1. It is seen that MODIS PWV tends to be larger than GNSS PWV while ERA5 PWV 
is smaller than GNSS PWV in terms of bias. The accuracy of MODIS PWV in China region 
is poorer than that of ERA5 PWV in terms of RMS. 

Table 1. Average accuracy of data pairs after removing outliers. 

Unit: mm Bias STD RMS R 
MODIS-GNSS −2.3 5.2 5.7 0.96 
ERA5-GNSS 0.2 3.0 3.0 0.99 

Note: Biases are computed based on GNSS PWV minus MODIS (ERA5) PWV in this manuscript. 

3.4. Constructing the GRNN Models 
After obtaining the MODIS-GNSS PWV pairs and ERA5-GNSS PWV pairs in the re-

search area in 2018 and 2019, we use the GRNN method to fuse them at annual, quarterly, 
and monthly scales. Because the spread parameter in the pattern layer has a great influ-
ence on the model results, we use an enumeration algorithm to determine the optimal 
spread parameter, and the results can be found in Appendix B. In Appendix B, we set a 
series of optional spread parameters to test the GRNN model and present the model per-
formance against spread parameter values. 

In machine learning, cross-validation is often used to test the accuracy of algorithms. 
K-fold cross-validation has been widely used in machine learning [37–39]. Using K-fold 
cross-validation, every sample can be used for training or testing. In this study, the 10-
fold cross-validation is used to test the model. The ten-fold cross-validation randomly di-
vides the dataset into ten equal parts, and selects one of them as the test data and the other 
nine as the training data without duplication. After repeating ten times, the average sta-
tistical results can be used to evaluate the accuracy of the model. 
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4. Results 
4.1. Model Performance at Annual Timescale 

We use the samples in 2018 and 2019, respectively, to train and test the MODIS-GNSS 
PWV model and the ERA5-GNSS PWV model. We train the models using data in a whole 
year, and obtain a GRNN model in 2018 and another one in 2019. 

Table 2 presents the average testing results when training the model based on annual 
data in 2018 and 2019 with the optimal spread parameter given in Appendix B. Compared 
to the RMS values of the original datasets given in Table 1, the accuracy in terms of RMS 
is improved by 1.9 mm for MODIS PWV and 1.0 mm for ERA5 PWV. The bias between 
the modified MODIS (ERA5) PWV and the GNSS PWV is close to 0, indicating that the 
systemic difference between them has been eliminated after training. The scatter plots of 
the modified MODIS (ERA5) PWV versus GNSS PWV in the annual models are shown in 
Figure 3. Both the modified MODIS and ERA5 PWV have a better correlation with the 
GNSS PWV. 

Table 2. Model performance based on annual samples. 

Unit: mm  Bias STD RMS R 

MODIS-GNSS 
Modified 0.1 3.8 3.8 0.98 

Fitting 0.0 3.4 3.4 0.98 

ERA5-GNSS 
Modified 0.0 2.0 2.0 0.99 

Fitting 0.0 1.5 1.5 1.00 

 
Figure 3. Scatter plots of the modified MODIS PWV against observed (GNSS) PWV. 
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4.2. Model Performance at Quarterly Timescale 
We also train and test the GRNN models based on quarterly MODIS (ERA5)-GNSS 

PWV samples. This means we use the samples in every individual quarter to construct a 
corresponding quarterly GRNN model. In this manuscript, spring is defined from March 
to May, summer from June to August, autumn from September to November, and winter 
from December to February. 

Table 3 presents the overall performance of the quarterly models with the optimal 
spread parameter given in Appendix B. The systematic difference between MODIS 
(ERA5) PWV and GNSS PWV is also eliminated after training since the bias is close to 0. 
The accuracy in terms of RMS of the quarterly model is improved by 2.5 mm for MODIS 
PWV and 1.1 mm for ERA5 PWV, which are better than the improvement achieved by the 
annual models. 

Table 3. Model performance based on quarterly samples. 

Unit: mm Accuracy Bias STD RMS R 

MODIS-GNSS 
Modified 0.1  3.2  3.2  0.98  

Fitting 0.0  2.6  2.6  0.99  

ERA5-GNSS 
Modified 0.0  1.9  1.9  0.99  

Fitting 0.0  1.4  1.4  1.00  

Figure 4 shows the average bias, STD, RMS, and R of the quarterly models in different 
seasons. The original accuracy in terms of RMS for MODIS PWV in the spring and autumn 
is 5–6 mm, and it is even worse with RMS increasing to about 7.5 mm in the summer. The 
quarterly MODIS-GNSS PWV models effectively improve the accuracy of the modified 
MODIS PWV, as demonstrated in Figure 4c. The accuracy improvement in terms of RMS 
for MODIS PWV in four seasons is 1.8 mm (spring), 3.3 mm (summer), 3.0 mm (autumn), 
and 2.3 mm (winter), respectively. The accuracy improvement in terms of RMS in the 
spring is slightly less than that of the annual model (1.9 mm), but the RMS in the Spring 
quarterly model is 3.6 mm which is smaller than that of the annual model (3.8 mm). These 
results indicate that the seasonal differences are accounted for by the quarterly models. 
As shown in Figure 4d, the R has improved in all four seasons, especially in the winter. 

For the ERA5-GNSS quarterly models, the accuracy improvement in terms of RMS 
in four seasons is 0.9 mm (spring), 1.5 mm (summer), 1.3 mm (autumn), and 0.7 mm (win-
ter), respectively. The accuracy improvement in terms of RMS in the summer and autumn 
is better than that of the annual model (1.0 mm). Although the accuracy improvement in 
terms of RMS in spring and winter is less than the annual model, the RMSs of the quarterly 
models in spring and winter are 1.8 mm and 1.3 mm, respectively, which are smaller than 
that of the corresponding annual model (2.0 mm). Those results indicate that considering 
the seasonal differences can improve the model performance, which is conducive to the 
generation of high-quality PWV products in China. The systematic difference between the 
modified ERA5 PWV and GNSS PWV is close to 0, which indicates that the ERA5-GNSS 
quarterly model can also eliminate the systematic difference. In addition, as shown in Fig-
ure 4h the correlation coefficient R between the modified ERA5 PWV and the GNSS PWV 
increases to 0.99 by the quarterly models. 
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Figure 4. Accuracy information of the quarterly models in different seasons. (a) Bias of the MODIS-GNSS model; (b) STD 
of the MODIS-GNSS model; (c) RMS of the MODIS-GNSS model; (d) R of the MODIS-GNSS model; (e) Bias of the ERA5-
GNSS model; (f) STD of the ERA5-GNSS model; (g) RMS of the ERA5-GNSS model; (h) R of the ERA5-GNSS model. 

4.3. Model Performance at Monthly Timescale 
From the above experiments, it is seen that the performance of the quarterly models 

is better than that of the annual models. It is easy to extend the models from quarterly to 
monthly. 

Table 4 presents the overall performance of the monthly models with the optimal 
spread parameter given in Appendix B. The overall accuracy improvement in terms of 
RMS is 3.1 mm for MODIS PWV and 1.3 mm for ERA5 PWV, which is better than that by 
the quarterly models (2.5 mm for MODIS PWV and 1.1 mm for ERA5 PWV). The bias 
between MODIS (ERA5) PWV and GNSS PWV is reduced to 0 in the monthly models, 
which indicates that the systematic difference is eliminated. 

Table 4. Model performance based on monthly samples. 

Unit: mm Accuracy Bias STD RMS R 

MODIS-GNSS 
Modified 0.0  2.6  2.6  0.98  

Fitting 0.0  1.7  1.7  0.99  

ERA5-GNSS 
Modified 0.0  1.7  1.7  0.99  

Fitting 0.0  1.2  1.2  1.00  
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Figure 5 shows the average bias, STD, RMS, and R of the monthly models in different 
months. For original MODIS PWV, the bias, STD and RMS are increased from winter to 
summer and then decreased from summer to winter. The original negative bias between 
GNSS PWV and MODIS PWV in all months indicates that MODIS PWV tends to be larger 
than GNSS PWV. The accuracy of MODIS PWV in terms of RMS of the monthly models 
in spring is improved by 2.0 mm for March, 2.4 mm for April, and 2.4 mm for May, re-
spectively, which is better than that of quarterly models (1.8 mm). The results indicate that 
the MODIS-GNSS monthly models in the spring are better than the corresponding quar-
terly model. A similar conclusion can be made in other months. The R between MODIS 
PWV and GNSS PWV is obviously improved. 

  
Figure 5. Accuracy information of the monthly models in different months. (a) Bias of the MODIS-GNSS model; (b) STD 
of the MODIS-GNSS model; (c) RMS of the MODIS-GNSS model; (d) R of the MODIS-GNSS model; (e) Bias of the ERA5-
GNSS model; (f) STD of the ERA5-GNSS model; (g) RMS of the ERA5-GNSS model; (h) R of the ERA5-GNSS model. 

For ERA5 PWV, the original bias between ERA5 PWV and GNSS PWV shows that 
ERA5 PWV is larger than GNSS PWV in summer and autumn while smaller than GNSS 
PWV in spring and winter in China land region. The accuracy improvement in terms of 
RMS of the monthly models in spring is 0.9 mm for March, 1.1 mm for April, and 1.2 mm 
for May, respectively, which is not less than the corresponding quarterly model (0.9 mm). 
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Similar conclusion can be made for other months. Those results show that the ERA5-GNSS 
monthly models could achieve better performance than the corresponding quarterly 
model. As shown in Figure 5h, the correlation coefficient R between ERA5 PWV and GNSS 
PWV is also increased. 

4.4. Generating PWV Products in the Research Area 
From the above results, the monthly models achieved the best performance among 

the models of three timescales. Therefore, we use the monthly models to generate PWV 
products in the research area. The spatial resolution of the products is 1 km × 1 km in areas 
where MODIS PWV is present, and 0.25° × 0.25° in other areas. The temporal resolution is 
1 day. Since the accuracy measured by RMS is 5–6 mm for the MODIS PWV and 3.0 mm 
for the ERA5 PWV in the research area while the accuracy of the fused PWV is better than 
2.6 mm, apparently, the fusion provides a better PWV product for the research area. 

5. Accuracy Analysis 
To investigate the temporal variations of the model accuracy, we compute the daily 

bias, STD and RMS of the original MODIS (ERA5) PWV, and the modified MODIS (ERA5) 
PWV from the monthly models. The results are shown in Figures 6–8. Figure 6 shows that 
the original MODIS PWV has overall negative biases with obvious temporal variations. 
The absolute values of the biases of the original MODIS PWV increased from January to 
July and then decreased from August to December. Most of the biases of the original ERA5 
PWV are negative from December to April while positive in the rest months. There are 
also obvious temporal variations in the biases of the original ERA5 PWV. The biases of 
the modified MODIS PWV and the ERA5 PWV are close to 0 without noteworthy tem-
poral fluctuations, which indicates the time-varying systematic biases between the 
MODIS (ERA5) PWV and the GNSS PWV are eliminated by the new methods. 

 
Figure 6. Daily PWV biases of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) 
PWV. 
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Figure 7. Daily PWV STD of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) 
PWV. 

 
Figure 8. Daily PWV RMS of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) 
PWV. 

Figure 7 shows the daily STDs of the original MODIS (ERA5) PWV and the modified 
MODIS (ERA5) PWV. It demonstrates that the STD of the original MODIS PWV has obvi-
ous temporal variations with an increase from January to July and a decrease from August 
to December. The modified MODIS PWV has apparently reduced STD whose temporal 
variations are also greatly weakened. The temporal pattern of STD of the ERA5 PWV is 
similar to that of the MODIS PWV. 

Figure 8 shows the daily RMS of the original MODIS (ERA5) PWV and the modified 
MODIS (ERA5) PWV. The temporal patterns of the original MODIS (ERA5) PWV and the 
modified MODIS (ERA5) PWV are similar to that of STD. The temporal variations of RMS 
are greatly weakened for both MODIS PWV and ERA5 PWV after modeling. 

To investigate the spatial variations of the model accuracy, we compute the bias, STD, 
and RMS of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) PWV at 
individual GNSS stations. Figure 9 shows the biases of the original MODIS (ERA5) PWV 
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and the modified MODIS (ERA5) PWV at the GNSS stations. It can be seen that the origi-
nal MODIS PWV has negative biases at most stations. The biases are greater in the south 
and smaller in the north. These results suggest that the biases in the original MODIS PWV 
are uneven in the research area. Comparing Figure 9a,b, the biases between MODIS PWV 
and GNSS PWV are significantly decreased by the GRNN models, and their distribution 
becomes more even. Figure 9c shows that most of the biases of the original ERA5 PWV 
are positive in the south and northeast, and negative in the rest research area. Comparing 
Figure 9c and d, the biases of the modified ERA5 PWV are significantly reduced and dis-
tributed more evenly over the area. 

 
Figure 9. PWV biases at individual stations of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) PWV. 

Figure 10 shows the STDs of the original MODIS (ERA5) PWV and the modified 
MODIS (ERA5) PWV at individual stations. The STD of the original MODIS PWV is 
greater in the southeast while smaller in the northwest. Comparing Figure 10a,b, the STD 
of modified MODIS PWV is significantly reduced and the distribution is more even. A 
similar conclusion can be made for the modified ERA5 PWV. 
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Figure 10. PWV STD at individual stations of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) PWV. 

Figure 11 shows the RMSs of the original MODIS (ERA5) PWV and the modified 
MODIS (ERA5) PWV at individual stations. Comparing Figure 11a,b, the RMS of MODIS 
PWV is reduced after modeling, especially for the stations in the southeast. We can find 
that the RMS of ERA5 PWV is also reduced after modeling by comparing Figure 11c,d. 
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Figure 11. PWV RMS at individual stations of the original MODIS (ERA5) PWV and the modified MODIS (ERA5) PWV. 

6. Conclusions 
Many scholars have used different methods to produce PWV products with high 

spatial resolution and improved accuracy in different regions. Zhang et al. [15] used a 
spherical cap harmonic model and Helmert variance component estimation method in 
North America. Zhao et al. [18] used a hybrid PWV fusion model in China. Alshawaf et 
al. [21] used a fixed-rank kriging method in Europe. All those methods could achieve bet-
ter performance, but there are still some shortcomings. Some of the methods ignore the 
spatial or temporal variations in bias and only give a global bias for all observations. Some 
methods are based on the interpolation approach, which inevitably imposes some biases 
or inaccurate information due to the imperfect assumptions for the interpolation. In this 
study, we generate a PWV product in China area by fusing GNSS PWV, MODIS PWV, 
and ERA5 PWV in 2018 and 2019 through a generalized regression neural network. Mod-
els at annual, quarterly, and monthly timescales are constructed and performances are 
assessed to find out the best model for the research area. The results demonstrate that the 
monthly models achieve the best performance among the three timescales. Thus, we pro-
duce the fused PWV data by training and testing the GRNN models at a monthly time-
scale. Therefore, we have obtained a unified PWV product with a temporal resolution of 
1 day and a spatial resolution better than 31 km. The bias, STD, and RMS of the modified 
MODIS PWV are 0.0 mm, 2.6 mm, and 2.6 mm. The percentage improvement is as high as 
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50% in terms of RMS. It becomes 0.0 mm, 1.7 mm, 1.7 mm for the modified ERA5 PWV 
and the percentage improvement is 40%. In this product, systematic differences between 
different PWV sources are almost diminished. Compared to the original MODIS (ERA5) 
PWV, the accuracy of the modified PWV is more even in space and time. With much im-
proved quality, this PWV product can not only benefit the studies regarding water vapor 
circulation over China, but also serve in numerical weather forecasting. 
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Abbreviations 

Abbreviations Full Name 
CMA China Meteorological Administration 
CMONOC Crustal Movement Observation Network of China 
ECMWF European Centre for Medium-Range Weather Forecasts 
ERA5 ECMWF ReAnalyses 5 
GNSS Global Navigation Satellite System 
GRNN Generalized Regression Neural Network 
IGS International GNSS Service 
InSAR Interferometric Synthetic Aperture Radar 
MODIS Moderate-resolution Imaging Spectroradiometer 
PPP Precise Point Positioning 
PWV precipitable water vapor 
R correlation coefficient 
RMS Root Mean Square 
STD STandard Deviation 
ZHD Zenith Hydrostatic delay 
ZTD Zenith Total Delay 
ZWD Zenith Wet Delay 
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Appendix A. Radiosonde PWV Calculation Method 
For a radiosonde station to be qualified as a reference station, it is required to be 

within 60 km in distance and 500 m in height of a GNSS station. The empirical formula in 
Equation (A1) is used to reduce the PWV value from a radiosonde station at height h2 to 
that at a GNSS station at height h1. 

)
2000

hhexp(PWVPWV 21
hh 21 −

−⋅=  (A1)

where 
1hPWV and 

2hPWV  are the PWV values corresponding to the heights of h1 and h2 
in m, respectively. 

The transformational relation between ZWD and PWV can be found in Xiong et al. 
[11]. ZWD is related to water vapor pressure, temperature, and height difference between 
the two layers described in Formula (A2). 

2
w

k hZWD= P k
T T

× × 1（ + ）
 (A2)

where wP  is the water vapor pressure at each grid point in Pascal and can be obtained 

by Formula (A3), k1 = 2.21 ×  10−7 K/Pa, k2 = 3.73 ×  10−3 K2/Pa, h is the height difference 
between the two layers in m, T is the temperature in K. 

w sP  =  R H P×  (A3)

where RH is the relative humidity. Ps is the saturated water vapor pressure which is re-
lated to the temperature and can be calculated by the Wexler formula [40,41]. 

Appendix B. The Model Performance against Spread Parameter Values 
The spread parameter in a GRNN model has a great influence on the accuracy of the 

model, and it should be tuned to make the model perform well. In this study, a series of 
optional spread parameter values between 0.01 and 0.2 at a step of 0.01 is first set, and 
each value is tested. The testing results of different models, in terms of the Bias, STD, RMS 
and R, are shown below. 

An appropriate spread parameter should not only make the modified accuracy as 
high as possible, but also make the fitting accuracy and modified accuracy comparable. 
The optimal spread parameter values are summarized in Table A1, and we use them to 
establish the models in this manuscript. 
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Figure A1. Annual model performance against spread parameter values. 

  
Figure A2. Quarterly model performance against spread parameter values. 
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Figure A3. Monthly model performance against spread parameter values. 

Table A1. The optimal spread parameter values of different models. 

Annual Models 
year MODIS-GNSS ERA5-GNSS year MODIS-GNSS ERA5-GNSS 
2018 0.05 0.02 2019 0.05 0.02 

Quarterly models 
season MODIS-GNSS ERA5-GNSS season MODIS-GNSS ERA5-GNSS 
spring 

201803–
201805 

0.06 0.03 
spring 

201903–
201905 

0.06 0.03 

summer 
201806–
201808 

0.07 0.03 
summer 
201906–
201908 

0.05 0.03 

autumn 
201809–
201811 

0.05 0.03 
autumn 
201909–
201911 

0.05 0.03 

winter 
201812–
201902 

0.06 0.03    

Monthly models 
month MODIS-GNSS ERA5-GNSS month MODIS-GNSS ERA5-GNSS 
201801 0.06 0.03 201901 0.05 0.03 
201802 0.06 0.04 201902 0.06 0.04 
201803 0.05 0.04 201903 0.05 0.04 
201804 0.05 0.04 201904 0.06 0.04 
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201805 0.07 0.04 201905 0.07 0.04 
201806 0.07 0.04 201906 0.06 0.04 
201807 0.07 0.04 201907 0.06 0.04 
201808 0.06 0.03 201908 0.06 0.03 
201809 0.06 0.03 201909 0.05 0.03 
201810 0.05 0.04 201910 0.05 0.03 
201811 0.06 0.04 201911 0.05 0.02 
201812 0.06 0.03 201912 0.05 0.03 
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