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Abstract: Alluvial (torrential) fans, especially those created from debris-flow activity, often endan-
ger built environments and human life. It is well known that these kinds of territories where human 
activities are favored are characterized by increasing instability and related hydrological risk; there-
fore, treating the problem of its assessment and management is becoming strongly relevant. The 
aim of this study was to analyze and model the geomorphological aspects and the physical pro-
cesses of alluvial fans in relation to the environmental characteristics of the territory for classifica-
tion and prediction purposes. The main geomorphometric parameters capable of describing com-
plex properties, such as relative fan position depending on the neighborhood, which can affect their 
formation or shape, or properties delineating specific parts of fans, were identified and evaluated 
through digital elevation model (DEM) data. Five machine learning (ML) methods, including a hy-
brid Euler graph ML method, were compared to analyze the geomorphometric parameters and 
physical characteristics of alluvial fans. The results obtained in 14 case studies of Slovenian torren-
tial fans, validated with data of the empirical model proposed by Bertrand et al. (2013), confirm the 
validity of the developed method and the possibility to identify alluvial fans that can be considered 
as debris-flow prone. 

Keywords: digital elevation model; torrential fan surfaces; geomorphometric parameters; graph 
method; debris flows 
 

1. Introduction 
Alluvial (torrential) fans are a typical form of sedimentary deposits growing at the 

outlets of steeper drainage areas such as torrential watersheds [1]. Considering the geo-
logical feature, it is essential to illustrate torrential fans as built by a sequence of sediment-
laden events (torrential floods, debris floods, debris flows), a mixture of water and sedi-
ments (debris). Torrential fans are a sediment body of intermixing layers of coarse and 
poorly sorted debris (rocks, stones, gravel, or sand), generally having a cone-like shape. 
A fan’s conical shape is formed due to the rapid decrease in flow velocity and, conse-
quently, due to the lower transport capacity to transfer debris material. According to their 
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formation, we can distinguish between the debris flows resulting from torrential out-
breaks (torrential debris flows) and those that are developed on slopes from landslides 
(slope debris flows). 

It should be noted that from the natural hazard point of view, the classification of 
torrential fans is of interest with regard to debris-flow activity. As is known, debris flows 
are, besides rock falls, among the most destructive types of slope processes [2], as they 
cannot be easily predicted in terms of time of triggering, the location, their extent (magni-
tude), flow velocities and depths, and their capability to move over large distances. Tor-
rential fans have relatively gentle surface slopes in comparison to steep mountainous en-
vironments and, therefore, often exhibit noticeable damage potential, as humans tend to 
settle in these areas because of fertile soils being agriculturally used. As alluvial fans are 
morphologically active, it is enough clear that human presence on them is endangered by 
torrents and slope mass movement. The main characteristics of alluvial fans can be cate-
gorized as composition, morphology, and location. These geomorphometric and geomor-
phological characteristics can be extracted from digital land surface models, also known 
as digital elevation models (DEMs). DEMs, indeed, provide surface parameters (morpho-
metric, hydrological, climatic, etc.) and land object information (watersheds, stream net-
works, landforms, etc.). 

In recent years, many researchers have focused their attention on the threats of cli-
mate change in terms of precipitation variability [3] and the growth processes of river 
deltas [4]. In their study, [4] developed the first laboratory delta built through the succes-
sive deposition of lobes with a constant size for the sustainable management of deltas. 
Performing scaled physical experiments to grow a delta, they observed its dynamics un-
der conditions of subcritical flow and multiple floods. The results of their study show 
applications for decoding their stratigraphic record on Earth and Mars. Other authors [5] 
have instead considered another important aspect of the impact of precipitation as sus-
tainable groundwater resource management and control can be. 

The usage of computer-based spatial modeling as the procedure for understanding 
and recognition of patterns, trends, or relationships among data in the geographic space 
meets engaging challenges for the classification of geographical dynamic phenomena as 
alluvial fans. 

The main aim of the present research study was the modeling and automatic classi-
fication of torrential fans for the recognition of debris-flow-prone fans in order to produce 
hazard maps as a preventive tool for spatial planning on torrential fans or to protect ex-
isting structures on them. Deriving geomorphometric parameters of fan surfaces from ef-
fective DEMs, it is possible to distinguish between the debris-prone torrential fans formed 
by pronounced debris-flow activity and the remaining that are profoundly formed by tor-
rential processes such as torrential floods and debris flows. In the performed research 
study, not all the information that can be gained from DEM parameters was used; how-
ever, it was not necessary to take into account some geomorphological aspects (hydrolog-
ical, climatic, etc.). A complete and in-depth analysis of geomorphometric and geomor-
phological DEM parameters was illustrated by Lu and Weng [6], Sofia [7], and Trzcinska 
and Janowski et al. [8]. 

The use of remote sensing tools, and specifically image processing and geomorphom-
etry tools (while using terrain and surface models), allows classifying different types of 
fans, especially due to our good experience with their determination on Mars [9], where 
our knowledge of field conditions is obviously very limited. In a more recent study on the 
geological history of Mars’ river runoff, [10], which has revealed the unknown mechanism 
that causes wet climates on Mars, a globally distributed survey was carried out thanks to 
a global database of Mars’ alluvial fans and deltas and including reported sites. Likewise, 
alluvial fans have also been detected on Titan’s surface. In [11], thanks to the observation 
of alluvial fan distribution, the influential role of extreme precipitation in shaping Titan’s 
surface was demonstrated. From this study, it arises that, differently from Mars and simi-
larly to Earth, active geomorphic work may be ongoing in the present climate on Titan, 
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despite the uncertainties on the role of Titan’s unconstrained surface composition and 
processes in sedimentary transport and deposition and the extent to which surface 
material properties are tied to local hydroclimate. 

The automatic identification of fans, as well as the classification of their shapes using 
geomorphometric analysis, is a step further from procedures such as the Melton number, 
which is calculated based on the characteristics of the catchment area. This approach in-
cludes the development of several innovative methods of using DEMs, as well as remote 
sensing techniques. Recently, the authors of [12] used remote sensing techniques to map the 
siltation of recharge dams found in an arid region to increase the yield of groundwater 
for sustainability. The authors underlined the relevance of using satellite images obtained 
from remote sensing techniques as a suitable technique to map and assess the silt deposits 
in alternative to expensive and time-consuming methods, with the aim of removing or 
protecting the deposits of the recharge dams. In their study, specifically, the use of Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 
Elevation Model (GDEM)) data by the decorrelated stretching image classification method 
to map the siltation of the Al-Khod Dam constructed at the lower reaches of the Samail 
catchment area in the Sultanate of Oman was demonstrated. 

In this perspective, it is assumed that although the classical (visual) analysis of 
surface characteristics will remain important in the future, adequately collected and pre-
pared databases consisting of high-quality spatial data allow, for the highest possible de-
gree of fast and automated techniques for numerical spatial analyses, pinpointing the 
most problematic torrential fan areas in a fast and reliable manner. 

In the present research study, the main geomorphometric parameters of fan surface 
were derived by DEMs and were evaluated with the ML method and a new hybrid Euler 
graph method for classification and prediction purposes. The new hybrid Euler graph 
method connected four methods, random forest (RF) [13], genetic programming (GP), 
support vector machine (SVM) [14], and neural network (NN), of intelligent systems into 
one [15–18]. In order to outline the advantages of the proposed method, as illustrated af-
terward in this article, two theoretical concepts that have oriented the methodological 
setup of the study can be briefly highlighted as follows: machine learning and graph the-
ory. 

Machine learning [19] is an artificial intelligence technology that allows computers to 
learn without having been explicitly programmed for that purpose. To learn and develop 
models, however, computers need data to analyze and train on. In fact, Big Data is the 
essence of machine learning, and it is the technology that makes the most of Big Data’s 
potential. Machine learning is very effective in situations where insights must be discov-
ered from large and diverse data sets. For the analysis of such data, it is much more effi-
cient than traditional methods in terms of accuracy and speed. For example, based on in-
formation associated with a transaction such as amount and location, as well as historical 
and social data, machine learning can detect potential fraud in a millisecond. Thus, this 
method is much more efficient than traditional methods to analyze transactional data, 
data from social networks or CRM platforms. The problem we faced was that we do not 
have Big Data available on debris-flow-prone torrential fans in Slovenia for use to develop 
a robust automatic recognition model. 

Graph theory [20] is a section of discrete mathematics that studies the properties of 
graphs. In a general sense, a graph is represented as a set of vertices (nodes) connected by 
edges. In a strict definition, a graph is a pair of sets G = (V, E), where V is a subset of any 
countable set, and E is a subset of V × V. Graph theory is used, for example, in geographic 
information systems (GISs). Existing or newly designed houses, structures, neighbor-
hoods, etc., are considered as vertices, and the roads connecting them, engineering net-
works, power lines, etc., are considered as edges. The use of various calculations per-
formed on this graph allows, for example, to find the shortest detour or the nearest gro-
cery store, to plan the optimal route. The Eulerian circuit or the Eulerian cycle is a Eu-
lerian trail that starts and ends on the same vertex. The term Eulerian graph has two 
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common meanings in graph theory. One meaning is a graph with a Eulerian circuit, and 
the other is a graph with every vertex of even degree. These definitions coincide for con-
nected graphs. The realization of hybrid systems [21] is a common approach that com-
bines the strengths of each approach and thus obtains higher performance or a wider 
scope. Another important aspect of the development of intelligent hybrid systems is their 
ability to acquire new knowledge from many different sources and to evolve them. 

The problem analyzed in this research was the possibility of a rapid and reliable clas-
sification of alluvial (torrential) fans through DEM data from satellites and geological 
maps. Seven main morphometric parameters obtained from these DEM data were identi-
fied as the most significant to characterize alluvial fans. 

The hypothesis to be tested was to find a mathematical model, which, through effec-
tive and fast analysis of the seven (or possibly some of them) above-mentioned morpho-
metric parameters, allows automatic classification of the alluvial fan areas. For this pur-
pose, five ML methods, including a hybrid Euler graph ML method, were applied to dif-
ferent combinations of the seven selected morphometric parameters, finding the best 
mathematical model that garantees an automatic classification and hazard prediction of 
alluvial fans. Figure 1 shows a schematic workflow of the study. 

The main challenge of the present study was the determination of the best combina-
tions of geomorphometric parameters used in the effective ML model that enable the au-
tomatic classification of the alluvial fan areas. 

 
Figure 1. Schematic workflow of the study. 

Summing up the present study proposed a replicable procedure based on DEM and 
ML methods to analyze morphological parameters and physical characteristics of alluvial 
fans and predict hazardous (debris-flow prone) torrential fans. The case study of Slove-
nian torrential fans offered tangible results to support the methodology by validating it 
with experimental data. 

The paper is divided into four sections, with Section 1 being the introduction. Section 
2 is devoted to the state of the art and related works concerning the case study of Slovenian 
torrential fans. Section 3 deals with the materials and methods adopted. In Section 4, the 
main results are discussed. Final considerations and conclusions are drawn in Section 5. 

2. Case Study of Slovenian Torrential Fans: State of the Art and Related Works 
Since the large debris-flow event at the village of Log pod Mangartom (Slovenia) in 

November 2000, claiming seven fatalities and causing large damage in the devastated 
area, Slovenia has devoted more attention to debris-flow initiation and hazards in general. 
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The emphasis was mainly given to their dynamics and triggering mechanisms. Modeling 
and risk assessment for the case of the Log pod Mangartom debris flow were carried out 
by [22] and for the 2002 debris flow at Koseč above Kobarid [23]. Possible mechanisms for 
triggering debris flow and estimating possible debris flows magnitudes at selected torren-
tial watersheds in Slovenia were described by [24]. The analysis was based on the use of 
empirical methods, which often consider particular morphometric parameters of torren-
tial watersheds, torrential fans, and hydrological characteristics, while geological param-
eters are directly considered only in a few models. The study of the phenomenon of old 
debris flows in Slovenia is limited primarily to the area of the Upper Soča Valley [25], 
where one of the methodologies for predicting the “hot spots” of such phenomena was 
developed [26]. For the area of the western part of the Karavanke mountain chain, the 
sediments of four torrential fans were investigated, and their catchment area was assessed 
geologically [27]. The authors of [28] studied in detail the geological composition of the 
catchment area of the Koroška Bela Torrent and its torrential fan in the lower-laying Sava 
Dolinka valley. The original areas of material from research excavations on the fan were 
identified. The authors of [29] studied the landslide of the Potoška planina with photo-
grammetry and tachymetric measurements. The appearance of debris flows in the 
Zgornjesavska Valley (Sava Dolinka valley) was also conditioned by the relatively com-
plex geological composition of the western part of the Karavanke mountain chain [30]. In 
this respect, tectonically deformed clastic sedimentary rocks, which are quite frequent in 
the area, are especially suitable as the original areas of gravitational mass movements. The 
influence of the clay fraction on the formation of debris flows can be found in previous 
studies [31,32], which confirm that the quantity of interstitial water presence at both 
boundaries of consistency depends on the amount of clay fraction and its mineral compo-
sition. In clay fractions of debris flows, mica or illite is also present. That is why we used 
the computer modeling of filosilicates on targeted samples by [33] in this study of debris 
flows. For the territory of Slovenia, a model of debris flow susceptibility was developed 
on a scale of 1:250,000 [34]. The model was intended for spatial prediction of areas where 
debris flows and debris streams can be generated/triggered. It represents a general over-
view of risk areas in Slovenia. It also serves as a basis for further detailed investigations 
and analyses. According to the model, approximately 4% of Slovenia’s area is extremely 
susceptible, and approximately 11% of Slovenia’s area of susceptibility to debris flow is 
high. As expected, these areas are related to the mountainous terrain in the NW and N of 
Slovenia. 

3. Materials and Methods 
As mentioned, several studies present developed methods based on the automatic 

determination of the shapes of alluvial (torrential) fans using remote sensing techniques 
and satellite images. In the present study, the main geomorphometric parameters of fan 
surfaces were derived by DEMs and were evaluated with ML methods for classification 
and prediction purposes. 
3.1. Digital Elevation Modeling 

DEM is a quantitative representation of the terrain surface, providing information 
about relief and its attributes (slope, aspect, drainage area and network, curvature, topo-
graphic index, etc.). Only a few studies use DEMs in combination with satellite images as 
a basis for alluvial fan classification [35–37]. In particular, among these studies, the work 
of Millaresis et al. (2000) adopts low-resolution DEM to control the size of fans to classify 
them. Another relevant study is that of [38], which used a high-resolution Lidar DEM to 
acquire selected geomorphometric parameters of fans for 3D rockfall modeling. Using the 
two most important open-source DEMs, ASTER GDEM and SRTM, integrated with a di-
rect survey, orthophoto from “Surveying and Mapping Authority of the Republic of Slo-
venia” and stereo satellite imagery (GeoEye Ikonos, WorldView, ALOS, and SPOT Im-
age), we analyzed 14 different torrential fans occurring in a stretch of 35 km × 5 km in the 



Remote Sens. 2021, 13, 1711 6 of 18 
 

 

upper part of the Sava river valley in NW Slovenia. In Figure 2, these torrential fans are 
shown on a General map of Slovenia (1:250,000) (© Surveying and Mapping Authority of 
the Republic of Slovenia). 

 
Figure 2. Location of 14 alluvial (torrential) fans (red areas) occurring in the upper part of the Sava river valley in NW 
Slovenia (courtesy of © Surveying and Mapping Authority of the Republic of Slovenia). 

The study area is highly rugged, and a significant variation of relief is observable. 
Geomorphologically, the area is characterized by hills and valleys. The lower middle part 
of the delimited area is mainly dominated by hills. Due to the pressure of the steep slope, 
the area is dissected by a certain number of small rivers characterized by scattered vege-
tation. The type of forest is mixed, and its density varies from medium to scattered. The 
accuracy of these data sets is therefore unknown and is nonuniform within each torrential 
fan. The direct survey was carried out using the Topcon FC-100 GPS system, and its rover 
was placed on a 2.5 m high telescopic rod (Figure 3). Geolocalized points were acquired, 
and the slopes of the terrain were indirectly evaluated using these points. 

 
Figure 3. Survey experimental setup. 

For each torrential fan, the ASTER GDEM and SRTM data were compared with 10 ÷ 
35 derived ground control points (DGCPs) acquired with the Differential Global Naviga-
tion Satellite System (SDGNS). The GPS system provided elevation reference to the 
WGS84 surface, while ASTER GDEM and SRTM were referenced to the EGM96 surface. 
Hence, using “Geoid Height Model-UNAVCO,” the GPS-based ellipsoid height was con-
verted into the EGM96 geoid reference surface and compared with the ASTER GDEM and 
SRTM height. Table 1 shows the comparison results in torrential fans No. 7 “Mar-
tuljek“(Figure 4). 

The root mean square (RMS) errors calculated for the ASTER GDEM and SRTM are 
2.38 and 4.61 m with a mean error of −2.53 and −4.29 m, respectively. These values indicate 
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that the set of measurements underestimates the real values of surface terrain elevations 
(probably because of open land or land cover). 

Table 1. Error in ASTER GDEM and SRTM with respect to the GCP-derived height in torrential 
fans No. 7. 

DGCPs 
GCPs’ 
Height 
(m) in 

 

Geoid Un-
dulation 

GCPs’ 
Height (m) 
in EGM96 

SRTM 
Height (m) 

(in 
 

SRTM Height 
Error (m) 

ASTER 
Height (m) 
(in EGM96) 

ASTER Height 
Error (m) 

1 812.87 −32.89 779.98 771.44 −8.54 774.44 −5.54 
2 810.26 −32.10 778.16 770.04 −8.12 773.74 −4.42 
3 800.39 −32.40 767.99 760.75 −7.24 763.72 −4.27 
4 795.41 −33.86 761.55 755.72 −5.83 757.43 −4.12 
5 792.56 −33.93 758.63 757.40 −1.23 758.95 0.32 
6 787.71 −33.81 753.90 746.38 −7.52 749.34 −4.56 
7 774.65 −36.08 738.57 729.01 −9.56 735,91 −2.66 
8 771.32 −36.03 735.29 738.80 3.51 736.98 1.69 
9 768.50 −31.74 736.76 735.53 −1.23 737.08 0.32 
10 766.73 −33.39 733.34 736.22 2.88 731.22 −2.12 
 

 

 

(a) (b) 

 
(c) 

Figure 4. Alluvial fan area No. 7: (a) contour of the area in the cartography map (Maxar Technologies data cartograph, 
2021); (b) ASTER GDEM; (c) DEM 3D perspective view. 

Furthermore, ASTER GDEM provides each elevation data (pixel) for a 30 m × 30 m 
area (30 m grid spacing), and the representation often becomes smooth. A little less precise 
is SRTM (30 m grid spacing). 

In order to obtain a finer resolution, high-resolution imagery provided by ALOS (10 
m grid spacing), GeoEye Ikonos (5 m grid spacing), WorldView satellites (2 m grid spac-
ing), and orthophoto from the “Surveying and Mapping Authority of the Republic of Slo-
venia” were used. In particular, the imagery with the widest grid spacing ensuring an Hav 
error of less than 5% were used. The Hav errors were valuated as explained in Section 3.1. 
These data integrated with the direct survey allowed adopting a grid spacing of 5 and 10 
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m for the 14 different torrential fans. In this way, details and small undulation character-
istics closing to the real terrain surface of the torrential fans could be taken into consider-
ation (Figure 5). 

   
(a) (b) (c) 

Figure 5. Different DEM resolution of alluvial fan area No. 2: (a) SRTM 90 m grid spacing; (b) AS-
TER GDEM DEM 30 m grid spacing; (c) WorldView satellites 5 m grid spacing. 

In order to establish the most effective value of the grid sizes (posting) of the DEMs, 
the effects of the grid spacing on the surfaces’ smoothing were evaluated. 

3.2. DEM Grid Size Selection 
The analysis of smoothening effects when the grid size changed was performed by 

evaluating the variation of average elevation height with the formula: 

𝐻𝐻𝑎𝑎𝑎𝑎 =
1
𝑛𝑛

�  𝐻𝐻𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1) 

where Hav (m) is the average value of elevation heights, n is the number of control points 
(CP) considered along a slope line from the top to the base proportional to the grid size, 
and Hi (m) is the elevation height in the generic control point I along the slope line. By 
evaluating Hav along the maximum slope line (dashed red line in Figure 6a) and along two 
directions close to ± 7° (dashed black line in Figure 6a), we could choose the value of the 
grid size that guaranteed the desired smooth effect. 

  
(a) (b) 

Figure 6. DEM of alluvial fan area No. 7 with a 5 m grid spacing: (a) maximum slope line; (b) 
drainage network. 

By way of example for the alluvial fan area No. 7, 150 CP ensured an Hav error of less 
than 5% and therefore a negligible smoothening effect and a realistic representation of the 
terrain cross profile (Figure 7). Because the maximum slope line is 765 m long, 150 CP is 
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equivalent to a grid size acquisition of 5 m. The grid size acquisition of 5 m also allows 
obtaining an excellent delineation of drainage networks (Figure 6b). 

 
Figure 7. Average values of elevation heights in alluvial fan area No. 7. 

This grid spacing ensured a Hav error always less than 5% in all 14 torrential fans. 
Furthermore, by using such grid spacing, DEMs of all alluvial fan areas, with the excep-
tion of No. 6 (with 30,000 points), constituted fewer than 10,000 elevation points. In Table 
2, the number of DGCPs, the adopted grid size, the Hav error, the RMS error, and mean 
error in the 14 torrential fans DEMs are shown. 

Table 2. Derived ground control points, grid size selection, and DEM accuracy. 

 Torrent DGCPs Grid Size 
(m) 

Hav 
Error (m) 

RMS 
Error (m) 

Mean 
Error (m) 

1 Bela 15 10 <5% 2.8 −2.97 
2 Belca 10 5 <4.5% 2.6 −2.44 

3 Beli potok 10 5 <4.5% 2.5 −1.82 

4 Hladnik 10 5 <4.5% 1.9 −1.34 

5 Jurežev graben 10 5 <3% 1.6 −0.92 

6 Pišnica (M+V) 35 10 <5% 6.2 −2.86 

7 Martuljek 10 5 <5% 2.4 −2.53 

8 Presušnik 10 5 <3.5% 2.2 −2.10 

9 Suhelj 20 10 <5% 4.1 −3.20 

10 Trebiža 20 5 <5% 5.2 −2.98 

11 Tofov graben 10 5 <4% 3.2 −1.66 

12 Jeriče 10 5 <4% 2.3 −2.47 

13 Strmi graben 10 5 <3% 2.4 −1.03 
14 Sedučnik 10 5 <4% 2.3 −1.63 

Referring to all 14 torrential fans, the overall maximum RMS error was 6.2 m with a 
mean error of −2.86 m. In both cases, the error was less than the official error specification 
given by ASTER GDEM and SRTM (8.86 and 16 m, respectively). 
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3.3. Analysis of Geomorphometric Parameters 
From the literature cited in the previous sections, seven main geomorphometric pa-

rameters were selected as the relevant parameters to classify alluvial (torrential) fans with 
regard to debris-flow hazards: 

− P1 (HLSlope_avg): the average slope of the hinterland in degrees. 
− P2 (TORRSlope_avg): the average slope of the torrent in degrees. 
− P3 (Melton_HL): the Melton ruggedness number of the torrential catchment up-

stream of the fan (hinterland). 
− P4: the Relief ratio (Err). 
− P5 (Av/A): the relationship between the fan and its hinterland surface. 
− P6 (Melton_fan): the Melton number of the alluvial (torrential) fan—defined in the 

same manner as for the catchment area: using the fan area and the height difference of the 
fan between its apex and foot (Melton fan numbers are typically lower as catchment Mel-
ton numbers). 

− P7 (FANSlope_avg): the average slope of the fan following the flow direction in 
degrees. 

To their benefit, these gathered parameters were capable of describing more complex 
properties, such as relative fan position depending on the neighborhood that could affect 
their formation or shape, or properties describing a specific part of a fan in a special way. 

For the 14 Slovenian torrential fans, these geomorphometric parameters were evalu-
ated through the DEM data, acquired experimentally and via satellite. 

The Melton ruggedness number (MNR) is a simple flow accumulation-related index, 
calculated as the difference between the maximum and minimum elevation in a catchment 
area divided by the square root of the catchment area size [39]. The Melton ruggedness 
number was calculated by Equation (2). 

Mel = H * A−0.5 (2) 

where A is the catchment surface area (km2), and H is the difference between heights (km). 
A good indicator of hazardous alluvial (torrential) fans is the Bertrand number (Y). 

Bertrand et al. (2013) used a data set from 620 torrential watersheds from around the 
world and developed for their classification the following multivariate statistical model 
(logistic regression): 

Y = (e−0.65 × M1.66 × S2.00)/(1+e−0.65 × M1.66 × S2.00) (3) 

where S is fan slope (degree) and M is Melton ruggedness number (−). If P > 0.5, then the 
torrential fan is considered to be a debris-flow-prone area. 

For the analysis, we also used a hybrid system, where the four methods mentioned 
above were connected, namely RF [40], SVM [41], GP [42], and NN [43] of the intelligent 
system, into one Euler graph method of machine learning (Figure 8). 

 
Figure 8. Euler graph method of machine learning. 
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Ensemble methods are learning algorithms that build a series of classifiers and then 
classify new data points, summarizing the results of their predictions. An RF method (Fig-
ure 9) uses many decision trees to create a classification. The number of signs and the 
number of trees are used as parameters. It is a ready-to-use classifier, and, most of the 
time, the user does not need to define these parameters. Generally, if the user understands 
the concept of decision trees, its use of this method is rather simple. We used attributes of 
the RF (number of trees: 16, fixed seed for random generator: 32) and did not split a subset 
smaller than 5. 

 
Figure 9. Random forest method. 

The challenge of computer synthesis of programs has become one of the areas of ar-
tificial intelligence around the end of the 1950s. The interest of researchers in this issue 
has increased dramatically due to GP (Figure 10) and aimed at solving problems of auto-
matic synthesis of programs based on learning data by inductive inference. Chromosomes 
or mathematical expressions that are automatically generated using genetic operators are 
computer programs of various sizes and complexity. Programs consist of functions, vari-
ables, and constants. The initial population P(0) of chromosomes in the GP is formed sto-
chastically and consists of programs that include elements of a multitude of problem-ori-
ented elementary functions (function set as well as any other function from the problem 
domain), problem-oriented variables, and constants. We used the following attributes of 
the GP: size of the population of organisms: 1000; maximum number of generations: 100; 
reproduction probability: 0.4; crossover probability: 0.6; maximum permissible depth in 
the creation of the population: 6; maximum permissible depth after the operation of cross-
over of two organisms: 10; smallest permissible depth of organisms in generating new 
organisms: 2. Genetic operations of reproduction and crossover were used. For the selec-
tion of organisms, the tournament method with tournament size 7 was used. The Au-
toLISP-based in-house GP system was run 100 times in order to develop 100 independent 
civilizations. Each run lasted from 2 to 10 min on an Intel i7 processor and 8 GB of RAM. 

 
Figure 10. Tree structure of genetic programming. 
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Neural networks (Figure 11) are among the research areas in the field of artificial 
intelligence, based on attempts to reproduce the human cerebral nervous system with the 
goal of learning and correcting errors, which should allow simulating, although quite 
roughly, the work of the human brain. A NN is not just a mathematical model but an 
artificial NN that consists of a set of elements called neurons or processors, imitating the 
biological NN that consists of nerve cells. By imitating the activities of the human brain, it 
acts not only according to a strict algorithm and formulas but also accumulates and uses 
past experience. Consequently, the artificial NN neurons or processors are capable of 
learning, based on the previous results. We used the following attributes of the NN learn-
ing speed: 0.6; inertial coefficient: 0.5; test mass tolerance: 0.02; tolerance of the learning 
set: 0.03; number of layers: 4. 

 
Figure 11. Artificial neural network. 

4. Results and Discussion 
The results of the empirical model proposed by Bertrand were implemented in five 

machine learning methods, including the hybrid method of machine learning. In this re-
gard, the data set used for the Bertrand [44] method was treated as “big data”. Data from 
620 upland catchments in various mountain ranges of the world under temperate climate 
were used in order to test the performance of geomorphometric parameters for the iden-
tification of catchments prone to debris flow. Finally, it can be concluded that the GP 
method provides the best result for the classification of torrential fans into two classes: 
hazardous (debris-flow prone) alluvial (torrential) fans and nonhazardous fans. The val-
ues of the geomorphometric parameters and Bertrand number (Y) are reported in Table 3. 
Table 4 reports the Bertrand number (Y), the prediction data obtained by RF, the predic-
tion data obtained by multiple regression (MR), the prediction data obtained by GP, the 
prediction data obtained by NN, and the prediction data obtained by the hybrid method 
(HM), namely the Euler graph method of hybrid machine learning. 

In Table 4, values of the square ”r2” Pearson product–moment correlation coefficient 
of experimental (Y) and prediction data (RF, MR, GP, NN, and HM) are given for the 14 
models. The debris-flow-prone torrential fans are those with a value of Y above 0.5 (high-
lighted in gray). 

Table 3. Parameters of all alluvial (torrential) fans. 

 Torrent 
P1 P2 P3 P4 P5 P6 P7 Y 
(°) (°) (-) (-) (-) (-) (°) (-) 

1 Bela 31.23 15.85 0.64 0.44 0.04 0.23 5.18 0.87 
2 Belca 38.14 7.49 0.35 0.31 0.01 0.06 2.97 0.45 
3 Beli potok 41.61 16.83 0.79 0.55 0.06 0.13 5.72 0.92 
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Table 4. Experimental (Y) and prediction data. 
 Torrent Y RF MR GP NN HM 
1 Bela 0.87 0.93 0.71 0.86 0.93 0.52 
2 Belca 0.45 0.54 0.49 0.45 0.51 0.52 
3 Beli potok 0.92 0.95 0.94 0.93 0.54 0.54 
4 Hladnik 0.51 0.91 0.61 0.52 0.33 0.59 
5 Jurežev graben 0.93 0.87 1.01 0.93 0.96 0.46 
6 Pišnica 0.10 0.21 0.19 0.10 0.13 0.45 
7 Martuljek 0.54 0.87 0.42 0.54 0.92 0.64 
8 Presušnik 0.91 0.21 0.97 0.93 0.33 0.54 
9 Suhelj 0.91 0.93 0.68 0.91 0.96 0.60 
10 Trebiža 0.33 0.10 0.35 0.33 0.36 0.42 
11 Tofov graben 0.21 0.10 0.28 0.21 0.25 0.39 
12 Jeriče 0.99 0.96 1.06 0.98 0.91 0.51 
13 Strmi graben 0.95 0.99 0.93 0.95 0.21 0.52 
14 Sedučnik 0.96 0.99 0.94 0.96 0.91 0.21 
 Precision (%) - 64 82 99 72 36 

 
Figure 12 shows the results of the derived Bertrand number for each of the torrential 

fans using the above-mentioned methods. The hypothetical value of 0.5 represents the 
threshold above which the torrential fans are most probably the result of the debris-flow 
events. On the x-axis is presented experimental (Y) and prediction data (RF, MR, GP, NN, 
and HM), on the y-axis is presented the Bertrand number for each of the torrential fans. 
Table 5 summarizes the comparison of the five machine learning models in relation to the 
experimental Bertrand value (Y). 

4 Hladnik 35.20 9.04 0.31 0.23 0.01 0.06 3.72 0.51 
5 Jurežev gra-

 
27.80 20.10 0.72 0.44 0.04 0.24 6.76 0.93 

6 Pišnica (M+V) 37.50 5.19 0.34 0.36 0.04 0.05 1.15 0.10 
7 Martuljek 39.40 14.22 0.57 0.44 0.02 0.07 2.41 0.54 
8 Presušnik 30.70 15.26 0.57 0.38 0.02 0.24 6.99 0.91 
9 Suhelj 34.40 14.17 0.58 0.30 0.34 0.14 6.75 0.91 
10 Trebiža 26.50 11.38 0.34 0.26 0.10 0.06 2.38 0.33 
11 Tofov graben 36.40 22.13 1.06 0.36 0.20 0.12 0.69 0.21 
12 Jeriče 38.10 30.57 1.03 0.57 0.87 0.43 16.71 0.99 
13 Strmi graben 42.40 29.67 1.00 0.40 0.04 0.21 6.28 0.95 
14 Sedučnik 32.20 21.17 0.69 0.37 0.10 0.38 9.09 0.96 
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Figure 12. Experimental (Y) and prediction data (RF, MR, GP, NN, and HM). 

Table 5. Comparison of the successfulness of the 5 machine learning models in relation to the ex-
perimental Bertrand value (Y). 

Model Predictability Y RF MR GP NN HM 
Prone 10 9 9 10 7 8 
Nonprone 4 3 4 4 3 3 
False predicted prone fan - 1 1 0 3 2 
False predicted nonprone fan - 1 0 0 1 1 

 
The model of Bertand as GP is presented in Equation (4). 

𝑌𝑌 = 7.32 − P3 − P4 + 𝐴𝐴 +
2∗(−9.69+0.19∗P7∗(P6+P7)+

P2∗P3∗P6∗(P6+P7)
−P3+P7 +𝐵𝐵

P1∗P6 )

7.32+P3∗P62∗(P4+P6)∗P7
, 

where: 

𝐴𝐴 =
P7

7.32e: 6P4 − P6 + (7.32eP4 + 0.5: P7) ∗ P7
53.65: P4 + 3.66 + P43

 

𝐵𝐵 =
7.32 + P2 ∗ P6 ∗ P32

−P3 − 0.39 + P4 + P7
P3 ∗ P6 ∗ (P6 + P7) ∗ (7.32 + P2 ∗ P3 ∗ P6

−P3 − P4 + 7.32 + P3 ∗ P6 ∗ P7 + P7
7.32 + P4

)
 

(4) 

The multiple regression model is expressed with the following equation (the number 
of significant digits for the coefficients in the model was limited to two digits), according 
to the precision of the input data): 

Y=0.51−0.01 × P1 − 0.02 × P2 + 1.21 × P3 − 0.37 × P4 − 1.44 × P5 − 1.98 × P6 + 0.17 × P7 (5) 
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We used the GP method for modeling the best results with combinations of two pa-
rameters from Table 3 that describe the properties of the torrential fans or the properties 
of their hinterland. Table 6 presents the results. The best results were derived from the 
model that used Parameters P3 and P7, the Melton ruggedness number of the torrential 
catchment upstream of the fan (hinterland) (Melton_HL), and the average slope of the fan 
(following the flow direction) in degrees (FAN Slope_avg). 

Table 6. Successfulness of the models, derived from the GP method, where we combined two pa-
rameters from Table 1 that describe the properties of the torrential fans or the properties of their 
hinterland. The best model is highlighted in gray and was derived using Parameters P3 and P7. 

Y P P % 

Y P1 P2 4.17 
Y P1 P3 12.96 
Y P1 P4 15.81 
Y P1 P5 19.43 
Y P1 P6 7.81 
Y P1 P7 3.97 
Y P3 P2 8.16 
Y P4 P2 6.94 
Y P5 P2 5.86 
Y P6 P2 1.65 
Y P7 P2 0.68 
Y P4 P3 8.46 
Y P5 P3 8.03 
Y P6 P3 5.21 
Y P7 P3 0.40 
Y P5 P4 11.67 
Y P6 P4 6.27 
Y P7 P4 0.92 
Y P6 P5 3.47 
Y P7 P5 2.91 
Y P7 P6 1.86 

Equation (6) presents the best model derived using the GP from the two-parameter 
approach. 

Y =
0.10 ∗ P3 + P72

P7 − �P3 − 1.88
P7 − P7� ∗ P7 + 𝐶𝐶

 

where C is: 

𝐶𝐶 =
1 − P3 + P7

P32

P7 +

P3 − 0.31 ∗ P7

2 ∗ P3 − 1.58
P72 + 2 ∗ P7

P7
+ P73

1 − P3 +
1

P33 + P3
P3 + 1

2 ∗ P3 − 1.58
P3 ∗ P7 + P3

P7
+ P7 − P7

P32

 (6) 

The RF model resulted in a precision value of 64 (the higher the value, the higher the 
precision of the model), the GP method resulted in a precision value of 99, the multiple 
regression model resulted in a precision value of 82, the method of NN resulted in a pre-
cision value of 72, and the hybrid model resulted in a precision value of 36 (Table 4). The 
GP model with only two parameters (P3 and P7) resulted in a precision value of 99.6. 
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Based on the analyses, all torrential fans in Table 4 with a Bertrand parameter above 
0.5 should be classified as debris-prone fans. The modeling, determination, and other 
analysis of fans were limited to relatively basic methods that can be performed within the 
GIS software using the digital elevation models of torrential fans and their hinterlands. 
Traditionally, comparable methods are related to the analysis of satellite or aerial photos 
[45]. Spatial analyses are used to build models divided into descriptive, explanatory, pre-
dictive, and normative [46]. An important predictive modeling process is one by which a 
model is created or chosen to predict the likelihood of an outcome in the best possible 
way. This modeling includes different spatial analyses according to the decision-making 
process [47]. 

The experimental results obtained in the case studies of Slovenian torrential fans 
show the efficacy of the illustrated procedure for the identification of the best model ca-
pable of classifying alluvial fans as debris-flow prone in a fast and reliable manner. The 
developed method can be extended to the study of other territories so that hazard maps 
can be created in advance with high values of accuracy and used for spatial planning on 
torrential fans or for the protection of structures already built in areas where debris flows 
and debris streams can be generated/triggered. In future research, the presented proce-
dure can be ameliorated by enlarging the data set for further detailed investigations and 
the advancement of predictive modeling and successful applications in the field. 

5. Conclusions 
A new procedure to model and to classify alluvial (torrential) fans based on DEM 

data and the ML method was developed. The latter allowed the understanding and recog-
nition of patterns, trends, and relationships among data coming from DEMs. The new 
method was applied to 14 case studies of Slovenian torrential fans. After identifying the 
Bertrand number as a good indicator of hazardous alluvial fans, seven main morphologi-
cal parameters were chosen and evaluated with the ML and hybrid Euler graph method 
in the 14 case studies. 

Among these morphological parameters, we evaluated which and how many at the 
same time were capable of carefully describing more complex properties, such as relative 
fan position depending on the neighborhood, which can affect their formation or shape, 
or properties describing a specific part of a fan in a special way. 

The proposed method provided excellent results for the classification of torrential 
fans into two classes: hazardous (debris-flow prone) alluvial (torrential) fans and nonhaz-
ardous fans. Considering the validity of the theoretical assumptions of the study, in future 
research, the proposed methods that were validated should be further tested on a larger 
data set for other significant improvements in the field. 
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