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Abstract: This study provides the first full characterization of decadal changes of surface winds
over 10 marginal seas along the Eurasian continent using satellite wind observations. During the
three decades (1988–2018), surface warming has occurred in all seas at a rate more pronounced in
the South European marginal seas (0.4–0.6 ◦C per decade) than in the monsoon-influenced North
Indian and East Asian marginal seas (0.1–0.2 ◦C per decade). However, surface winds have not
strengthened everywhere. On a basin average, winds have increased over the marginal seas in the
subtropical/mid-latitudes, with the rate of increase ranging from 11 to 24 cms−1 per decade. These
upward trends reflect primarily the accelerated changes in the 1990s and have largely flattened since
2000. Winds have slightly weakened or remained little changed over the marginal seas in the tropical
monsoonal region. Winds over the Red Sea and the Persian Gulf underwent an abrupt shift in the
late 1990s that resulted in an elevation of local wind speeds. The varying relationships between wind
and SST changes suggest that different marginal seas have responded differently to environmental
warming and further studies are needed to gain an improved understanding of climate change on a
regional scale.

Keywords: satellite ocean-surface winds; regional warming; decadal trends; marginal seas; the
Arabian Sea; the Bay of Bengal; the Mediterranean Sea; the Red Sea; the Black Sea; the Caspian Sea;
the East and South China Seas; the Sea of Japan

1. Introduction

Ocean surface winds are an Essential Climate Variable (ECV) identified by the Global
Climate Observing System (GCOS). They play an important role in many oceanic and atmo-
spheric processes, such as generating marine waves, driving ocean general circulation, and
modulating air-sea heat, moisture, and gas fluxes. Since July 1987, the global ocean surface
wind fields have been remotely sensed by two types of sensors: radar scatterometers that
retrieve wind direction and speed, and passive microwave radiometers that retrieve wind
speed only. The radiometric observations of wind speed have been continuous throughout
the period, thanks to the uninterrupted sequence of the Defense Meteorological Satellite
Program (DMSP) that carries out the Special Sensor Microwave/Imager (SSM/I) series and
the follow-on Special Sensor Microwave Imager Sounder (SSMIS) series [1–3]. SSM/I is a
successful instrument, and its design has become standard for passive microwave imagers,
including the TRMM Microwave Imager (TMI) aboard the joint US-Japan TRMM satellite in
1997, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
instrument aboard the NASA’s Earth Observing System Aqua Satellite (2002–2011), and
AMSR-2 on the first satellite of the “Global Change Observation Mission” (GCOM-W1)
launched by the Japan Aerospace Exploration Agency (JAXA) (2012–present). When all are
combined, the data records of microwave radiometers have constituted more than 30 years
of reliable and valuable measurements of ocean surface wind speed.
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The global mean surface temperatures in the past 30 years have been rising at a rate
unprecedented in recent geological history (Intergovernmental Panel on Climate Change
(IPCC) 2007). Coinciding with the rising temperatures, the average ocean-surface wind
speeds have increased [4] at an estimated rate of 0.8 cms−1 (1.2%) per decade during the
satellite era [5,6]. The strengthened wind speeds have contributed to an increase in ocean
evaporation [7], which has, in turn, intensified the global water cycle [8]. The strengthened
wind speeds have also been linked to the increase of significant wave heights and extreme
wave events [4,9]. Nonetheless, wind speeds alone are far from sufficient to characterize
the dynamic extent of the changing global near-surface wind forcing. Changes in wind
direction, even if small, cause changes in surface vorticity and divergence fields [10]. These
changes drive the response of the wind-driven ocean circulation, generating spatially non-
uniform patterns in sea-level rise [11] and modulating the ocean’s capacity of transporting
heat and salt [12–14].

The vector wind data records produced by scatterometer missions are not seam-
lessly connected to each other. The record lengths vary considerably with the mission,
with some lasting for a few months and others staying on as long as approximately 10
years [15]. The two long-lived scatterometer missions are the NASA SeaWinds on the
QuikSCAT mission (1999–2009) [16] and the Advanced Scatterometer (ASCAT) on the
EUMETSAT satellite series Metop-A, -B, and -C (2006–present) [17]. The missions with a
shorter span of time are the NASA Scatterometer (NSCAT) aboard the Japanese National
Space Development Agency (NASDA) Advanced Earth Observing Satellite I (ADEOS–I)
(nine months, 1996–1997) [18], the NASA SeaWinds-2 on NASDA ADEOS-II (10 months,
2002–2003) [19,20], the OceanSat–2 Scatterometer (OSCAT; 2009–2014) and its follow-on
mission Scatterometer Satellite-1 (SCATSat-1; 2016–present) launched by the Indian Space
Research Organization (ISRO) [21,22]. There were also scatterometers onboard the Euro-
pean Space Agency’s (ESA) Earth Remote Sensing satellites, namely, ERS1 in 1991 and
ERS2 in 1995.

Optimizing the use of available satellite wind retrievals is highly needed for establish-
ing a global perspective of wind change during the recent decades of climate significance.
Efforts have been made by several groups to construct vector wind time series from merg-
ing scatterometers and/or passive microwave radiometers [23–28]. This study is to use a
satellite wind data record from the High-Resolution component of the Objective Analyzed
air-sea Flux project (hereafter OAFlux-HR) at the Woods Hole Oceanographic Institution
(WHOI) [5,29]. The OAFlux-HR vector wind analysis resulted from synthesizing 17 sensors
that include 11 passive microwave radiometers and 5 scatterometers and is available on a
daily 0.25◦ spatial resolution from 1988 onward. Strategy and methodology that address
technical aspects of the development have been previously reported [25,26,30]. The latest
efforts have been placed on validation and evaluation to enhance the consistency and
accuracy of the time series in both the open ocean and the marginal seas.

Winds over the marginal seas warrant special attention. The marginal seas are partially
enclosed bodies of water along continental margins, and they are often adjacent to or widely
open to the open ocean at the surface (Wikipedia.org, accessed on 5 April 2021). In the
era of global warming, the marginal seas respond more rapidly to the evolving climate
changes than the open ocean owing to their small sizes and the small volume-to-surface-
area ratio [31–33]. Marbà et al. [34] reported that the Mediterranean Sea is warming at two
to three times the rate of the global ocean [35] and experiences an increase in the occurrence
of heat extremes by 200–500% [36]. Alawad et al. [37] identified an increasing trend of
sea surface temperature (SST) at about 0.4 ◦C per decade in the northern Red Sea that
began around the mid-1990s. The warming of the Red Sea has raised the potential for
damaging effects on society, the environment, and the overall ecosystem in the region [38].
Rostov et al. [33] showed that the marginal seas of East Asia, e.g., the Okhotsk Sea, the
Japan Sea, and the Yellow and East China Seas, have also warmed rapidly in recent decades.
Surface winds respond to the changes of SST [39,40]. However, despite the numerous
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findings of accelerated warming in the enclosed and semi-enclosed coastal seas, there have
been limited studies on the wind changes during the concurrent period.

The objective of this study is to identify and characterize the decadal changes of
surface winds over 10 Eurasian marginal seas using the OAFlux-HR vector wind time
series. The 10 marginal seas are the Mediterranean Sea, the Black Sea, the Caspian Sea,
the Red Sea, the Persian Gulf, the Arabian Sea, the Bay of Bengal, the East, and South
China Seas, and the Sea of Japan (Figure 1). These seas are exposed to a broad spectrum
of geological and environmental conditions, ranging from the subtropical to the tropical
climatic zones and from the shallow continental shelves to the deep abyssal plains. Better
characterization and understanding of the variations of surface winds in recent warming
decades is important for modeling and predicting future climate change and impacts on a
regional scale.

Figure 1. The 10 major semi-enclosed and enclosed marginal seas that surround the Eurasian
continent. Left to right: the Mediterranean Sea, the Black Sea, the Caspian Sea, the Red Sea, the
Persian Gulf, the Arabian Sea, the Bay of Bengal, the South China Sea, the East China Sea, and the Sea
of Japan. The colors denote ocean floor (blues and whites) and land (greens, browns, and purples).

2. Materials and Methods
2.1. Data

The methodology used in developing the OAFlux-HR vector wind analysis stems
from the theory of the least-variance linear statistical estimation [41,42]. The formulated
least-squares estimator (the so-called cost function) includes data from different sources as
well as a priori information that one wishes to impose to constrain the solution. The cost
function for the OAFlux-HR synthesis, F, is formulated as follows:
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where
→
V = (u, v) is wind vector with zonal and meridional wind components denoted

as u and v, respectively, and w =
√

u2 + v2 is wind speed. The superscript “T” denotes
transpose, and the subscript “a” denotes an estimate, “b” the background information, and
“o” satellite observations. The background information is provided by the bias-corrected
atmospheric reanalysis winds from ECMWF Reanalysis-Interim (ERA-interim) [43]. The
bias-correction model is a predictor function based on linear regression, in which the
coefficients are determined from regression of ERA-interim variables with collocated scat-
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terometer retrievals from NSCAT (1995–1996) and SeaWind2 (2002–2003). The background
information serves as the first guess when satellite retrievals are missing. The first three
terms (I)–(III) are data constraints, and the fourth and fifth terms (IV)–(V) are weak vorticity
and divergence constraints [23,44,45]. The matrices Rb, Ro, and So are weighting matrices.
The 16 sensors currently included in OAFlux-HR are listed in Table 1, 5 of which are
scatterometers (NSCAT, QuikSCAT, OSCAT, ASCAT-A, ASCAT-B) and 11 are microwave
radiometers (6 SSM/I, 2 SSMIS, AMSR-E, AMSR2, and WindSat). The methodology, strat-
egy, error estimation, and validation with buoys have been previously published, and
readers are referred to references [25,26,30] for details.

Table 1. Characteristics of the 16 sensors included in the OAFlux-HR vector wind synthesis.

Instrument Platform Duration Actual Period
in Use

Frequency
Band
(GHz)

Effective Spatial
Resolution

along (km) ×
across (km)

Swath
Width
(km)

Daily
Coverage Reference

NSCAT ADEOS-I
15 September
1996–30 June

1997
All 13.995

Ku-band 25 × 25 2 swaths
of 600 km 77% Freilich and

Dunbar [20]

QuikSCAT NASA
QuikSCAT

27 October
1999–21

November 2009
All 13.4

Ku-band 25 × 38 1400 92% Stiles &
Dunbar [46]

ASCAT-A EUMETSAT
MetOp
series

28 March
2007–present

All 5.255
C-band

12.5 × 12.5 2 swaths
of 500 km

71%
Verhoef and
Stoffelen [22]

ASCAT-B 29 October
2012–present

OSCAT ISRO
23 September
2009–01 April

2014
All 13.5

Ku-band 12.5 × 12.5 1420 92% Kumar et al.
[21]

SSM/I 08 DMSP 9 July 1987–31
December 1991 All

19.35,
22.235,

37.0

69 × 43
50 × 40
37 × 28

1394 75%

Wentz [2]

SSM/I 10 DMSP
8 December

1990–14
November 1997

All

SSM/I 11 DMSP
3 December

1991–16 May
2000

All

SSM/I 13 DMSP 3 May 1995–18
November 2009 All

SSM/I 14 DMSP 8 May 1997–23
August 2008

8 May 1997–31
December 2005

SSM/I 15 DMSP 18 December
1999–present

18 December
1999–30 June

2006

SSMIS 16 DMSP 26 October
2003–present

26 October
2003–31

December 2009 19.35
22.235
37.0

69 × 43
50 × 40
37 × 28

1700 80%

SSMIS 17 DMSP 14 December
2006–present All

AMSR-E NASA
Aqua

1 June 2002–4
October 2011 All

18.7
23.8
36.5

27 × 16
32 × 18
14 × 8

1450 77%

AMSR2 JAXAGCOM-
W1

2 July
2012–present All

10.7
18.7
23.8
36.5

46 × 27
25 × 14
29 × 17
14 × 8

1450 77%

WindSAT DoD/Navy
Coriolis

5 February
2003–present

w: all data
u,v: 05

February
2003–31

December 2013

6.8, 10.7,
18.7, 23.8,

37.0
25 × 38 1025 72%
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2.2. Buoy-Based Validation over the Global Ocean

Validation of the OAFlux-HR vector wind analysis was reported in Yu and Jin [30]
using surface wind time-series measurements from 126 moored buoys. Since then, the
validation effort has expanded to 30 additional buoys. Some of the additions are from
the National Data Buoy Center (NDBC) in near coastal regions and/or at higher latitudes,
and some are from the latest field programs including the Ocean Observatories Initiative
(OOI), the NASA Salinity Processes in the Upper Ocean Regional Study (SPURS) 1 & 2, the
Red Sea buoy established from the partnership between the King Abdullah University of
Science and Technology (KAUST) and WHOI [47], the WHOI buoy in the Bay of Bengal [48],
and the recently deployed RAMA buoys [49] (Figure 2).

Figure 2. Mean global wind speed (colored background) and direction vector averaged over 1988–2018. The superimposed
magenta squares denote the locations of moored surface buoys used as validation (NDBC buoys are not shown). The large
black box denotes the focal area of this study.

Buoy winds are sampled by anemometers at the 3–4 m height above the sea surface,
and the measurements are transmitted at every 5- or 60-min interval depending upon the
design of instruments. The OAFlux-HR wind analysis has daily resolution and is based on
satellite wind retrievals that are calibrated to equivalent neutral winds at the 10 m height.
For consistency, the high-frequency buoy wind measurements (wind speed, zonal and
meridional components) were averaged over each day. These daily buoy winds were then
adjusted to the equivalent neutral winds at the 10 m height following Liu and Tang [50].
The conversion requires the near-surface stability information, such as SST, near-surface air
temperature, and humidity, and is performed only when buoy measurements of all these
variables are available.

Buoy winds are also point measurements and represent time averages over the sample
intervals (typically at every 5 or 60 min). Satellite winds are area averages of instantaneously
measured winds over the spatial footprint of the satellite. The RMS differences between
satellite and buoy measurements could be attributed to both retrieval errors in satellite
measurements and sampling errors in buoy measurements of the synoptic wind field.

Furthermore, satellite winds are relative to ocean currents whereas buoy winds are
relative to a fixed Earth surface. Kelly et al. [51] showed that satellite wind retrievals are
modulated by ocean surface currents. Satellite winds are found to be weaker than buoy
winds when the winds are in the same direction as ocean surface currents while stronger
than buoy winds when the winds are in the opposite direction to surface currents. The
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effect of ocean currents can be a source of bias in assessing the mean differences between
satellite and buoy winds [30]. Take the OAFlux-HR u as an example. Table 2 shows that
u has a mean bias of −0.17 ms−1, indicating that the satellite-derived u is overall weaker
than buoy-measured u in the buoy-covered areas. However, the majority of buoys are
from the global tropical moored buoy array [49] (Figure 2), where the westward flowing
trade winds drive both the North and South Equatorial Currents westward. Yu and Jin [30]
related the mean differences of the collocated satellite-buoy wind pairs to a drifter-derived
climatology of near-surface currents [52]. They found that the magnitudes of the satellite-
buoy differences are influenced by the speeds and directions of the near-surface currents,
and hence, the underestimated bias in OAFlux-HR u may not be an error of the analysis
but the effect of ocean currents.

Table 2. Statistics of buoy evaluation of OAFlux-HR w, u, and v.

Wind Component
Statistics Total Number of

Collocations
Bias (OA-Buoy)

(ms−1)
RMS

(ms−1) CC R2 (%)

w 478,334 −0.03 0.77 0.93 87.4
u 468,346 −0.17 1.26 0.95 90.1
v 468,346 0.18 1.17 0.94 88.5

Between 1988 and 2018, the 156 buoy time series produced a total of 478,334 daily
values for buoy wind speed and 468,346 daily values for zonal and meridional wind
components. Four statistical measures are used to evaluate the accuracy of the OAFlux-HR
winds against buoy measurements. The first measure is the mean bias, calculated as the
overall daily-mean difference between the collocated OAFlux-HR and buoy winds. The
second measure is the root-mean-square (RMS) difference between the two sets of winds,

which is expressed as RMS =
√

1
N ∑N

i=1 (xi − xbi)
2, where N denotes the total number of

daily measurements of wind speed (w), zonal and meridional wind components (u and
v) over all available buoy locations, xi is the OAFlux-HR daily wind, and xbi the buoy
counterpart. The third measure is the correlation coefficient (CC) that examines the strength
of the linear relationship between OAFlux-HR and buoy time series. The last measure is the

R-squared value, expressed as R2 =
(

1− ∑N
i=1 (xi − xbi)

2

∑N
i=1 (xi − xi)

2

)
× 100%. The R2 value is between

0% and 100%, denoting the percent of variation shared between the two sets of winds.
The statistical measures for w, u, and v are summarized in Table 2. OAFlux-HR w

has a mean bias of −0.03 ms−1 and an rms difference of 0.77 ms−1. The mean bias (rms
difference) for u and v is −0.17 (1.26) and 0.18 (1.17) ms−1, respectively. The correlation
exceeds 0.93 for all three components. The R2 value ranges between 87 to 90%. The
statistical measures show that the OAFlux-HR winds are in good agreement with the
buoy winds.

2.3. OAFlux-HR Wind Comparison with Three Buoys in the Study Domain

Several buoys are located in the Northern Indian Ocean sector of the study domain
(Figures 1 and 2). Three buoys deployed by the Upper Ocean Process group at WHOI are
selected here to provide in situ insights into the OAFlux-HR winds. They are the Red Sea
buoy at 22◦N, 39◦E [47], the Arabian Sea buoy at 16◦N, 62◦E [53], and the Bay of Bengal
buoy at 18◦N, 89◦E [48]. The statistical measures with regard to each of the three buoys
are listed in Table 3, and the respective daily-mean time-series comparisons are shown in
Figures 3–5. It is noted that the three buoys correspond to three different scatterometer
periods (Table 1). The Arabian Sea buoy (1994–1995) was in the pre-QuikSCAT period. The
Red Sea buoy (2008–2010) covered the transition from QuikSCAT to ASCAT-A and OSCAT.
The Bay of Bengal buoy (encompassing the entire 2015) was in the period of ASCAT-A
and -B.
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Table 3. Statistics of the OAFlux-HR comparison with three selected buoys.

Buoy Duration Wind
Bias

(OA−Buoy)
(ms−1)

RMS
(ms−1) CC R2

(%)

Red Sea
22◦N, 39◦E

11 October 2008–
17 December 2010

N = 797 days

w −0.25 1.00 0.92 84.6
u −0.15 1.03 0.91 82.8
v − 0.40 1.29 0.93 86.5

Arabian Sea
16◦N, 62◦E

15 October 1994–
10 October 1995

N = 367 days

w −0.91 1.31 0.97 94.1
u −0.44 1.15 0.99 98.1
v 0.01 0.84 0.99 98.4

Bay of Bengal
18◦N, 89◦E

8 December 2014–
30 January 2016

N = 418 days

w −0.06 0.67 0.97 94.3
u −0.12 0.82 0.98 96.2
v 0.35 0.95 0.98 96.5

Figure 3. Left column: time series plots of daily buoy winds (thin black) versus OAFlux-HR winds
(thin red). Right column: scatter plots of collocated pairs at the Red-Sea buoy location 22◦N, 39◦E.
(a,b) zonal wind component, (c,d) meridional wind component, (e,f) wind speed. Thick smoother
lines in (a,c,e) denote a 21-day running mean with black for buoy and red for OAFlux-HR.

The WHOI buoys are equipped with the Improved METeorology (IMET) or Air Sea
Interaction–METeorology (ASIMET) systems, and the expected errors are about ±0.1 m s−1

(or 1%) in wind speed and 5◦ in wind direction [54]. Table 3 shows that the correlations
between OAFlux-HR daily winds and buoy daily winds exceed 0.9 at all three sites, and
the R2 values, which represent the variances shared between the two independent sets of
daily winds, range from ~84% (Red Sea buoy) to ~98% (Arabian Sea buoy).
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Figure 4. Left column: time series plots of daily buoy winds (thin black) versus OAFlux-HR winds
(thin red). Right column: scatter plots of collocated pairs at the Arabian Sea buoy location 16◦N, 62◦E
(a,b) zonal wind component, (c,d) meridional wind component, (e,f) wind speed. Thick smoother
lines in (a,c,e) denote a 21-day running mean with black for buoy and red for OAFlux-HR.

Figure 5. Left column: time series plots of daily buoy winds (thin black) versus OAFlux-HR winds
(thin red). Right column: scatter plots of collocated pairs at the Bay of Bengal buoy location 18◦N,
89◦E. (a,b) zonal wind component, (c,d) meridional wind component, (e,f) wind speed. Thick
smoother lines in (a,c,e) denote a 21-day running mean with black for buoy and red for OAFlux-HR.
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The Red Sea buoy time series has a duration of approximately two years, while those
in the Arabian Sea and the Bay of Bengal are each about one year long. Although the three
time series are too short to validate the long-term trends of the OAFlux-HR analysis, they
are a valid benchmark for assessing the synoptic-to-seasonal variability in the product.
Such information can lead to useful insights into the reliability of the long-term changes
in the time series as the trends are generally a manifestation of prolonged changes in the
magnitude and/or duration of short-term variability.

Across the three buoy locations (Figures 3–5), the Red Sea buoy winds were relatively
weaker with also smaller seasonal variations. The 21-day running mean values indicate
that winds were predominantly southeastward throughout the two-year observing period
(Figure 3). Seasonal variations were reflected in the changes of u, with the mean value
fluctuating about 4 ms−1 from May to September and diminishing to near zero during
December to February. OAFlux-HR winds perform well at this site. The mean biases are
less than 0.4 ms−1 for wind speed and components, and the RMS daily mean differences
are within 1–1.3 ms−1.

At the Arabian Sea buoy site (Figure 4), the time series shows a distinct seasonal
reversal of wind direction that is in line with the monsoonal seasons. Winds flowed south-
westward during the winter monsoon from November to February and northeastward
during the summer monsoon from June to August. The wind speeds were more intense
in the summer monsoon (>12 ms−1) than in the winter monsoon (~7 ms−1) and were
weakest during the monsoon transitions (September–October and March–May) (~5 ms−1).
Comparing to buoy measurements, OAFlux-HR winds have similar synoptic-seasonal
variability but with a slightly lower wind speed. The negative (weak) bias in w (–0.91 ms−1)
comes primarily from the bias in u. It appears that OAFlux-HR winds were weaker than
buoy winds during the summer monsoon months (June–September) (Figure 4a) due to a
weaker bias in both u and v.

The OAFlux-HR winds compare well with the buoy wind measurements at the Bay
of Bengal location (Figure 5). The mean bias in w is –0.06 ms−1, which is within the
expected accuracy of buoy measurements. The bias is –0.12 ms−1 for u and slightly
larger for v at about 0.35 ms−1. Similar to the winds at the Arabian Sea site, the winds
in the Bay of Bengal strengthened and reversed direction from the winter to summer
monsoons. Moreover, the bias in w shows a seasonal dependence: larger in summer when
winds were stronger. The cause is not yet known for the seasonally dependent bias in
OAFlux-HR winds at the Arabian Sea and Bay of Bengal buoy sites. The retrieval errors in
satellite measurements, analysis errors in the synthesis process, sampling errors in buoy
measurements, or effects of ocean surface currents could all be potential contributors.
Instantaneous surface current measurements at the three buoy sites were not available and
their effects could not be evaluated.

3. Results
3.1. Climate Zones and Mean Surface Winds over the Marginal Seas

The 10 marginal and enclosed seas to the south and east of the Eurasian continent
(Figure 1) are subject to two unique types of climate conditions. One is the mid-latitude
Mediterranean weather pattern that is characterized by warm and dry summers and mild
and wet winters [55]. The Mediterranean Sea, the Black Sea, and the Caspian Sea are
in this climate zone. The other is the monsoonal weather pattern that is marked by the
annual reversal of prevailing wind direction and speed along with contrasting precipitation
characteristics. The Arabian Sea and the Bay of Bengal are influenced by the Indian Ocean
monsoon, while the South China Sea, the East China Sea, and the Sea of Japan are influenced
by the East Asian monsoon. The Indian monsoon and the East Asian monsoon are two
components of the Asian Monsoon [56]. The Red Sea and the Persian Gulf reside in the
borderline between the mid-latitude and the Indian monsoon influences, though studies
have suggested that the mid-latitude forcing has a more dominant influence [57].
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In addition to the large-scale climate setting, some of the marginal seas are surrounded
by mountain ranges (Figure 1). The interaction between the near-surface airflow and the
coastal orography often leads to coastal wind jets, eddies, and gap winds on the meso- and
local scales [58]. Hence, the wind pattern in one marginal sea can be distinctly different
from the other even though they are in the same climate zone. In the following, the 10
seas are organized into three zones based on the geographic location: the South European
marginal seas that include the Mediterranean Sea, the Black Sea, and the Caspian Sea; the
North Indian Ocean marginal seas that include the Arabian Sea, the Bay of Bengal, the Red
Sea, and the Persian Gulf; and the East Asian marginal seas that include the South China
Sea, the East China Sea, and the Sea of Japan.

3.2. Characteristics of Marginal Sea Winds

The spatial pattern of wind speed and direction for the annual mean, the winter season
(defined as December-January-February; hereafter DJF) and the summer season (defined
as June-July-August, hereafter JJA) is shown in Figure 6a–c, respectively. The standard
deviations (STD) of the monthly mean fields were computed for u, v, and w and are shown
in Figure 7a–c, respectively. Major characteristics of the surface wind fields for the seas in
each of the three climate zones are summarized below.

Figure 6. Mean wind speed (shaded by colors) and direction. (a) Annual mean, (b) winter season
(DJF), and (c) summer season (JJA).
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Figure 7. Standard deviation (STD) of seasonal variability of (a) zonal wind (u), (b) meridional wind
(v), and (c) wind speed (w).

• The South European marginal seas

The three seas in this climate zone are the Mediterranean Sea, the Black Sea, and the
Caspian Sea. The wind pattern in the Mediterranean Sea is strongly influenced by the
surrounding mountain ranges [59]. Air flows funnel through the mountain passes to get
to the basin from set angles, creating a complex number of local and regional winds with
varying strength. On an annual-mean basis (Figure 6a), two persistent regional winds
dominant the basin-scale pattern. One is the Mistral, a strong northwesterly jet that blows
over the Gulf of Lion and up to the southern Mediterranean shore and the Ionian Sea.
The Mistral winds are more prevalent in the winter and spring months (Figure 6b), often
creating strong wind bursts that have gale or storm-scale strengths. The other is the Etesian,
a northerly wind that prevails in the Aegean Sea and the Eastern Mediterranean during
May–October.
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The wind system is fairly steady throughout the year. Seasonal STD u is generally weak
(<1 ms−1) in the sea, except for the Algerian Basin (the southwest Mediterranean) where
winds tend to reverse direction, changing from southeastward in winter to southwestward
in summer [60]. Seasonal STD v is also weak on the basin scale, with slightly larger seasonal
variability (~2 ms−1) in the Aegean Sea. STD w is at ~1.5 ms−1 over most of the western
and central basin.

The Black Sea is mostly enclosed by mountains. The surface wind pattern is dominated
by the southwesterly from the Mediterranean basin in summer and by the cold northerly
and northeasterly from the polar air masses in winter [61,62]. Winds over the western
part of the sea are more energetic, where severe storms often occur in winter under the
influence of the easterly and northeasterly winds [63]. Winds on the eastern side are light
and characterized by more stable conditions. Mean wind speeds are about 8 ms−1 in winter
and down to about 5 ms−1 in summer. Seasonal STD are weak for all components.

Winds in the Caspian Sea vary substantially from north to south [64,65]. The basin in
winter is subject to the Siberian high pressure that causes periodic Arctic air mass intrusions.
The cold easterly winds induce sea ice to form over the shallow waters in the northernmost
region. In summer, the basin is influenced by the Azores high pressure that generates
northerly winds of hot, dry air. Wind speeds are typically about 4 ms−1 in summer and up
to 5–6 ms−1 in winter. Similar to the winds over the Mediterranean and Black Seas, the
seasonal variability of the winds is relatively weak.

• The North Indian Ocean marginal seas

The four seas in this climate zone are the Arabian Sea, the Bay of Bengal, the Red Sea,
and the Persian Gulf. The Arabian Sea and the Bay of Bengal open into the equatorial Indian
Ocean in the south. The region is under the influence of the large-scale seasonal atmospheric
circulation reversals, featuring southwesterly winds during the summer monsoon (June–
September) and northeasterly winds during the winter monsoon (November–February).
Winds in summer monsoon are more intense than those in winter monsoon, leading to the
dominance of the southwesterly on the annual mean pattern.

Despite the similar large-scale monsoonal setting, the magnitude of w differs between
the two basins. The difference is most striking during the summer monsoon, at that time
w over the Arabian Sea are more than twice as strong as those over the Bay of Bengal
(Figures 4 and 5) with maximum values in the western Arabian Sea near 10◦N off the east
coast of Somalia. This high w band is associated with the low-level jet that is often referred
to as the Findlater jet [66]. The Findlater jet is an atmospheric “western boundary current”
similar to that in the oceans [67,68]. It is formed by the orographic dynamics of the East
African highlands that bound the Arabian Sea to the west. The annual intensification of
the jet is a key feature of the onset of the Indian summer monsoon.

The Red Sea in its full length is surrounded by high mountain ranges (Figure 1). The
orographic effects on the regional atmospheric circulation are significant [69], forcing the
winds to blow mainly along the axis of the Sea. On synoptic weather time scales, the
mountain-gap wind jets often develop from both sides of the central basin, generating
winds to blow in a cross-axis direction [70–72]. The mean wind speeds generally increase
toward the North. In addition to the continental forcing, the northern basin is influenced
by the eastern Mediterranean weather and the southern basin by the Indian monsoons
with seasonally reversing winds. The latter is a consequence of the East African highlands,
which shield the Gulf of Aden from strong southwest monsoon winds in the summer
but steer the northeast monsoon winds into the Gulf of Aden and the southern Red Sea
in winter.

The Persian Gulf is less influenced by the Indian monsoons. The winds are predomi-
nantly northwesterly throughout the year and are generally light and less variable. The
mean w is about 3 ms−1 in summer and up to 5 ms−1 in winter. Synoptic wind bursts,
called Shamal (“North” in the Arabic language), develop in winter seasons in association
with mid-latitude disturbances moving from west to east, and these winds often reach gale
force and bring dust, cold air, and big seas to the region [73].
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• The East Asian marginal seas

Monsoon-related seasonal reversals are the most prominent feature of the winds over
the East Asian marginal seas, including the South China Sea, the East China Sea, and the
Sea of Japan. A marked seasonality is observed for winds over all seas, weak and variable
in summer and strong in winter.

The winter winds blowing over the three-sea system are predominantly northerly,
originating from the cold-core Siberia-Mongolia high pressure. Winds over the East China
Sea follow closely the basin contours, where the shallow ocean depth enables a strong
cold air—warm water coupling [74], which mixes the momentum downward and causes
the surface winds to increase when passing through the warm waters. In addition, the
orographic effect on the regional winds is evident. Stronger w with a magnitude exceeding
10 ms−1 occur in three locations, the Taiwan Strait (~25◦N), the Bashi Straits (~21◦N),
and around 11◦N off the southern coast of Vietnam, all of which are attributable to the
orographic forcing induced by the surrounding mountains [75,76].

The summer winds are southeasterly in the South China Sea and southerly or south-
easterly in the East China Sea and the Sea of Japan. The increasing zonal wind component
with latitude reflects the respective tropical and subtropical influence on the broad merid-
ional domain of the East Asian monsoon [77]. The monsoon winds over the South China
Sea are tropical in nature, connected to the cross-equatorial flows associated with the west-
ern North Pacific monsoon trough (i.e., the Intertropical Convergence Zone (ITCZ)) [78].
When moving northward into the East China Sea and the Sea of Japan, the monsoon winds
are affected by a subtropical component that is linked to the subtropical easterly on the
western periphery of the western Pacific subtropical high. The winds are generally weaker
in summer, with mean w mostly at 5–7 ms−1.

• On the Indian and East Asian monsoons

It is noted that the Indian and East Asian monsoons have different behaviors, although
they are two interactive constituents of the Asian Monsoon [56]. In the Indian Ocean, winds
are stronger during the summer monsoon, while in the East Asian seas, winds are stronger
during the winter monsoon. The differences are caused by several factors, including
the different land-sea configurations, the tropical versus subtropical influences, and the
atmospheric response to solar heating [78]. For instance, the Indian Ocean seas are located
to the south of the Tibetan plateau, and the blocking of the cold Siberian air by the highlands
leads to a rather modest winter monsoon. By contrast, the East Asian seas are located to
the east of the plateau and exposed directly to the downstream impacts that are driven by
the strong contrast between the cold extratropical Asian landmass and the relatively warm
North Pacific Ocean. In general, the East Asian monsoon is a complicated system as the
result of the land–sea thermal contrast both in the north–south and east–west directions
and the dynamic and thermal effects of the Tibetan plateau [79].

3.3. Decadal Changes

Decadal changes in surface wind fields over the 10 marginal seas are examined in
terms of linear trends over the length of the time series (Figure 8). Linear trends were
estimated by the least-squares regression, and the significance of the trends was evaluated
using the Student’s t-test by setting the confidence interval to 90%. In the following, the
trends labeled with p < 0.1 are statistically significant at the 90% confidence interval, and
those with p > 0.1 are statistically not significant.
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Figure 8. Linear trends of surface wind speed and vector for (a) annual mean, (b) the winter season
(December-January-February), (c) the summer season (June-July-August). The green dotted areas
denote the linear trends of wind speed that are significant at the 90% confidence interval. The ocean
regions outside of the marginal seas are shaded.

The trend maps of the annual-mean w and vector (u, v) (Figure 8a) reveal one strik-
ing feature: winds have significantly increased (positive trends) over the seas in the
subtropical/mid-latitudes but slightly reduced (negative trends) over the marginal seas
in the tropical latitudes. Over three decades, winds have become stronger across the
Mediterranean Sea, the Black Sea, the Caspian Sea, and the Red Sea, all of which are under
the influence of the Mediterranean weather pattern. The changes of the winds over the
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monsoon-influenced seas are less consistent. Winds have strengthened over the East China
Sea and the Sea of Japan, where the winds are subject to the influence of both the East
Asian monsoon and the western Pacific subtropical high. Winds have weakened over the
Arabian Sea, the Bay of Bengal, and the South China Sea, where the monsoon influence
is dominant.

The trend maps in winter (DJF) and summer (JJA) are shown in Figure 8b,c, respec-
tively. For most seas, the trend pattern of annual mean winds is dictated primarily by the
pattern of change in winter. One exception is the Arabian Sea, where the wind weakening
toward the equator is a dominant feature during the summer monsoon. Winds have inten-
sified in both winter and summer over both the South European seas and the North-East
Asian seas, but the rate of increase differs considerably between the summer and winter
seasons. The rate exceeds 30 cms−1 per decade in winter but is less than 15 cms−1 per
decade in summer, and in some areas, the trends show a change of sign in summer.

To examine the decadal changes in each marginal sea, the trend map of annual-mean
wind speed and direction is subsetted for each of the three climate regimes and redrawn
using a more refined color code in Figures 9–11. To help identify the seasonal characteristics
in these changes, bar plots are drawn to show the basin-averaged linear trends in w for
the four seasons: DJF, March-April-May (MAM), JJA, and September-October-November
(SON). The characteristic changes over the past three decades are described below.

Figure 9. (a) Linear trends of annual-mean surface wind speed and vector subsetted from Figure 8a
for the South European marginal seas. The magenta dotted areas denote the linear trends of wind
speed that are significant at the 90% confidence interval. (b–d) Bar plots of the basin-averaged mean
values (blue bars, left y-axis) and linear trends (red and gray bars, right axis) of wind speed in four
seasons: December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON) and the total annual mean (ANN) for (b) the Mediterranean
Sea (MED), (c) the Black Sea (BLACK), and (d) the Caspian Sea (CASPIAN). Error bars denote the
upper and lower limits of the 90% confidence intervals. Linear trends that are statistically significant
(not significant) are colored by red (gray).
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Figure 10. (a) Linear trends of annual-mean surface wind speed and vector subsetted from Figure 8a
for the North Indian Ocean marginal seas. The magenta dotted areas denote the linear trends of
wind speed that are significant at the 90% confidence interval. (b–d) Bar plots of the basin-averaged
mean values (blue bars, left y-axis) and linear trends (red and gray bars, right axis) of wind speed in
four seasons: December-January-February (DJF), March-April-May (MAM), June-July-August (JJA),
and September-October-November (SON) and the total annual mean (ANN) for (b) ARABIAN: the
Arabian Sea; (c) BoB: the Bay of Bengal; (d) RED: the Red Sea; and (e) PERSIAN: the Persian Gulf.
Error bars denote the upper and lower limits of the 90% confidence intervals. Linear trends that are
statistically significant (not significant) are colored by red (gray).

• The South European marginal seas

The decadal trends of the winds over the three seas along the southern European
continent are shown in Figure 9. The annual-mean winds (Figure 9a) have strengthened in
the same direction as the mean winds over the western and central Mediterranean basin
but enhanced toward the north and northeast in the eastern basin and the Aegean and
Adriatic seas. The rate of increase in w is greater in the northern basin, exceeding 30 cms−1

per decade, and less in the southern basin, at about 10 cms−1 per decade. The bar plot of
the linear trends in Figure 9b shows that winds have strengthened in all seasons, largest in
winter (DJF). The overall trend for the annual mean wind speed is statistically significant
at about 23 cms−1 per decade.

The annual-mean winds in the Black Sea have intensified toward the west, but the
rate of increase is smaller compared to that in the Mediterranean Sea. Except for a few
localized spots in the eastern basin, the rate of increase in w is mostly around 10 cms−1 per
decade on the basin scale. The bar plot of the linear trends of w (Figure 9c) indicates that
the annual-mean trend pattern reflects mostly the w increase during the winter (DJF) and
spring (MAM) seasons, and the changes in summer (JJA) and fall (SON) are not significant.
The overall trend for the annual-mean w is upward, at about 11 cms−1 per decade.

The annual-mean winds in the Caspian Sea have also increased. The winds have
enhanced westward in the southern basin and northwestward in the central basin, with
the maximum enhancement occurring in the central basin. Similar to the Mediterranean
Sea, the Caspian winds have strengthened in all seasons (Figure 9d) but with a weaker rate.
The basin-averaged annual-mean trend is about 17 cms−1 per decade.
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Figure 11. (a) Linear trends of annual-mean surface wind speed and vector subsetted from Figure 8a
for the East Asian marginal seas. The magenta dotted areas denote the linear trends of wind speed
that are significant at the 90% confidence interval. (b–d) Bar plots of the basin-averaged mean
values (blue bars, left y-axis) and linear trends (red and gray bars, right axis) of wind speed in four
seasons: December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON) and the total annual mean (ANN) for (b) A SCS: the South
China Sea; (c) ECS: the East China Sea; and (d) JAPAN: the Sea of Japan. Error bars denote the upper
and lower limits of the 90% confidence intervals. Linear trends that are statistically significant (not
significant) are colored by red (gray).

• The North Indian Ocean marginal seas

The annual-mean winds have weakened south of 15◦N in the Arabian Sea and the
Bay of Bengal (Figure 10a). Interestingly, the seasons at which these changes occurred
differ between the two basins (Figure 8b,c). In the Arabian Sea, the trend pattern in the
winter monsoon is similar to that in the summer monsoon, both featuring negative trends
(weakening) in the central and southern basin and positive trends (strengthening) in the
northern basin. Reduction in wind speeds is more pronounced in summer and the trends
are mostly statistically significant at the 90% confidence interval. In the Bay of Bengal, the
trends show a sharp contrast between the northern and southern basins, and the trend
patterns reverse the sign from the winter to summer monsoons. Winds in the northern
bay have become stronger in the winter monsoon but weaker in the summer monsoon.
Conversely, the winds in the southern bay have become weaker in the winter monsoon but
stronger in the summer monsoon. The trends in the winter monsoon are more dominant
and the pattern is reflected in the annual-mean trend map.

It appears that the Indian summer and winter monsoons may have both been subdued
to some degree and the changes have manifested differently in different basins. On a
broader scale, the trends in the southern Bay of Bengal are more or less in pace with the
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trends in the South China Sea (Figure 8b,c). The seeming connection between these two
basins implies that the changes of the winds in the Bay of Bengal may have been governed
by a more complex system than those in the Arabian Sea.

The surface winds in the Red Sea have experienced a substantial increase over the
past three decades. The winds enhanced predominantly southward in a direction similar
to the annual mean winds (Figure 6). By comparison, the Persian Gulf has become a calmer
sea. The winds have weakened considerably in the central basin, though the winds near
the northern tip of the Gulf have slightly strengthened.

The bar plots in Figure 10b–e show that the basin-averaged trends of w in the Arabian
Sea and Bay of Bengal are generally small and not statistically significant for all seasons.
This may be due to the cancellation of the positive and negative trends between the northern
and southern basins. The averaged trends of w in the Persian Gulf are also small. The Red
Sea is the only sea where the upward trends are significant in all months, at about 23 cms−1

per decade for annual-mean w.

• The East Asian marginal seas

The trends of the annual-mean winds in the three East Asian marginal seas have
considerably different characteristics (Figure 11a). The trends of w are mostly negative in
the South China Sea but are overwhelmingly positive in the East China Sea and the Sea of
Japan. Moreover, the negative trends in the south are statistically not significant while the
positive trends in the north are statistically significant.

The three marginal seas encompass a broad meridional range, extending from the
near-equatorial latitudes to mid-latitudes. The trend patterns show that the East Asian
monsoon has strengthened, more during winter than during summer (Figure 8b,c). The
flow of the trend vectors over the east China Sea in summer had a linkage to the westward
enhancement of the winds in the western subtropical North Pacific. It is known that
the East Asian summer monsoon has a subtropical component that is sourced from the
subtropical easterlies on the western periphery of the western Pacific subtropical high [78].
The enhanced subtropical easterlies over the subtropical western Pacific and marginal seas
may indicate a warming-induced local air-sea interaction.

The bar plots (Figure 11b–d) show that the trends in the East China Sea and the Sea
of Japan are upward in all seasons, being the largest in winter. The annual-mean trend
is about 16 cms−1 per decade in the East China Sea and 18 cms−1 per decade in the Sea
of Japan. The trends in the South China Sea are not significant, except for the fall season
(SON) during which the regional winds have weakened.

4. Discussion

The linear trend analysis of the 31-year (1988–2018) time series reveals a striking
pattern of wind decadal changes: surface winds strengthening over the marginal seas in the
subtropical/mid-latitudes while weakening over the marginal seas in the tropical latitudes.
During the analyzed three-decade span, the global climate has alternated between different
warming phases: a rapid warming in the 1990s, a warming hiatus in the 2000s, and again a
warming acceleration in the 2010s. Given the close coupling between SST and winds on
various timescales [39,40], how the changes of surface winds are related to the SST changes
are examined below.

4.1. Trends in SST

Linear trends of SST in ◦C per decade during 1998–2018 are shown in Figure 12.
Positive trends are dominant in all 10 marginal seas, and negative trends appear in a few
localized areas such as off the northern tip of the Somali coast in the Arabian Sea, the
northern East China Sea, and the central Sea of Japan. The rate of warming is larger in
the South Europe marginal seas, at about 0.3–0.4 ◦C per decade in the Mediterranean and
Caspian Seas and greater than 0.6 ◦C per decade in the Black Sea. Considering that the
SST over the global ocean increases at an average rate of 0.14 ◦C per decade during the
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same period [80], these marginal and enclosed seas have been warming up at a rate about
2–4 times faster than the global ocean average.

Figure 12. Linear trends of annual mean SST for 1988–2018. The green dotted areas denote the linear trends of wind speed
that are significant at the 90% confidence interval. The ocean regions outside of the marginal seas are shaded.

The SSTs in the Red Sea and the Persian Gulf have increased at a rate of ~0.2–0.3 ◦C per
decade. The rate is slightly lower than that in the Mediterranean Sea but certainly higher
than the rate of ~0.1 ◦C per decade in the Arabian Sea and the Bay of Bengal. The SST
changes in these two marginal seas seem to align more with the Mediterranean weather
pattern than with the monsoon system.

The spatial patterns of SST changes in the East Asian marginal seas are the least
uniform comparing to those in the other two climate zones. Areas of negative trends
appear in the East China Sea and the Sea of Japan, contrasting to the basin-wide positive
trends in the South China Sea. The rate of SST increase in the South China Sea is about
0.1–0.2 ◦C per decade, similar to that in the Bay of Bengal and the Arabian Sea.

4.2. Decadal Changes in Basin-Averaged SST and Wind Speed

Time series of the basin-averaged annual-mean SST and wind speed constructed for
the 10 seas are shown in Figures 13–15 by grouping into three climate zones. Since most
time series show a distinct transition around 2000, linear trends for the periods prior to
2000 (1988–2000) and after 2000 (2001–2018) were also estimated. In Figures 13–15, the
31-year trend is denoted by a red solid line and the trends of the two shorter periods by
dashed blue lines, with the trend values superimposed. Major characteristics for the SST
and wind changes in each zone are summarized as follows.

• The South European marginal seas

The most striking feature in the three SST plots (Figure 13a–c) is the persistent warming
trends that have carried through both before and after 2000. The average rate of SST increase
is about 0.4 ◦C per decade in the Mediterranean and Caspian Seas and 0.6 ◦C per decade
in the Black Sea. The Black Sea is the fastest-warming sea among all 10 seas in the study
(Figure 12). In the Mediterranean and Black Seas, the rate of SST increase has barely
changed before and after 2000. In the Caspian Sea, the rate has decelerated considerably,
from ~0.8 ◦C per decade in the 1990s down to ~0.3 ◦C per decade in the 2000s–2010s.

The contrasting rate of change before and after 2000 is more evident for wind speed
(Figure 13d–f), even for the Mediterranean and Black Seas where the warming trend is
persistent. The winds have strengthened at a rate of 11 to 24 cms−1 per decade during 1988–
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2018 across the three seas. The rates are driven predominantly by the rapid strengthening
of surface winds in the 1990s, during which the winds trended up at 31–45 cms−1 per
decade. After 2000, the trends of wind speed have leveled off.

Figure 13. Basin-averaged annual time series (black line) of (a–c) SST and (d–f) wind speed for the
South European marginal seas. (a,d) MED: the Mediterranean Sea. (b,e) BLACK: the Black Sea.
(c,f) CASPIAN: the Caspian Sea. The shaded area denotes one standard deviation of annual-mean
variability. The red line denotes the linear trend over 1988–2018, and the dashed blue lines are the
linear trends over 1988–2000 and 2001–2018, respectively. Linear trend estimates for the three periods
are listed: 1988–2000 (top line), 2001–2018 (middle line), and 1988–2018 (bottom line), colored by red
if the trend is statistically significant (p < 0.1) or by black if the trend is statistically not significant (p >
0.1). The value in the parentheses is the percentage increase.

• The North Indian Ocean marginal seas

SST has increased in all four seas during 1988-2018 (Figure 14a–d), with a larger rate
(~0.2 ◦C per decade) in the Red Sea and the Persian Gulf and a smaller rate (~0.1 ◦C per
decade) in the Arabian Sea and the Bay of Bengal. In the Red Sea and the Persian Gulf,
the rate of SST increase in the 1990s (~0.6–1 ◦C per decade) is at least 3 times faster than
that in the two recent decades (~0.2 ◦C per decade). By contrast, surface warming in the
Arabian Sea and the Bay of Bengal did not start until after 2000. The rate of increase is
0.1 ◦C per decade in the Arabian Sea, and up to about 0.2 ◦C per decade in the Bay of
Bengal. It appears that the Bay of Bengal has warmed up twice as fast as the Arabian Sea
in recent decades.

Unlike SST, there is no clear trend in wind speed during 1988–2018 except for the
Red Sea (Figure 14e–h). Winds over all four seas had a downward tendency prior to 1998,
which is more evident in the Red Sea and the Persian Gulf than in the Arabian Sea and the
Bay of Bengal. These downward trends were terminated by an abrupt jump in 2000. Since
then, the winds over the four seas have trended in three directions. The first is represented
by the winds in the Red Sea, where the trend has held flat after 2000, and the trend of the
31-year period reflects an elevation of the mean wind speed as a result of the sharp change
in 2000. The second is represented by the winds over the Persian Gulf, where the trend was
flat in the 2000s and then down in the 2010s. The third is characterized by the winds over
the Arabian Sea and the Bay of Bengal, where the winds have been less changed despite
the increased surface warming in the region.
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Figure 14. Basin-averaged annual time series (black line) of (a–c) SST and (d–f) wind speed for
the North Indian Ocean marginal seas. (a,e) RED: the Red Sea. (b,f) PERSIAN: the Persian Gulf.
(c,g) ARABIAN: the Arabian Sea. (d,h) BoB: the Bay of Bengal. The shaded area denotes one standard
deviation of annual-mean variability. The red line denotes the linear trend over 1988–2018, and the
dashed blue lines are the linear trends over 1988–2000 and 2001–2018, respectively. Linear trend
estimates for the three periods are listed: 1988–2000 (top line), 2001–2018 (middle line), and 1988–2018
(bottom line), colored by red if the trend is statistically significant (p < 0.1) or by black if the trend is
statistically not significant (p > 0.1). The value in the parentheses is the percentage increase.

• The East Asian marginal seas

The surface warming trends in the three marginal seas have distinct decadal charac-
teristics (Figure 15a–c). In the South China Sea, the warming has been persistent through
the entire 31-year period with a rate of increase at 0.2 ◦C per decade. In the East China Sea,
the SST has trended up rapidly in the 1990s, at a rate of 0.7 ◦C per decade, but the SST after
2000 is dominated by large interannual variability with no meaningful trend. In the Sea
of Japan, the trend has a clear decadal dependence, featuring accelerated warming in the
1990s and a near-flat tendency in the 2000s–2010s.

The annual-mean time series of wind speed (Figure 15d–f) indicate that the winds
in the South China Sea have experienced substantial interannual variability but no clear
long-term trend during 1988–2018, though the basin has been warming up. The winds
in the East China Sea and the Sea of Japan both have strengthened, driven more by the
accelerated strengthening in the 1990s. Overall, the winds have increased at 16–18 cms−1

per decade in these two seas during 1988–2018.
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Figure 15. Basin-averaged annual time series (black line) of (a–c) SST and (d–f) wind speed for the
East Asian marginal seas. (a,d) SCS: the South China Sea. (b,e) ECS: the East China Sea. (c,f) JAPAN:
the Sea of Japan. The shaded area denotes one standard deviation of annual-mean variability. The
red line denotes the linear trend over 1988–2018, and the dashed blue lines are the linear trends
over 1988–2000 and 2001–2018, respectively. Linear trend estimates for the three periods are listed:
1988–2000 (top line), 2001–2018 (middle line), and 1988–2018 (bottom line), colored by red if the trend
is statistically significant (p < 0.1) or by black if the trend is statistically not significant (p > 0.1). The
value in the parentheses is the percentage increase.

4.3. Decadal Change Characteristics

To characterize the changes in wind speed and SST, the linear trend estimates listed in
Figures 13–15 are tabulated side-by-side in Table 4. Major characteristics of the wind and
SST changes for the three periods, 1988–2018, 1988–2000, and 2001–2018, are synthesized
as follows.

• The 31-year span (1988–2018)

The basin-averaged SST has increased across the 10 marginal seas, all having statistical
significance at the 90% confidence interval. The rate of increase is comparably smaller,
about 0.1–0.2 ◦C per decade, in the five tropical marginal seas under the Asian monsoon
influence. These seas include the Arabian Sea, the Bay of Bengal, the South China Sea,
the East China Sea, and the Sea of Japan. The warming rate is larger, ranging between
0.4–0.6 ◦C per decade, for the three south European seas, including the Mediterranean Sea,
the Black Sea, and the Caspian Sea. The Red Sea and the Persian Gulf are in the borderline
between the Mediterranean weather and the Indian monsoon influences, where the rate of
the SST increase is about 0.3 ◦C per decade, which is also in the midway between the rates
in the two climate zones.

Despite the omnipresent warming, the basin-averaged wind speeds have not strength-
ened everywhere. Winds have become stronger over the marginal seas located in the
subtropical/mid-latitudes, including three South European seas (i.e., the Mediterranean,
Black, and Caspian seas) and two East Asian seas (i.e., the East China Sea, and the Sea of
Japan), and the rate of increase ranges between 11–24 cms−1 per decade. Winds over the
marginal seas in the tropical latitudes under the monsoon influence have slightly weak-
ened or little changed, except for the Red Sea where the winds have increased at a rate of
24 cms−1 per decade.
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Table 4. Linear trend estimates of the annual-mean wind speed in the 10 marginal seas for three periods: 1988–2018,
1988–2000, 2001–2018. The trends that are statistically significant at the 90% confidence interval are highlighted by bold
numbers. The confidence limit shown as error bars. MED: the Mediterranean Sea; BLACK: the Black Sea; and CASPIAN:
the Caspian Sea; RED: the Red Sea; PERSIAN: the Persian Gulf; ARABIAN: the Arabian Sea; BoB: the Bay of Bengal; SCS:
the South China Sea; ECS: the East China Sea; JAPAN: the Sea of Japan.

Marginal Sea

Trend
1988–2018

Trend
1988–2000

Trend
2001–2018

SST
(◦C/dec)

Wind Speed
(cms−1/dec)

SST
(◦C/dec)

Wind Speed
(cms−1/dec)

SST
(◦C/dec)

Wind Speed
(cms−1/dec)

MED 0.4 ± 0.1 24 ± 5 0.3 ± 0.3 36 ± 16 0.4 ± 0.1 3 ± 8
BLACK 0.6 ± 0.1 11 ± 6 0.7 ± 0.4 45 ± 24 0.6 ± 0.3 −4 ± 10

CASPIAN 0.4 ± 0.1 17 ± 5 0.8 ± 0.4 31 ± 16 0.3 ± 0.2 7 ± 9
RED 0.3 ± 0.1 24 ± 6 0.6 ± 0.3 11 ± 20 0.2 ± 0.1 4 ± 11

PERSIAN 0.3 ± 0.1 −8 ± 9 1.0 ± 0.5 −14 ± 26 0.2 ± 0.2 −39 ± 24
ARABIAN 0.1 ± 0.1 −1 ± 4 0.0 ± 0.2 −1 ± 18 0.1 ± 0.1 −1 ± 8

BoB 0.2 ± 0.1 −0 ± 6 0.0 ± 0.2 −2 ± 26 0.2 ± 0.1 −3 ± 9
SCS 0.2 ± 0.1 1 ± 6 0.4 ± 0.3 −1 ± 19 0.3 ± 0.1 −8 ± 15
ECS 0.1 ± 0.1 16 ± 5 0.7 ± 0.2 22 ± 12 −0.0 ± 0.2 5 ± 12

JAPAN 0.2 ± 0.1 18 ± 6 0.5 ± 0.4 40 ± 16 −0.1 ± 0.2 2 ± 13

• The 1990s (1988–2000)

SST has increased at a faster rate in the 1990s in all marginal seas except for the Arabian
Sea and the Bay of Bengal, where the basin-averaged SST show no obvious trend. In the
other seas, the rate of increase ranges from 0.3 to 1 ◦C per decade. The wind speeds over
the five seas in the subtropical/mid-latitudes have increased, at a rate of 22–45 cms−1 per
decade. The winds over the marginal seas in the tropical latitudes have slightly weakened,
but the trends are statistically not significant.

• The 2000s and 2010s (2001–2018)

SST has continued to increase in the three South European seas, the Red Sea, and the
Persian Gulf, though at a smaller rate of increase (0.2–0.6 ◦C per decade) comparing to that
in the 1990s. In the Arabian Sea and the Bay of Bengal, the surface has started to warm up
at a rate of 0.1–0.2 ◦C per decade. The surface warming has continued in the South China
Sea but ceased in the East China Sea and the Sea of Japan. By comparison, the trends of
wind speeds have leveled off over all seas, except for the Persian Gulf that shows a strong
reduction in wind speeds.

• Synopsis

Although the SST trends through the entire 31-year period are all upward in the 10
marginal seas, the upward trends in the Arabian Sea and the Bay of Bengal are due to
the warming that started after 2000 while the trends in the other 8 seas are driven by
accelerated warming in the 1990s. The surface winds have also experienced two distinct
decadal phases over the 31-year span. The strengthening of the surface winds over the five
mid-latitude marginal seas in the 1990s has receded after 2000. The winds over the three
tropical marginal seas have weakened only slightly throughout the 31-year period. The
wind changes over the Red Sea and the Persian Gulf reflect a regime shift in the regional
mean wind speeds.

4.4. Decadal Change Patterns

A map based on the sign and statistical significance of the trends (Table 4) was
constructed for SST and wind speed for the three respective periods: 1988–2018, 1988–2000,
and 2001–2018 (Figure 16). It shows that the relationship between wind and SST changes
is highly nonlinear and varies with the basin. The wind changes are related to the SST
changes in three distinct ways. First, the winds over the South European marginal seas
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increased with the rising SST in the 1990s but remained near-steady after 2000 despite the
continuation of the surface warming trend. Second, the basin-averaged wind speeds in the
Arabian Sea and the Bay of Bengal experienced little decadal trends either before or after
2000, although the SST has been trending upward after 2000. Lastly, the East China Sea and
the Sea of Japan are the only seas where SST and wind changes have positive correlations,
both of which have trended upward in the 1990s and flattened in the 2000s–2010s.

Figure 16. Schematic depiction of the decadal changes in annual-mean winds averaged over each of the 10 marginal seas for
SST (left) and wind speed (right) in three periods: (a,d): 1988–2018; (b,e): 1988–2000; (c,f): 2001–2018. Areas colored in red
(blue) denote that the rate of increase (reduction) in SST and wind speeds is statistically significant at the 90% confidence
interval. The areas colored in gray denote that the changes in the SST or wind speed are not significant.

5. Conclusions

This study utilizes satellite observations of the past three decades (1988–2018) to pro-
vide the first full characterization of decadal variations of surface winds over 10 marginal
seas surrounding the Eurasian continent. During the three decades, the global climate has
alternated between different warming phases: rapid warming in the 1990s, a warming
hiatus in the 2000s, and a warming acceleration again in the 2010s. The average rate of
SST increase is about 0.12 ◦C per decade over the global ocean [80]. This study finds that
surface warming has occurred across the 10 marginal seas over the 31-year span, more
pronounced in the South European Seas (0.4–0.6 ◦C per decade) than in the North Indian
and East Asian marginal Seas (0.1–0.2 ◦C per decade). The rate of SST increase in the South
European seas is about 3–5 times higher than the rate of the global ocean average.

At the same time, surface winds have not increased everywhere. On basin average,
winds have strengthened over the five marginal seas in the subtropical mid-latitudes,
including the Mediterranean Sea, the Black Sea, the Caspian Sea, the East China Sea, and
the Sea of Japan, with the rate of increase ranging between 11–24 cms−1 per decade. These
trends are driven predominantly by the accelerated changes in the 1990s, during which
the winds strengthened at a rate almost twice the 31-year mean rate. Surface winds have
slightly weakened over the marginal seas in the tropical region that is influenced by the
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monsoon, including the Arabian Sea, the Bay of Bengal, and the South China Sea, but
the trends are weak and statistically not significant. The winds over the Red Sea and the
Persian Gulf underwent an abrupt shift in 2000 that elevated the mean wind speed to a
new regime. Trends have largely flattened over most of the seas during the warming of the
most recent decade.

The varying relationships between wind and SST changes suggest that different
marginal seas have responded differently to warming. The 10 marginal seas are exposed to
a broad spectrum of environmental, orographic, and weather conditions, and differ in size
and the volume to surface area ratio. The spatial variability in their responses is a complex
outcome of the interaction between local thermal and orographic forcing and air-sea
processes. The study is ongoing to investigate and understand the physical drivers of the
change of the near-surface atmospheric circulation and to identify key air-sea mechanisms
in each marginal sea. Such study will be useful for improving the understanding of the
regional response to global climate change, and for improving the projection of future
climate change and impacts on the marginal seas.
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