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Abstract: A major challenge in ecological restoration is assessing the success of restoration plantings
in producing habitats that provide the desired ecosystem functions and services. Forest structural
complexity and biomass accumulation are key measures used to monitor restoration success and
are important factors determining animal habitat availability and carbon sequestration. Monitoring
their development through time using traditional field measurements can be costly and impractical,
particularly at the landscape-scale, which is a common requirement in ecological restoration. We
explored the application of proximal sensing technology as an alternative to traditional field surveys
to capture the development of key forest structural traits in a restoration planting in the Midlands
of Tasmania, Australia. We report the use of a hand-held laser scanner (ZEB1) to measure annual
changes in structural traits at the tree-level, in a mixed species common-garden experiment from
seven- to nine-years after planting. Using very dense point clouds, we derived estimates of multiple
structural traits, including above ground biomass, tree height, stem diameter, crown dimensions,
and crown properties. We detected annual increases in most LiDAR-derived traits, with individual
crowns becoming increasingly interconnected. Time by species interaction were detected, and were
associated with differences in productivity between species. We show the potential for remote sensing
technology to monitor temporal changes in forest structural traits, as well as to provide base-line
measures from which to assess the restoration trajectory towards a desired state.

Keywords: hand-held laser scanning; ZEB1; LiDAR; structural attributes; species variation; individ-
ual tree; tree architecture; Eucalyptus

1. Introduction

To counter the effects of climate change, multiple nations have pledged to restore
hundreds of millions of hectares of degraded land by re-establishing biodiverse plantings
for biomass and carbon sequestration, and conserving biodiversity. The monitoring of these
plantings will be pivotal in reporting their effectiveness in reaching the desired restoration
targets [1]. Recently, it has been argued that key response traits, also referred to as Essential
Biodiversity Variables (EBVs), need to be identified in order for ecosystem monitoring
to be effective [2]. One such EBV that could serve as a viable candidate to monitor the
effectiveness of forest restoration plantings is forest structural complexity [3], which is
considered a reliable indicator of ecosystem health and function [4]. Greater forest structural
complexity is expected to provide a greater diversity of habitats for species. Tree species
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composition can have impacts on pollinators [5], and biomass accumulation [6], while the
presence of different forest tree species may result in the formation of several canopy layers,
which positively affect bird communities [7] and mammal populations [8]. Unfortunately,
the use of traditional field inventories for the assessment of spatial and temporal changes
in forest structural complexity and forest structural traits can be expensive and time
demanding [4]. Consequently, interest is growing in the restoration community towards
using remote sensing applications to provide a timely and cost-effective alternative [9–11].

While remote sensing applications increasingly have been adopted for the assessment
of forest structural traits in production forestry [12], the uptake of these technologies in a
restoration context is proving slow and challenging [9], and has remained largely focused
on the initial planning phase [10]. Light Detection and Ranging (LiDAR) data can capture
detailed characteristics of forest structural traits [13], as the key data obtained are the three-
dimensional (3D) point cloud that reflects the location in space of the objects hit by the
laser beams [14]. These point clouds can vary in terms of density (e.g., from <1 point/m2

to >100 points/m2), according to the sensor specifications, the Earth observation platform
carrying them, and the scale and scope of investigation. When the study aims to obtain very
detailed information of below-canopy elements over small areas, ground-based LiDAR
systems (also referred to as proximal sensing) can be used [15,16]. Proximal sensing
offers a clear advantage compared to airborne remote sensing—being on the ground
and embedded in the vegetation system, proximal sensing provides an advantageous
perspective on ground vegetation and below-canopy elements. Ground-based LiDAR can
be either static (i.e., mounted on a tripod—terrestrial laser scanner (TLS)) or mobile (i.e.,
mounted on a vehicle or hand-held—hand-held mobile laser scanner (HMLS)). Regarding
the acquired information, TLS systems provide the most accurate datasets, with extremely
dense 3D point clouds and the addition of RGB imagery collected during each scan.
Nevertheless, since TLS produces 360◦ scans from a fixed position, a single scan will only
acquire data from the side of the trees facing the instrument (thus losing the information on
the other side, due to occlusion). To reduce the occlusion due to the limited line-of-sight in
forests, TLS users need to carry out multiple scans to cover the study area, thus increasing
data acquisition times and requiring extensive site preparation and pre-processing [17].
Alternatively, mobile systems can be used to capture detailed 3D information, simply by
scanning the trees as one walks through the study area [18]. The main limitations of HMLS
are: (i) the lack of a built-in global navigation satellite system (i.e., GNSS) unit (i.e., no
information on the geolocation of the scan); (ii) a maximum scanning distance of 15–20 m
(this can vary according to the instrument), which results in a height cut off when scanning
tall trees; and (iii) reduced accuracies when compared to TLS [19]. Nonetheless, when
monitoring the development of young trees, HMLS is advantageous as data collection
using TLS would require an extremely large number of scanning positions to account
for the often dense “bush-like” nature of young growing trees. In addition, HMLS are
easy to use and can be operated with little to no previous experience in remote sensing or
surveying. This feature makes the use of HMLS systems extremely appealing to restoration
ecologist, since the only real need for specialized personnel to carry out regular monitoring
is related to the very early plot establishment phase (namely the precise acquisition of the
coordinates of ground control points—see Section 2.2).

Given the current dearth of studies monitoring the success of forest restoration plant-
ings over time, particularly through the aid of remote sensing technologies, we here aim to
test and validate for the first time the use of proximal LiDAR data acquired using a HMLS
(i.e., ZEB1 system) to monitor the development of several structural traits. This is carried
out at the individual tree-level in a eucalypt dominated, mixed species restoration planting
over a three-year period. In particular, we focus on (i) how well key structural attributes
measured in the field are estimated using LiDAR, (ii) how structural attributes change
through time, and (iii) determine whether these structural attributes differ among species.



Remote Sens. 2021, 13, 1706 3 of 16

2. Materials and Methods
2.1. Study Site

The study was carried out at the Dungrove restoration research site (592 m elevation,
latitude −42.2733◦, longitude 146.8941◦), located in the southern Midlands of Tasmania,
Australia (Figure 1a). The Dungrove research experiment was established in 2010 on ex-
agricultural land, embedded in broader restoration plantings aimed at the re-connection of
remnant dry eucalypt woodlands, dominated by Eucalyptus pauciflora and E. tenuiramis [20].
As part of the experiment, eight replicates with twelve community treatments of 120 trees
each, have been planted across the landscape. These treatments differed according to
the species planted as immediate neighbor to the focal eucalypt (i.e., E. pauciflora and E.
tenuiramis), and comprised of monocultures and mixed species plots [21].
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Figure 1. (a) The Dungrove research site showing the locations of the three permanent plots (red, blue, yellow polygons)
superimposed over the broader experimental plantings of the Ecology trial (black polygons) and site position within
Tasmania (inset map—coordinates in WGS 84, EPSG:4326); (b) the three Canopy Height Models (CHMs) of the ZEB1
plots, acquired in 2019, shown with individual crowns overlaid and their 50 × 20 m bounding box, colored according to
aboveground height (blue to red = 0–10 m). The coordinate system used in map (a) is GDA94/MGA zone 55S, EPSG:28355.

2.2. ZEB1 Data Acquisition and Co-Registration

ZEB1 (GeoSLAMTM, Nottingham, UK) data collection was carried out in three 50 × 20 m
quadrats (0.1 ha) over a three-year time period: first-year measurements were conducted at
the end of February 2017, while second- and third-year scans were carried out in early May
2018 and early April 2019, respectively, which was seven to nine years after planting. The
ZEB1 system is provided with a Hokuyo UTM-30LX laser scanner, operating at a wavelength
of 905 nm. It has a horizontal and vertical field of view of approximately 270◦ and 120◦,
respectively, and a maximum scanning range of 30 m (typical maximum range 15–20 m).
It can scan up to 40 lines/s and 43,200 points/s [22]. The lack of a built-in GNSS (or GPS)
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unit inside the ZEB1 system required the development of a standard sampling protocol to
allow for the co-registration of each scan in real world coordinates. This sampling protocol
needs a semi-fixed set-up for each sampling quadrat: eight permanent reference pickets (i.e.,
0.9 m steel fencing posts) were driven halfway into the ground in each quadrat, one in each
corner, while the remaining four were scattered throughout the plot. At the start of the study,
the position of each reference picket was georeferenced using a GNSS receiver transmitting
to a nearby base station.

Before each ZEB1 scan, a 1.8 m plastic coated steel pole was fixed to each reference
picket. A 0.2 m diameter polystyrene reference target was placed on its top (Figure 2),
then the height from the ground to the base of the reference target was recorded. Once
the data was processed by the proprietary software and it was returned to the end user
in a readable format (.las), this reference height, together with the ground coordinates of
each reference point was used to co-register the point cloud to the GDA94-MGA zone 55
coordinate reference system (EPSG: 28355). Point cloud co-registration was carried out in
the open-source software CloudCompare v2.9.1 (http://cloudcompare.org/, accessed on 17
September 2017) using the “align (point pairs picking)” function. The four corner references
were used to register each point cloud, while the remaining reference points were used to
assess the final root mean squared error (RMSE) for each scan (Table 1). Finally, each scan
was clipped to its permanent bounding box of 50 × 20 m, with a 1 m external buffer to avoid
cutting out parts of the bordering crowns. The external buffer was created in the open-
source QGIS environment (QGIS Desktop version 2.18.0), while the clipping was carried
out using the “lasclip” function from LasTools (https://rapidlasso.com/lastools/lasclip/,
accessed on 17 September 2017).
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Table 1. Summary statistics of ZEB1 data registration for each of the three monitoring plots over the
three monitoring years. Shown for each plot is the scanning date, the registration root mean squared
error (RMSE), the mean number of points per square meter, and the mean, maximum, and standard
deviation of the individual tree height.

Plot Acquisition Date Registration
RMSE (m) Points/m2 Mean

Height (m)
Max

Height (m)
Standard

Deviation (m)

21 February 2017 0.14 a 12,822.6 2.27 7.38 0.77
1 15 May 2018 0.20 a 15,522.2 2.34 8.35 0.84

2 April 2019 0.19 a 14,543.2 2.24 8.93 0.82

20 February 2017 0.11 6149.3 1.96 5.40 0.52
2 15 May 2018 0.29 11,543.0 2.18 6.48 0.66

10 May 2019 0.20 14,159.6 2.07 6.42 0.65

21 February 2017 0.15 7919.7 2.28 7.52 0.79
3 15 May 2018 b 0.13 a 13,502.2 2.33 7.94 0.85

2 April 2019 0.16 8085.1 2.19 8.22 0.74
a RMSE computed using three control points instead of four. b Point cloud registration using three of the four
corner reference points plus the closest reference point, from those inside the plot, to the unrepresented corner.

2.3. Individual Tree and Plot-Level Structural Trait Extraction

Once registered, the point clouds were used to create nine (i.e., one per plot per year)
Canopy Height Models (CHMs), using the “Lasgrid” function from LAStools
(https://rapidlasso.com/lastools/lasgrid/, accessed on 17 September 2017). These nine
CHMs were loaded into the open access QGIS environment (see above) and used (with the
aid of the restoration planting layout) to manually digitize the crowns of approximately
270 trees (Figure 1b). Although the outline of most tree crowns was easily detectable, for
a small subset of neighboring trees with overlapping crowns, further data manipulation
proved necessary. In such cases, manual segmentation of overlapping crowns was achieved
using the “segment” function from CloudCompare (Figure 3). Once individual tree crowns
were segmented, the extraction and calculation of structural traits at the individual tree-
level (Table 2) was carried out using the statistical language R [23]. These structural traits
were chosen as they have been previously shown to significantly vary between and within
species [11] and are presented as potential proxies for characterizing the return of struc-
tural complexity in ecological restoration plantings. To estimate above-ground biomass
(AGB) and diameter at breast height (DBH) from the LiDAR point clouds, we applied the
following allometric equations by Jucker et al [24]:

AGB = (0.016) × (H × CD)(2.013) × exp[0.2042/2], (1)

DBH = 0.557 × (H × CD)0.809 × exp[0.0562/2], (2)

where H represents tree height (in meters), CD stands for crown diameter (in meters), and
AGB is dried biomass (in kg). These allometric equations were developed using >100,000
measurements from a diversity of tree species across many biomes, specifically for remote
sensing [24]. In the case of tree height, we used the 99th percentile height estimated from
each point cloud. This measure of tree height was chosen as preliminary analyses detected
significant outlying points at the top of the point clouds, most likely due to the detection of
objects other than the canopy, such as birds.

https://rapidlasso.com/lastools/lasgrid/
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Table 2. List and description of the 15 structural traits computed for each individual tree extracted
from the LiDAR point clouds.

Structural Traits Description of LiDAR-Derived Traits

Height P99 (m) 99th percentile of height within point cloud.

Crown skewness Skewness of the height distribution within each tree
(median − Q1)/(Q3 − median).

Height of widest cross-section (m) Height of the crown at its widest cross-section.

Max crown diameter (m) The widest cross-section of the crown in any
given direction.

Crown volume (convex hull-m3)

Crown volume of a 3D convex hull calculated from
the point cloud defined above crown insertion. It is
calculated using the “convhulln” function of the R

geometry package.

Crown surface area (m2)
The surface area of a 3D convex hull calculated
using the point cloud defined above the canopy

insertion point.

Crown projected area (m2)
The area of the projected polygon describing the

crown ground cover.

Height to area ratio (m/m2)
The ratio of tree height to crown surface area. It

represents the total height of the tree per unit of area.

Height to volume ratio (m/m3)
The ratio of tree height to crown volume. It

represents the total height of the tree per unit
of volume.

Points to area ratio (points/m2)
The ratio of number of points in the crown to crown
surface area, representing a proxy for crown density.

Points to volume ratio (points/m3)
The ratio of number of points in the crown to crown

volume, representing a proxy for crown density.

Above Ground Biomass (AGB-kg)
AGB estimated through the allometric Equation (1)
developed by Jucker et al. [24], using Tree height
and Max crown width. Measured as dry weight.

Diameter at breast height (cm)
Diameter at 1.3m, derived from a general allometric
Equation (2) using total tree height and maximum

crown width [24].

Rumple index

Calculated as the ratio between crown surface area
on ground surface area, this index reflects crown

structural complexity. Calculated using the
“rumple_index” function from the lidR package.

Area (3D:2D)
The ratio between crown volume calculated from the

point cloud (i.e., convex hull) and the crown area
obtained from the projected polygon.

To quantify the temporal gap dynamics at the plot-level, the number and total size of
gaps were estimated for each plot across the three monitoring years using the ForestGapR
R package [25]. Here, for each monitoring year, a pit-free CHM was calculated for each
plot using the “grid_canopy function of lidR as input to the “getForestGap” function to
detect gaps at 0.1 m cumulative threshold from ground to maximum height of the CHM.
The total number of gaps and their combined area (m2) were obtained for each cumulative
threshold using the “GapStats” function.

2.4. Ground-Based Measurements

A subset of the LiDAR-derived structural traits was validated using equivalent ground-
based measurements of all trees in the three plots. These included: diameter at breast
height (DBH) of all stems >1 cm, tree height, crown insertion height, and crown dimensions
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(two diagonal measurements of the crown). Here, crown insertion height is defined as
the vertical distance from the ground to the lowest branch of the main tree crown. These
measures were carried out at approximately the same time as the ZEB1 data acquisition.
The measurements of crown dimensions and crown insertion height were taken only
during the second and third year of the study.

2.5. Statistical Analysis

All statistical analysis and data visualization were undertaken in R [23]. Trait validation
was carried out by fitting a linear regression model associating the field measured traits
for each tree with the point cloud derived estimates of the same trait, and R2 values for
each trait calculated. The model assumption of normality and homoscedasticity as well as
overdispersion were statistically and visually assessed using simulated residuals from the
fitted model using the “simulateResiduals” function of the DHARMa package). The only trait
that required transformation was DBH, which was transformed using the natural logarithm
and back transformed for visualizing the results. Root-mean squared errors were additionally
calculated with the Metrics package using the field observations and model predictions.

To test the effects of time, species (i.e., Acacia dealbata, E. nitens, E. pauciflora, and
E. tenuiramis) and their interaction on the ZEB1-derived structural traits, a two-way mixed-
effects model including plot as a random term was fitted to the individual tree data using
the function “lme” of the package nlme. To account for the heterogeneity in the residual vari-
ances with time and the autocorrelation among observations inherent with repeat measure
time series, an unstructured covariance matrix was used to model the dependencies among
observations in the residual variance [26,27]. In each case, traits were transformed as required
to optimize homogeneity of variances and normality based on the inspection of diagnostic
plots following Zuur and Ieno [28]. Fixed effects were tested with the Walds F-test using the
“anova.lme” function of nlme package, based on the marginal sum of squares. Least-squares
means for fixed effects were calculated using the emmeans package.

3. Results

LiDAR-derived tree height, measured using the 99th height percentile, was highly
correlated with the field measurements of tree height (R2 = 0.90, RMSE = 0.34 m (2017);
R2 = 0.96, RMSE = 0.27 m (2018); R2 = 0.97, RMSE = 0.24 m (2019)) (Figure 4a). Accordingly,
the relationship between the averaged measurements of stem diameter taken in the field and
those derived from a general allometric equation [24] using LiDAR traits as input (i.e., 99th
height percentile and crown width at the widest point) resulted in relationships of R2 = 0.54
(RMSE = 1.12 cm; 2017), 0.79 (RMSE = 3.61 cm; 2018), and 0.74 (RMSE = 4.37 cm; 2019)
(Figure 4b). Two additional measures related to crown properties were also ground-truthed
in this study: field-measured crown width was highly correlated with crown width at the
widest cross-section (R2 = 0.84, RMSE = 0.53 m (2018); R2 = 0.85, RMSE = 0.52 m (2019)),
while field-measurements of crown insertion height were poorly correlated with a LiDAR
composite value (R2 = 0.18, RMSE = 0.29 m (2018); R2 = 0.09, RMSE = 0.30 m (2019)). This
composite value derived from LiDAR was obtained after running a random forest model
following Camarretta et al. [11], fitting the 99th height percentile, diameter, rumple index, and
height to the widest cross-section as predictors of the field measured insertion height.

Irrespective of plot or monitoring year, the greatest number of gaps were observed
below 1 m, with the total area of gaps ranging from 188 m2 to 453 m2 (Figure 5). This
lower layer of vegetation comprised a mosaic of variable sized gaps (data not shown), with
the number of gaps increasing with age as the canopy of the trees grew taller (Figure 5).
The total number of gaps generally decreased with increasing height of the vegetation
within a plot. However, as the gaps reduced in number, the size of the gaps increased in
area, suggesting a separation of the tree canopies from the lower vegetation layer and one
another (Figure 5).
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Figure 5. Dynamic gap analysis across the three monitoring plots for each monitoring year, showing the number of gaps
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During the manual digitization of tree crowns, several clusters of neighboring trees
tended to have their crown either underneath or above that of other trees (Figure 3): 19
trees grouped into two clusters (6.9% of the total) were found in 2017, 49 trees in 18 clusters
(17.6% of the total) were identified in 2018 and 70 trees from 25 clusters (25.1% of the
total) were present in 2019. This resulted in an overall crown overlap increase of 10.7%
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between 2017 and 2018, and of 7.5% between 2018 and 2019. Based on the tree crowns
that could be well-separated in each year, individual tree biomass averaged 2.86 kg (2017),
3.99 kg (2018), and 4.53 kg (2019), per tree, while overall biomass based on the resolved
trees was 2285 kg/ha (2017; n = 240), 3590 kg/ha (2018; n = 270), and 3969 kg/ha (2019;
n = 263). By 2019 there was a three-fold variation in AGB between plot 2 (1672 kg/ha) and
the other two plots (4711–5523 kg/ha), which is consistent with the differences in canopy
occupancy as shown in Figure 1b. However, these plot-level trends do not account for
biomass embedded in unresolved trees, which would downwardly bias the 2017 estimate.

The two-way fixed effect model indicated 13 of the 15 ZEB1 traits exhibited highly
significant (p < 0.001) changes through time, all traits showed significant species difference
(p < 0.01), and 9 traits exhibited significant time by species interaction at the 0.01 level
(Table 3). Growth traits exhibited highly significant (p < 0.001) main and interaction effects,
indicating a change in species performance through time. Eucalyptus nitens and E. tenuiramis
had greater growth than E. pauciflora and Acacia dealbata in all years (Figure 6a,b). The
time by species interaction for height was mainly due to E. tenuiramis surpassing E. nitens
with time (particularly by 2018), and the growth difference between E. pauciflora and A.
dealbata reducing with age (Figure 6a). In the case of above-ground biomass, the significant
interaction was mainly due to an increasing difference between the better and poorer
growing species (Figure 6b). The distribution of points within the crown exhibited no
significant time or interaction effects, but highly significant (p < 0.001) species differences.
This suggests that crown distribution is a stable attribute of the species, with species
developing denser upper crowns decreasing from A. dealbata > E. pauciflora > E. tenuiramis
> E. nitens (1.20 SE (±0.11), 1.03 (±0.06), 0.84 (±0.06), and 0.72 (±0.06), respectively).
Crown roughness, as measured by the rumple index, varied significantly for all effects
tested (p < 0.001). Crown roughness tended to increase with time and differed markedly
between species, with E. tenuiramis having the most complex crowns and A. dealbata the
least complex crowns (Figure 6c). Crown density was another notable trait, which differed
markedly between species (Figure 6d). The faster growing E. tenuiramis and E. nitens had
sparser crowns (low points to volume ratio) than E. pauciflora and A. dealbata. However,
there was a significant time by species interaction due to the crown of the faster growing
species (E. tenuiramis but mainly E. nitens) becoming sparser over the 2018 and 2019 period,
whereas the crowns of the slower growing species became denser (E. pauciflora but mainly
A. dealbata—Figure 6d).

Table 3. Analysis of variance results for all trees within the study, showing the trait transformation and F-statistic and its
probability (Pr) for Time, Species, and their interactions terms. The numerator degrees of freedom (df) for each factor fitted
is shown in the heading in parenthesis, and denominator degrees of freedom ranged between 719 and 759 according to the
structural trait analysed.1 The trait descriptions are given in Table 2.

Structural Traits Transformation
Time (df = 2) Species (df = 3) Time Species (df = 6)

F Pr F Pr F Pr

Height P99 (m) sqrt 18.9 <0.001 32.4 <0.001 6.0 <0.001
Crown skewness ln 2.5 0.082 9.8 <0.001 1.3 0.250

Height of widest cross-section (m) 7.4 <0.001 6.8 <0.001 1.0 0.441
Max crown diameter (m) 54.1 <0.001 25.1 <0.001 5.6 <0.001

Crown volume (convex hull-m3) sqrt 15.9 <0.001 31.4 <0.001 5.7 <0.001
Crown surface area (m2) sqrt 18.0 <0.001 27.6 <0.001 4.3 <0.001

Crown projected area (m2) sqrt 18.1 <0.001 27.1 <0.001 7.7 <0.001
Height to area ratio (m/m2) ln 9.8 <0.001 17.9 <0.001 2.5 0.021

Height to volume ratio (m/m3) ln 14.4 <0.001 22.3 <0.001 2.8 0.010
Points to area ratio (points/m2) sqrt 5.3 <0.001 16.0 0.005 4.4 <0.001

Points to volume ratio (points/m3) sqrt 1.5 0.226 25.4 <0.001 2.4 0.027
Above Ground Biomass (AGB-kg) ln 17.9 <0.001 29.1 <0.001 3.7 0.001

Diameter at breast height (m) sqrt 15.6 <0.001 32.5 <0.001 6.0 <0.001
Rumple index sqrt 7.7 <0.001 19.0 <0.001 5.1 <0.001
Area (3D:2D) 25.3 <0.001 16.1 <0.001 3.0 0.007

1 Trees sampled per species varied slightly with year and trait, due to the crown of several smaller trees being unresolved from the
understory in certain years and ranged from 12 to 19 for A. dealbata, 20 to 22 for E. nitens, 170 to 189 for E. pauciflora, and 38 to 41
for E. tenuiramis.
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4. Discussion

The validation results achieved for the four structural traits measured in the field were
in strong agreement with the results previously obtained on a larger subset of the same
restoration experiment using LiDAR mounted on a unmanned aerial vehicle (UAV) [11]
and, more generally, with the broader ZEB1 literature [17,18,29]. Consistent with previ-
ous observations [11], crown insertion height was difficult to validate. This was largely
attributed to the nature of these restoration species, with crowns extending to the bottom
of the stem in many cases, making the separation from the underlying grassy layer particu-
larly difficult. Nevertheless, the validation results for most traits tended to get better with
time [30], which likely reflects tree crowns becoming wider and taller as the years passed.
In addition, the canopy height models and gap analyses jointly indicated that vegetation
layering is developing, with a mix of tall trees, medium sized trees/shrubs, as well as the
formation of gaps and low vegetation. Due to the nature of the trees studied here (i.e.,
young age and mostly multi-stemmed), the application of 3D object modelling, such as
cylinder fitting to the lower part of the tree stem [31,32], was not possible in this study.
This method, which is mainly used in TLS studies, or more recently in below-canopy UAV
flights [31,33] is very promising, but we anticipate it would have provided extremely poor
results under our present circumstances. Nonetheless, we imagine that as the trees grow
taller and stems become more pronounced, a 3D object modelling approach could provide
better results than those estimated from allometric equations.
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One emerging challenge from the present study was the detectability of individual tree
crowns. The extraction of individual tree crowns from point clouds is a common problem
with remotely sensed data [34,35]. In some cases (e.g., even-aged conifer forest), the
development of automated crown extraction algorithms has proven very successful [35,36],
but when trying to delineate crowns in uneven-aged mixed forest, results are still far
from ideal [37,38], with a recent study suggesting a bottom-up approach may provide
segmentation accuracies greater than 85% in mixed species eucalypt forests [39]. In the
present case, crowns were manually extracted from the point clouds and linked to the
field planting grid and associated pedigree information. The vast majority of crowns in
the three plots could be resolved in this study, allowing the full suite of structural traits
to be assessed. However, a few problematic cases were identified and likely due to two
major causes: (i) the crown of larger trees overlapping and shadowing neighboring smaller
trees [40]; and (ii) problems related to the separation of crowns of small trees from the
understory layer. Over time, neighboring trees started to exhibit canopy closure, which
made individual tree crown extraction rather difficult [37], and in turn required additional
manual pre-processing of the point clouds to obtain correctly segmented crowns. As noted
above, in some cases the extracted individual point clouds could not allow computation of
all structural traits including biomass, as it was not possible to detect where the understory
layer ended, and the tree crown began. This is likely a confounding issue for the large
increase in the estimated plot-level biomass from 2017 to 2018.

The 15 structural traits tested in the present study exhibited significant differences
according to species, with a majority exhibiting significant differences across years and a
time by species interaction. The species differences were mainly associated with differences
in productivity among species. While survival of E. pauciflora was three-fold that of
the other three species across the whole restoration area [21], the surviving trees of E.
tenuiramis and E. nitens in the studied plots far exceeded E. pauciflora and A. dealbata in
productivity at the individual tree-level. This height and biomass difference, however, was
somewhat countered by the more productive species having sparser crowns. E. tenuiramis is
a local species endemic to Tasmania and was represented in the plantings by provenances
predominantly from lower altitude sources, which had been translocated up slope to
compare with the local provenance and multiple provenances of E. pauciflora from higher
and lower altitude than the planting site [21]. E. nitens is an Australian mainland species
introduced onto the island for use in industrial plantations for pulpwood and solid wood
production [41]. It is also often planted in smaller lots on Tasmanian farms, and in the
present case, was tested as a nurse crop for E. pauciflora in the restoration plantings [21].
While E. nitens has previously shown reduced survival compared to E. pauciflora in co-
plantings in the dry Midlands environment [42], the superior height growth of survivors
was only evident on one of the two sites tested [43]. Here, the introduced E. nitens have
already greatly surpassed the co-planted, slower growing, E. pauciflora. This will likely
trigger the next planned management action—a selective thinning of E. nitens individuals—
to add coarse woody debris to the restoration planting, opening new niches for dependent
organisms to take advantage of, and increase the overall structural complexity.

As expected, tree height and biomass showed an increasing trend with time at the
individual tree-level. However, a notable feature of our spatiotemporal data was the
marked reduction in the growth increment over the 2018–2019 period compared with the
2017–2018 period in all species except E. nitens. This reduced growth corresponded with
a below average rainfall in the 2018–2019 period, with the summer rainfall in January
(10.2 mL) and February (19.6 mL) of 2019, being one of the lowest since the experiment
was established (mean January and February precipitations for the 2011–2019 period
are 30.4 mL and 26.2 mL, respectively—www.bom.gov.au, accessed on 17 September
2017 (nearby Hermitage–Shannon River climate station)). One possible explanation is
the reduced availability of water in the soil profile resulting in suppressed growth of
E. tenuiramis, E. pauciflora, and A. dealbata over the monitoring period [44]. Indeed, water
availability has been reported as one of the major factors explaining variation in the growth
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rate of E. globulus [45]. In contrast to these species, the height growth and predicted
biomass of E. nitens remained more-or-less linear throughout the study period. This was
unexpected, as the faster growing E. nitens is adapted to cooler moister environments [46]
and would be expected to be more drought susceptible than the two native eucalypts. This
contradiction could reflect reduced tree density in the E. nitens plots, due to previously
higher mortality reducing the depletion of the soil-water store over this period (spacing
effect on drought susceptibility [45]). Alternatively, it is possible that the faster growing
E. nitens has established a larger and deeper root system at this age providing better access
to stored soil water than the other species [47]. Nevertheless, it is possible that E. nitens is
adjusting to water stress through the loss of canopy leaf area, which is a common response
of eucalypts [44], which is supported by the observed decrease in canopy density observed
over the 2018–2019 monitoring period.

The recent detection of different tree crown architectural properties deriving from
different species and genetic provenances [11], raises the question on how these differ-
ences may affect dependent animal communities through changes in their use of available
resources and feeding/nesting behavior. Previous studies have linked metrics of crown
complexity (i.e., crown openness, vegetation layering, and cover) to arthropod [48,49],
bird [50–52], mammal [8], and bat species richness [53]. Indeed, this is a particularly rele-
vant topic in the fields of nature conservation and ecological restoration, as non-local plant
material (i.e. non-local provenances) is increasingly been translocated though assisted
migration strategies [54], such as climate-adjusted provenancing [55]. This introduction of
non-local provenances (and in extreme cases, species replacement) with different crown
properties compared to the local provenance (and species), could result in unexpected
outcomes, such as loss of habitat-specialist species [56], which is opposite to the intended
restoration goal. Additional research is therefore needed to begin to untangle the intrica-
cies between species- and provenance-specific crown architectures and dependent species
resource utilization and behavior. Finally, the ability to track the development of different
structural attributes through time, as suggested in the present study, will enable land man-
agers to make informed decisions to guide adaptive management of restoration plantings.

5. Conclusions

In this study, a hand-held laser scanning unit (ZEB1) was successfully used to capture
3D data from permanent forest restoration plots over a three-year period. The very high trait
validation with ground-truth measurements suggest that this technology can successfully
be employed as a faster alternative to traditional field surveys. Particularly, this technology
allows the acquisition of ultra-dense 3D point clouds that can be used to derive a suite
of structural traits rather than the few traits traditionally measured in field inventories.
Indeed, the traditional field measurements carried out for the validation of the LiDAR-
derived structural traits took several hours per plot, while the proximal scanning with
ZEB1 took roughly 10 to 15 min per plot. While potentially reducing errors in traits
measurement by reducing the human factor from traditional data collection (particularly
difficult to measure traits), the use of such technology requires longer data processing
and analysis when compared to traditional field techniques. Nevertheless, in this case,
with the exception of crown segmentation, data processing and analysis were extremely
fast, as the analysis pipeline developed in R was easily and automatically applicable.
While significant spatiotemporal changes in forest structural traits (both validated and not)
important for habitat provision and biodiversity were detected, a potential drawback was
identified during this study. Permanent plot identification and establishment needs to be
carefully planned to ensure that data co-registration is possible through time. On the one
hand, this can reduce the potential application of the ZEB1 system for forest restoration
monitoring, as it may require access to specialized equipment and personnel necessary for
the establishment of a GNSS base station. However, if data geolocation is not considered
necessary, permanent plot establishment, like the one defined in Section 2.2 will still allow
scan co-registration over time. Although this technology has been shown to provide
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rapid inventory of forest plots [29,57,58], its uptake by forest restoration ecologists for the
monitoring of restoration plantings is still lagging. The present study demonstrates the
potential of remote sensing technology, and particularly the ZEB1 system, to monitor the
development of structural traits over time to guide adaptive management and report on
restoration effectiveness.
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