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Abstract: The traditional method of constant false-alarm rate detection is based on the assumption of
an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under
the background of sea clutter and other interferences are very low. Therefore, computer vision
technology is widely discussed to improve the detection performance. However, the majority of
studies have focused on the synthetic aperture radar because of its high resolution. For the defense
radar, the detection performance is not satisfactory because of its low resolution. To this end, we
herein propose a novel target detection method for the coastal defense radar based on faster region-
based convolutional neural network (Faster R-CNN). The main processing steps are as follows:
(1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection
accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size
in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the
possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real
data set of coastal defense radar are performed. The mean average precision of the proposed method
is improved by 10.86% compared with that of the original Faster R-CNN.

Keywords: target detection; deep learning; constant false-alarm rate (CFAR); Faster R-CNN; coastal
defense radar

1. Introduction

The ocean occupies approximately 71% of the total surface area of the Earth and has
rich biological and mineral resources [1–3]. To prevent the invasion of territorial sea and
illegal marine operations, the management of the domestic sea area must be strengthened.
The important part of marine management is the monitoring of ships on the sea surface.
Traditional radar target detection methods deal mainly with time, frequency, and transform
domains [4,5], and improve the signal-to-clutter ratio to achieve reliable target detection [6].
In recent years, the rapid development of deep learning technology has enabled domestic
and foreign scholars to put forward new target detection methods.

The AlexNet [7] convolutional neural network (CNN) architecture was the champion
of the ImageNet challenge competition in 2012. Since then, many excellent neural network
algorithms have emerged, such as the VGG [8], Inception [9], and ResNet [10], which
constantly set records and set off waves of artificial intelligence. In the work of Girshick
et al. [11], the region-based convolutional neural network (R-CNN) algorithm was proposed
to use a CNN for target detection for the first time. It extracts image features using a deep
convolutional network and uses the method of “selective search + CNN + SVM” for
detection. The training process of the R-CNN needs much time and hard disk space. In
response, Girshick proposed the Fast R-CNN algorithm [12] to overcome this problem. This
algorithm uses feature sharing in region proposal and adds a region of interest pooling layer
in the last convolution layer. However, both the R-CNN and Fast R-CNN are not complete
end-to-end target detection systems because they rely on the proposed methods of external
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regions outside the training stage. Consequently, the Faster R-CNN came into being.
The Faster R-CNN [13] realizes the sharing of an image feature map between the region
proposal network (RPN) and the target detection network. At the same time, the framework
integrates region proposal generation, depth feature extraction, target recognition, and
detection into a neural network model, which greatly improves the training efficiency and
detection accuracy.

For the problem of the sea-surface target detection, to correctly distinguish the target
and the reef, effectively suppress the clutter, and improve the detection accuracy, the
typical differences among target, reef, and clutter must be found. This study investigates
the application of the Faster R-CNN to detect two-dimensional sea-surface targets in the
coastal defense radar [14] image. The Faster R-CNN extracts different input image features
through multiple convolutions and inputs the feature information into the RPN to detect
the target and locate the feature area. The filtered region proposals and the feature map
output from the convolution layer are both used for end-to-end training to accurately obtain
the target category and location information. In this study, the detection results based on
the Faster R-CNN are compared with those of the traditional constant false-alarm rate
(CFAR) target detection methods, such as the cell-averaging constant false-alarm rate (CA-
CFAR), greatest-of cell-averaging constant false-alarm rate (GOCA-CFAR), and smallest-of
cell-averaging constant false-alarm rate (SOCA-CFAR) [15–17]. Then, the advantages and
disadvantages of these algorithms are analyzed. Aiming at the characteristics that the data
set contains small targets and the resolution of the coastal defense radar is lower than
that of the SAR image [18,19], we make some improvements based on the original Faster
R-CNN, which help to improve the detection accuracy. The main contributions are listed
as follows in more detail:

(1) The deep learning method is applied to the measured data of the coastal defense
radar with a low resolution, and its detection results are compared with the two–
dimensional CFAR detectors.

(2) ResNet50 is replaced with a relatively shallow backbone feature extraction network
VGG16 in the Faster R-CNN, and a parametric rectified linear unit (PReLU) function
is used to achieve more specialized activations.

(3) The K-means clustering algorithm [20,21] is added to calculate the size of the anchors
in the RPN to better meet the data set characteristics and speed up the network
convergence.

(4) The Soft-NMS [22] algorithm is used to eliminate the possible overlapped detection
boxes.

2. Methods

As a traditional target detection method, CFAR has been widely used in real world
applications. Therefore, this section mainly introduces the representatives of the CFAR
detector, such as CA-CFAR, GOCA-CFAR, and SOCA-CFAR. Then, a new target detection
method based on the Faster R-CNN is introduced. On this basis, we discuss the related
work inspiring our method.

2.1. CFAR Detector

The CFAR detection of radar targets in clutter plus noise background is an important
unit in radar signal processing. In this section, we discuss three different CFAR detectors
and verify their performance in the following experiments.

2.1.1. CA-CFAR

The CA-CFAR detector is one of the most representative CFAR detection algorithms.
The corresponding detection threshold is obtained by averaging the interference power of
the adjacent cells around the cell under test (CUT); hence, it is named CA-CFAR detection.
The algorithm structure is simple. The detection performance is good when the background
is a uniform Rayleigh clutter. However, when multiple false targets exist in the reference
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cells, the power of the false targets will raise the decision threshold of the CA-CFAR detector
and reduce the detection probability, resulting in a missed detection of the real targets. The
detection sliding window includes the CUT, protection cells, and reference cells.

Figure 1 shows the implementation structure of the detector, where D is the echo

power of the CUT, and xL = 1
n

n
∑

i=1
xi and xR = 1

n

n
∑

i=1
xn+i are the average interference

powers of the reference cells on both sides of the CUT. The total number of reference cells
is N = 2n. The protection cells prevent the target in the reference cells from raising the
detection threshold. α is the nominal factor; β2 is an estimate of the interference power
in the sliding reference window cells, which can be obtained using the sample average of
known data. The calculation formula is

β2 =
1
2
(XL + XR) =

1
N

N

∑
i=1

Xi. (1)

Figure 1. Cell average constant false-alarm rate (CA-CFAR) detector.

Given the false-alarm rate Pf a and the number of reference cells N, the nominal factor
α can be calculated as

α = N
(

Pf a
−1/N − 1

)
. (2)

Therefore, the final detection threshold is obtained as follows:

T =
(

Pf a
−1/N − 1

) N

∑
i=1

Xi. (3)

In this paper, the two-dimensional CFAR method is used. Figure 2 shows the design
method of the two-dimensional sliding reference window. The CUT is located in the center
of the rectangular reference window, as shown in the red box in Figure 2. Noise power is
computed from cells that contain no target signal. These cells are known as the reference
cells. Reference cells form a band around the CUT but may be separated from the CUT by
a protection band. In Figure 2, the number of rows and columns of the protection band
cells on each side of the CUT is set as Npr and Npc, respectively, and the protection band
cells are indicated by the orange boxes. Similarly, the number of rows and columns of the
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reference band cells on each side is set as Nrr and Nrc, respectively, and the reference band
cells are indicated by the green boxes. The total number of cells in the combined reference
region, protection region, and CUT is Ntotal = (2Nrc + 2Npc + 1)(2Nrr + 2Npr + 1). The
number of reference cells is Nre f = Ntotal − (2Npr + 1)(2Npc + 1).

Figure 2. The structure of the two-dimensional sliding reference window.

The principle of the CA-CFAR detector shows that it has a good detection performance
in a homogeneous clutter background but is not ideal under a multi-target and clutter edge
environment. Moreover, when false targets exist in the reference cells, their power will
raise the decision threshold of the CA-CFAR detector, resulting in an interference to the
real target decision.

2.1.2. GOCA-CFAR and SOCA-CFAR

The GOCA-CFAR and SOCA-CFAR are improved methods of CA-CFAR. They are
different from CA-CFAR in that they split the two-dimensional reference window around
the CUT into left and right halves. Then, they calculate the sample mean for each half
and select the greatest or smallest mean. The detailed description of GOCA-CFAR and
SOCA-CFAR can be found in [16,17].

2.2. Target Detection Based on FASTER R-CNN

The traditional ship target detection algorithm in the complex scene radar image faces
the problem of a high false-alarm rate and a low recognition accuracy rate. We introduce
herein a target detection algorithm based on the Faster R-CNN. By training the measured
data provided by the coastal defense radar, we can obtain a new target detector that can
detect the accurate position of ships in different sea areas and interference backgrounds.
This detector has excellent anti-clutter and anti-jamming ability.
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2.2.1. ResNet50 Feature Extraction Network

ResNet stands for residual network. It is part of the backbone feature extraction
network used widely in target classification and computer vision tasks. The main function
of the traditional CNN is to extract the feature information of the input image. The CNN
gradually extracts the underlying features to the highly abstract features. Therefore, the
deeper the network, the more abstract the features extracted and the richer the semantic
information. However, simply increasing the number of network layers will lead to
problems of gradient disappearance and explosion and network degradation, making the
overall network performance worse than that with fewer layers. ResNet creatively adds
identity mapping to ensure that the performance of the deep network is equal to that of the
shallow network when deepening the network. In the residual block structure shown in
Figure 3, the right connecting line jumps before the activation function, and the output of
the upper layer is added with the output of this layer, such that the summation result is
input into the activation function as the final output of this layer. The residual structure
can make the input information directly transmit to the output and protect the integrity of
the information. Moreover, the network only needs to learn the difference between input
and output, simplifying the learning objectives and reducing the learning difficulty.

Figure 3. Residual block structure of ResNet.

In Figure 3, x is the input, F(x) is the residual mapping, and the rectified linear unit
(ReLu) [23] is the activation function. The ReLu activation function is defined as

f (x) =
{

x,
0,

x ≥ 0
otherwise

. (4)

In this study, we adopt ResNet50, whose residual network depth is 50. It is composed
of multiple residual blocks. Figure 4 depicts its overall structure.
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Figure 4. Residual block structure of ResNet50.

2.2.2. Faster R-CNN

Figure 5 illustrates the basic network framework of the Faster R-CNN. Different from
other R-CNN networks, the RPN is introduced for the first time herein. Detection boxes
are generated directly by the RPN. GPU parallel computing is used to greatly accelerate
the whole network process.

Figure 5. Basic network framework of the Faster R-CNN.

When an image is input, the feature map is first obtained by the backbone feature
extraction network. The feature map is then sent to the RPN to obtain the preliminary
region proposals. The region proposals are obtained by sliding an N × N convolution
kernel over the convolutional feature map with a certain step size. Nine default reference
bounding boxes can be found at the center of each slide window. These reference boxes are
usually known as “anchors”. The convolutional results are mapped into feature vectors,
which are then input into two separate fully connected layers for the RPN classification
and regression. The classification layer uses the SoftMax [24] function to calculate the
likelihood probability of the output categories. Its outputs have 2 × 9 values used to judge
whether the anchors are a target or a background. The regression layer outputs 4× 9 values
representing the coordinates of the center points of the nine anchors and the fine-tuning
information of the width and the height.

The size of the anchor boxes is related to the aspect ratio and scale set by a human.
The default aspect ratios are 1:1, 1:2, and 2:1, and the scales are 1282, 2562, and 5122. It can
be combined into nine kinds of anchors, as shown in Figure 6. The red, green, and blue
rectangles represent three aspect ratios for each scale.
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Figure 6. Diagram of the nine kinds of anchors.

Figure 7 shows the RPN structure. Positive and negative samples are introduced and
represented by the truth value in the RPN prediction stage. The positive sample refers
to the part where the overlap rate of the anchor and the ground truth exceeds 0.7. The
negative sample refers to the part where the overlap rate is less than 0.3, and the others are
ignored. After the sample is divided, the total loss of the RPN is calculated by the multitask
loss function. The calculation formula is

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ), (5)

where Ncls represents the number of batch training data, Nreg represents the number of
anchors, and λ represents the balance weight. Lcls

(
pi, p∗i

)
is the logarithmic loss function

defined as
Lcls(pi, p∗i ) = − log[p∗i pi + (1− p∗i )(1− pi)], (6)

and Lreg
(
ti, t∗i

)
is the regression loss calculated by the following Smooth L1 function:

Lreg(ti, t∗i ) =

{
0.5
(
ti − t∗i

)2, |x| < 1∣∣ti − t∗i
∣∣− 0.5, otherwise

, (7)

where pi is the probability of the anchor being predicted as the target, and p∗i is the truth
value of the prediction result: if the anchor is predicted as a positive sample, the value
of tag p∗i is 1; otherwise, the value is 0; ti =

{
tx, ty, tw, th

}
is the location of the predicted

detection box; and t∗i is the ground truth coordinate.

Figure 7. RPN structure.
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2.3. Modified Faster R-CNN Structure

On the basis of the original Faster R-CNN target detection method, some modifications
have been made to improve the performance of the detector, such as using VGG16 to replace
the original backbone feature extraction network, introducing the K-means clustering
algorithm to initialize anchors, and exploiting soft non-maximum suppression to eliminate
the overlapped detection boxes.

2.3.1. VGG16 Feature Extraction Network

The VGG16 feature extraction network was proposed by the Oxford University Com-
puter Vision Group in 2014. It builds a CNN with 16 layers by stacking a 3 × 3 convolution
kernel and a 2 × 2 maximum pooling layer. The network consists of thirteen convolution
layers, five pooling layers, and three fully connected layers. Among them, the total number
of the convolution and fully connected layers with a weight coefficient is 16; hence, it is
named VGG16. Figure 8 displays the VGG16 structure.

Figure 8. VGG16 structure.

The convolution kernel size of each convolution layer in VGG16 is 3 × 3. The size of
the obtained feature map remains unchanged by convoluting the image with one step and
one padding. The same convolution kernel size is used because two 3 × 3 convolution
kernels in a series are equivalent to a 5× 5 convolution kernel, and their receptive fields are
the same, but two 3 × 3 convolution kernels need fewer parameters. In addition, stacking
the small convolution kernels many times increases the times of using the activation
function and enhances the abstract ability of the feature extraction. The last three layers
are fully connected layers. The first two layers obtain 4096 dimensional vectors. The last
layer obtains 1000 dimensional vectors corresponding to 1000 classification results. The
ReLU activation function is used in all the convolutional and fully connected layers of the
entire network.

According to the characteristics of the data set used in the experiment, we consider
using the relatively shallow VGG16 feature extraction network because of the small size of
the target, low resolution in the azimuth cell, and the low-level feature layer containing
more location information and detailed information. We also replace the ReLU activation
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function with the PReLU [25], which can adaptively learn the rectifier parameters and
improve model fitting with nearly zero extra computational cost and small overfitting risk.
The PReLU activation function is defined as

f (xi) =

{
xi, xi > 0
aixi, otherwise

, (8)

where xi is the input of the nonlinear activation on the ith channel and ai is the coefficient
controlling the slope of the negative part. Subscript i indicates that the nonlinear activation
varies on different channels. When ai = 0, it becomes ReLU. When ai = 0.01, it becomes
Leaky ReLU [25]. When ai is a learnable parameter, Equation (8) is named PReLU.

We adopt the PReLU activation function to improve the network accuracy. The
PReLU parameters are learned adaptively together with the whole model in the end-to-end
training, which can lead to more specialized activations. Backpropagation [26] is used to
train PReLU, and PReLU can be optimized with other layers at the same time. The update
formulations of {ai} are derived from the chain rule. The gradient of ai for one layer is

∂ε

∂ai
= ∑

xi

∂ε

∂ f (xi)

∂ f (xi)

∂ai
, (9)

where ε represents the objective function. The term ∂ε
∂ f (xi)

is the gradient propagated from
the deeper layer. The summation ∑xi

runs over all positions of the feature map. We adopt
the momentum method when updating ai:

∆ai := µ∆ai + ε
∂ε

∂ai
. (10)

Here, µ is the momentum and ε is the learning rate. We do not use the weight decay
when updating ai to prevent the PReLU from biasing toward the ReLU. Furthermore, we
do not constrain the range of ai; hence, the activation function may be non-monotonic. The
initial value of ai is set to 0.25.

The following experiments show that the classification accuracy can be improved by
replacing the parameter-free ReLU activation with a learned parameter activation unit.

2.3.2. K-Means Clustering Algorithm Initializes Anchors

The anchor is an important parameter of the Faster R-CNN target detector. The anchor
shape and quantity will affect the detector’s efficiency and accuracy. The default anchor
scales in the RPN are 1282, 2562, and 5122, and the default aspect ratios are 1:1, 1:2, and
2:1. This can be combined into nine kinds of anchors. However, for different data sets, the
default size of anchors cannot meet the real situation. Improper anchors will not only slow
down the network convergence speed but also affect the error function calculation. This
section abandons the traditional Faster R-CNN strategy of manually setting the anchor and
introduces the K-means clustering algorithm to set anchors.

Figure 9 shows the real situation of all ground truths in the data set. Most of the
ground truths have similar sizes and shapes. In general, the distribution of ground truths
is scattered. Therefore, it is very difficult to determine the appropriate anchor manually.
However, by using the clustering algorithm, we set a clustering number and the similar
ground truths can be divided together, in which each division represents a cluster, and
each cluster center can be set as an anchor. The distance measurement formula used is

d(box, cent) = 1− IoU(box, cent), (11)

where box represents the ground truth coordinate: (xi, yi, wi, hi),i ∈ {1, 2, · · ·, k}; k rep-
resents the total number of samples; cent represents the cluster center: (Xn, Yn, Wn, Hn),
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n ∈ {1, 2, · · ·, N}; N represents the number of clusters; and IoU(box, cent) represents the
intersection over union (IoU) of the ground truth and the cluster center.

Figure 9. Box area vs. aspect ratio.

Different from the Euclidean distance measurement, the distance measurement based
on the IoU does not change with the box size. The Euclidean distance measurement will
produce a larger error with the increase in the box size. In addition, using the IoU distance
measurement brings together boxes with a similar aspect ratio and size, which is more
suitable for the anchor estimation of the data set. However, the following problem is to
determine the number of clusters; that is, the number of anchors. We usually use empirical
analysis, but herein, we propose an idea of traversal, setting different cluster numbers
N and calculating the mean IoU of the ground truths and the cluster center under each
cluster number.

If the mean IoU value is greater than 0.5, the anchor and the bounding box (i.e.,
ground truth) in the data set can be well overlapped. Increasing the number of anchors can
improve the measurement value of the mean IoU. However, using more anchors increases
the calculation cost and leads to overfitting, which will eventually lead to the degradation
of the detector performance. Figures 9 and 10 show that for the given data set, the number
of nine anchors in the original Faster R-CNN seems reasonable; however, the aspect ratio
and the area cannot fully meet the actual needs. The anchor location is uncertain; thus,
only the width and the height are used for the calculation. The eight anchors obtained by
the K-means clustering algorithm are (55,44), (30,25), (31,53), (37,35), (34,87), (28,37), (25,29),
and (25,21). Each anchor has the format (height, width). The anchors are in accordance with
the target characteristics and verify the effectiveness of the K-means clustering algorithm.

2.3.3. Soft-NMS

In the final detection results, the same ship target may be contained by multiple target
detection boxes. When the distance between the targets is too close, the NMS algorithm [27]
will rudely delete the overlapping detection boxes higher than the IoU threshold, leading
to a missed target detection. Therefore, we use the Soft-NMS algorithm to extract the most
suitable target detection box using the following formula:

si =

si, IoU(M, bi) < Nt

si × e−
IoU(M,bi)

2

0.5 , IoU(M, bi) ≥ Nt
, (12)
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where si represents the score of the current category detection box, M represents the
detection box corresponding to the highest score, bi represents the current detection box,
IoU(M, bi) represents their IoU, and Nt represents the Soft-NMS threshold.

The biggest difference between Soft-NMS and NMS is that the former uses the weight
penalty strategy to reduce the confidence of the detection box with an IoU higher than
the threshold. In the algorithm, we use the Gaussian weighting function, which is more
continuous and smoother than the linear weighting function in penalty. The penalty
increases when the detection box bi and M have a high overlap, resulting in a serious
decline in confidence. Finally, we set a reasonable confidence threshold to decide whether
or not to delete the suppressed detection box. Algorithm 1 describes the Soft-NMS process.

Figure 10. Number of anchors vs. the mean IoU.

Algorithm 1. Soft-NMS

Input: The list of initial detection boxes B = {b1, b2, . . . , bN},
and the corresponding detection scores S = {s1, s2, . . . , sN}

1: Set: D = ∅

2: while B 6= ∅ do

3: m = argmaxS

4: M = bm

5: D = D ∪M; B = B−M

6: for bi in B do

7: si = si f (iou(M, bi))

8: end for

9: end while

Output: D, S

3. Experiments

This section introduces the processing steps of the proposed algorithm, experimental
data set and environment configuration. Furthermore, the experimental results of the
proposed algorithm and the CA-CFAR, GOCA-CFAR, and SOCA-CFAR algorithms are
detailed presented and compared.



Remote Sens. 2021, 13, 1703 12 of 22

3.1. Target Detection Steps in a Coastal Defense Radar Image

Figure 11 illustrates the algorithm flow of the target detection of the coastal defense
radar based on the Faster R-CNN. The specific steps are presented below:

(1) Preprocess the radar echo signals and transform the echo data into a pulse-range
two-dimensional (2D) image for subsequent network training and testing.

(2) Make the training set label and the test set division. For the pulse-range 2D echo
data image, the echo image is segmented according to the pulse number and under
the condition that the target does not cross the range unit, and the aspect ratio of
the image is close. They are cooperative targets; thus, their bounding boxes are
determined according to the target position information provided by the GPS. We
then use the annotation software, LabelImg, to complete the labeling work on the
segmented amplitude image.

(3) Initialize the basic network parameters and use the K-means clustering algorithm to
set the anchor size.

(4) Start the CNN training and use the gradient descent algorithm to calculate the error
between the output of the network and the real target, then backpropagate the error to
adjust the network parameters, such as the weight and the bias. Continue the training
until the network converges or reaches the preset training times.

(5) Verify whether or not the network is underfitting or overfitting during the training
process using the verification set of each epoch and adjusting the network parameters
to continue training.

(6) After training, obtain the target detector of the coastal defense radar based on the
Faster R-CNN. The Soft-NMS algorithm is added to eliminate the overlapping detec-
tion boxes and test the sample set. The target is detected from the radar amplitude
image. We calculate the recognition accuracy rate, false-alarm rate, recall rate, and
mean average precision (mAP) to determine whether or not the evaluation index is
met. If it is satisfied, the target detector has completed the training and can be used
for the target detection in the unknown sea-surface radar image; otherwise, return to
step 3 to adjust the network parameters for retraining.

Figure 11. Flowchart of the target detection of the coastal defense radar based on the Faster R-CNN.

3.2. Build Data Set

The data in this section are the measured data obtained from the actual sea-surface
detection by a certain organization using the coastal defense scanning radar. Figure 12
shows the result after the pulse data compression. The sea area has many islands, reefs,
sea clutter, and interference. The target detection technology based on deep learning is
dependent on the total number of samples in the data set. The target information contained
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in the data set and the accuracy of the bounding box will also greatly affect the final
trained detector; hence, the original measured data are enhanced by changing the aspect
ratio and the contrast of the image, flipping and varying the scaling degrees. Finally, we
obtain 1782 image samples and divide them into three groups according to the ratio of
training, validation, and test sets of 8:1:1. The training set contains 1426 image samples, the
verification set includes 178 image samples, and the test set contains 178 image samples.
Each image group is balanced and contains a complete sea scene. The data set is then built.

Figure 12. Measured data.

After the sea-surface radar image is segmented, we select six image samples in the
offshore and distant water containing ship targets for the analysis. In Figure 12, the red
rectangle indicates the target in the offshore water, whereas the green rectangle indicates
the target in the distant water. We enlarge and display these areas to clearly observe the dis-
tribution of the ship targets, islands, reefs, sea clutter, and interference (Figures 13 and 14).

Figure 13. Image samples in offshore water: (a) sample 1; (b) sample 2; and (c) sample 3.
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Figure 14. Image samples in distant water: (a) sample 4; (b) sample 5; and (c) sample 6.

In the process of making the training set, two helpful information are applied effec-
tively to confirm the presence of the moving targets in the observation scene. The first
information is the AIS (Automatic Identification System) [28] information provided by the
ships in the observation scene. Additionally, the second information is the comparison
of the radar echoes of the same observation scene at different time (the time span can be
several days), since its highly unlikely that a ship would remain in the same place for
several days. After the confirmation of the moving targets in the observation scene, the
annotation software, which is named LabelImg, are used to complete the labeling work
on the segmented amplitude radar image. The aforementioned six image samples are
annotated, as shown in Figure 15.

15 of 23 

the K-means clustering algorithm to set the anchors. The Soft-NMS algorithm is used to 
complete the filter of the test results and training’s iteration number of each epoch is 2000, 
with a total of 70 epochs. The initial learning rate (Lr) is set as 0.001, and when the itera-
tions reach 70,000, it will be dropped to 0.0001. Additionally, the Adam optimizer is 
adopted, and the size of input image demands 600 × 580. The detection threshold value,
that is, the confidence, is set as 0.5 to test the training results. 

For the parameters selection in the CFAR algorithm, after the consideration of the 
range and azimuth resolution of our radar system, the numbers of protection band cells 
in the row and column direction are set to 2 and 30, respectively, and the numbers of 
reference band cells are both set to 1. Besides, the number of reference cells is set to 136 
and the false alarm rate is −710 . 

3.4. Evaluation Criteria and Results 

(d) (e) (f)

Figure 15. The annotated image samples: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4; (e) sample 5; and (f) sample 6.

Figure 15a–c show the annotated results in offshore water. Additionally, there are
10 real ship targets in sample 1, four real ship targets in sample 2, and 13 real ship targets
in sample 3, while for the distant water, since it is far from the coastline, the influence of
islands and reefs is little. Figure 15d–f represent the annotated results in distant water,
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where there are nine real targets in sample 4, two real targets in sample 5, and three real
targets in sample 6.

3.3. Experimental Environment and Parameters

Table 1 shows the experimental hardware and software configuration. On this ex-
perimental platform, the Faster R-CNN is used for training and testing according to the
algorithm flow in Figure 11.

Table 1. Experimental environment.

System Windows 10 Tool Anaconda 3

RAM 32 GB Programming Python 3.6

CPU Intel i5-9600KF @3.7
GHz × 6 IDE VS code

GPU NVIDIA GTX 1080Ti
11 G Framework Pytorch-GPU

Auxiliary tools MATLAB Others CUDA 10.0

For the parameters selection in Faster R-CNN algorithm, we adopt the Pytorch frame-
work, selecting ResNet50 as the backbone feature extraction network, without using the
K-means clustering algorithm to set the anchors. The Soft-NMS algorithm is used to com-
plete the filter of the test results and training’s iteration number of each epoch is 2000, with
a total of 70 epochs. The initial learning rate (Lr) is set as 0.001, and when the iterations
reach 70,000, it will be dropped to 0.0001. Additionally, the Adam optimizer is adopted,
and the size of input image demands 600 × 580. The detection threshold value, that is, the
confidence, is set as 0.5 to test the training results.

For the parameters selection in the CFAR algorithm, after the consideration of the
range and azimuth resolution of our radar system, the numbers of protection band cells in
the row and column direction are set to 2 and 30, respectively, and the numbers of reference
band cells are both set to 1. Besides, the number of reference cells is set to 136 and the false
alarm rate is 10−7.

3.4. Evaluation Criteria and Results

The final detection result is evaluated by the recognition accuracy rate, false alarm
number, recall rate, and mAP. The detection time of the Faster R-CNN and three CFAR
methods is also counted. We define the recognition accuracy rate Pra as

Pra =
Ntd

Ntd + N f d
, (13)

where Ntd represents the number of the real targets predicted correctly and N f d represents
the number of false targets predicted as correct targets, i.e., the false alarm number. The
recall rate R is defined as

R =
Ntd
Ngt

, (14)

where Ngt represents the total number of ground truths.
Figures 16 and 17 illustrate the detection results of the samples for the CFAR methods,

comparing the detection performance of the CA-CFAR, GOCA-CFAR, and SOCA-CFAR
algorithms.
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Figure 16. Detection results of the samples for the CA-CFAR, GOCA-CFAR, and SOCA-CFAR algorithms in offshore water:
(a) the CA-CFAR detection results of sample 1; (b) the GOCA-CFAR detection results of sample 1; (c) the SOCA-CFAR
detection results of sample 1; (d) the CA-CFAR detection results of sample 2; (e) the GOCA-CFAR detection results of sample
2; (f) the SOCA-CFAR detection results of sample 2; (g) the CA-CFAR detection results of sample 3; (h) the GOCA-CFAR
detection results of sample 3; and (i) the SOCA-CFAR detection results of sample 3.
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Figure 17. Detection results of the samples for the CA-CFAR, GOCA-CFAR, and SOCA-CFAR algorithms in distant water:
(a) the CA-CFAR detection results of sample 4; (b) the GOCA-CFAR detection results of sample 4; (c) the SOCA-CFAR
detection results of sample 4; (d) the CA-CFAR detection results of sample 5; (e) the GOCA-CFAR detection results of sample
5; (f) the SOCA-CFAR detection results of sample 5; (g) the CA-CFAR detection results of sample 6; (h) the GOCA-CFAR
detection results of sample 6; and (i) the SOCA-CFAR detection results of sample 6.

The processing results of CFAR algorithm are described as follows.
Sample 1 is close to the coastline; thus, islands and reefs can be found in the scene,

except for the targets located in the upper part of the image. Figure 16a–c illustrate the
detection results of three CFAR methods. All of the three CFAR methods detect nine
targets correctly, one target is missed. Many false alarms appear in the islands and reefs
region in the upper part of the image, and the number of false alarms is 255, 207, and 699,
respectively. Therefore, according to Equations (13) and (14), the recognition accuracy rates
of three CFAR methods are 3.40%, 4.16%, and 1.27%, respectively, and the recall rates are
all 90%.

Meanwhile, sample 2 shows a strong sea clutter in the lower left corner of the image
and a reef in the upper left corner. Figure 16d–f show the CFAR detection results. All the
three CFAR methods detect four targets correctly; no target is missed. The number of false
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alarms is 155, 129, and 339, respectively. The recognition accuracy rates of three CFAR
methods are 2.51%, 3.00%, and 1.16%, respectively, and the recall rates are all 100%.

Sample 3 depicts an island in the upper and lower right corners of the image. Figure 16g–i
show the different CFAR detection results. The CA-CFAR and GOCA-CFAR detect 12 tar-
gets correctly, and one target is missed, while the SOCA-CFAR detects 13 targets correctly,
and no target is missed. The false alarm number is 162, 143, and 385, respectively. There-
fore, the recognition accuracy rates of three CFAR methods are 6.89%, 7.74%, and 3.26%,
respectively, and the recall rates are 92.30%, 92.30%, and 100%, respectively.

Sample 4 exhibits a few reefs in the upper part of the image. Besides, interference
component can be found in the middle of the image. Figure 17a–c present the CFAR
detection results. All the three CFAR methods detect nine targets correctly, and no target
is missed. The number of false alarms is 121, 103, and 181, respectively. Therefore, the
recognition accuracy rates of three CFAR methods are 6.92%, 8.03%, and 4.73%, respectively,
and the recall rates are all 100%.

Sample 5 shows the strong interference component that exists in the image. Figure 17d–f
show the CFAR detection results. The CA-CFAR and GOCA-CFAR detect one target
correctly, and one target is missed. The SOCA-CFAR detects two targets correctly, and no
target is missed. The number of false alarms is 97, 83, and 99, respectively. The recognition
accuracy rates of three CFAR methods can be calculated as 1.02%, 1.19%, and 1.98%,
respectively, and the recall rates are 50%, 50%, and 100%, respectively.

Sample 6 also shows the strong interference component in the image. The CFAR
detection results are shown in Figure 17g–i. All the CFAR methods detect three targets
correctly, and no target is missed. The number of false alarms is 114, 99, and 116, respec-
tively. The recognition accuracy rates of three CFAR methods are 2.56%, 2.94%, and 2.52%,
respectively, and the recall rates are all 100%.

Based on aforementioned results, Table 2 can be obtained.

Table 2. Statistics of the detection results of the samples for the CA-CFAR, GOCA-CFAR, and
SOCA-CFAR algorithms.

Detection Algorithm Ntd Nfd Ngt Pra/% R/% T/s

Sample 1
CA-CFAR 9 255 10 3.40 90 0.9569

GOCA-CFAR 9 207 10 4.16 90 1.3561
SOCA-CFAR 9 699 10 1.27 90 1.3853

Sample
2

CA-CFAR 4 155 4 2.51 100 0.9594
GOCA-CFAR 4 129 4 3.00 100 1.3583
SOCA-CFAR 4 339 4 1.16 100 1.3347

Sample
3

CA-CFAR 12 162 13 6.89 92.30 0.9752
GOCA-CFAR 12 143 13 7.74 92.30 1.3653
SOCA-CFAR 13 385 13 3.26 100 1.3520

Sample
4

CA-CFAR 9 121 9 6.92 100 0.9582
GOCA-CFAR 9 103 9 8.03 100 1.5329
SOCA-CFAR 9 181 9 4.73 100 1.5749

Sample
5

CA-CFAR 1 97 2 1.02 50 0.9541
GOCA-CFAR 1 83 2 1.19 50 1.3584
SOCA-CFAR 2 99 2 1.98 100 1.3374

Sample
6

CA-CFAR 3 114 3 2.56 100 0.9534
GOCA-CFAR 3 99 3 2.94 100 1.3754
SOCA-CFAR 3 116 3 2.52 100 1.3626

The processing results of proposed algorithm are shown as follows.
For the offshore water sample 1 shown in Figure 18a, nine targets (marked with a red

rectangle box) are detected correctly, one target is missed, and there is no false-alarm target.
Therefore, the recognition accuracy rate is 100% and the recall rate is 90%. Figure 18b shows
that the Faster R-CNN target detector detects four targets correctly, misses no targets, and
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detects no false alarms. The recognition accuracy rate is 100% and the recall rate is 100%. In
sample 3, 12 targets are detected correctly, one target is missed, and there is no false-alarm
target. Therefore, the recognition accuracy rate is 100% and the recall rate is 92.31%. For
image samples in distant water, the Faster R-CNN also shows superior performance. In
Figure 18d–f, the Faster R-CNN detects all targets correctly and no false alarm of the
samples. Therefore, the recognition accuracy rates are all 100% and the recall rates are all
100%. The processing results of the proposed algorithm are summarized in Table 3.

Figure 18. Detection results of the Faster R-CNN: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4; (e) sample 5; and
(f) sample 6.

Table 3. Statistics of the Faster R-CNN detection results.

Ntd Nfd Ngt Pra/% R/% T/s

Sample 1 9 0 10 100 90 0.6562
Sample 2 4 0 4 100 100 0.5983
Sample 3 12 0 13 100 92.31 0.6661
Sample 4 9 0 9 100 100 0.7041
Sample 5 2 0 2 100 100 0.6692
Sample 6 3 0 3 100 100 0.5734

3.5. Further Comparative Experiments

To reflect the influence of our improvement on the target detector based on the Faster
R-CNN, we performed many comparative experiments on the basis of the above-mentioned
experiments and analyzed the experimental results. The total number of ground truths
in the test set was 394. The mAP and the average detection time of images were counted,
given the threshold value of 0.5. Table 4 lists the specific experimental contents and results.
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Table 4. Further experiments and results.

Method Ntd Nfd Ngt Pra/% R/% T/s mAP/%

ResNet50 342 55 394 86.15 86.80 0.7042 81.41
ResNet50 + K-means 367 42 394 89.73 93.15 0.8317 87.20

VGG16 320 22 394 93.57 81.22 0.2648 81.52
VGG16 + K-means 370 35 394 91.36 93.91 0.4559 91.42

Improved Faster R-CNN 370 32 394 92.04 93.91 0.3904 92.27

4. Discussion

Table 2 summarizes the detection results of all samples for the three CFAR algorithms.
Whether in offshore water or distant water, both CA-CFAR and GOCA-CFAR can detect
the same target number correctly. However, SOCA-CFAR detects more correct targets
and many wrong targets at the same time, because SOCA-CFAR has a smaller detection
threshold by calculating the reference cell mean for each half and then selecting the smallest
mean. In terms of the detection time, the average detection time of CA-CFAR, GOCA-CFAR
and SOCA-CFAR are 0.9595s, 1.3910s and 1.3911s, respectively. Therefore, CA-CFAR has
the advantage of the fast detection time and GOCA-CFAR has the advantage of the high
recognition accuracy rate. Taking that into consideration, we can draw a conclusion that
CA-CFAR and GOCA-CFAR have a better performance than the SOCA-CFAR algorithm
for the target detection of coastal defense radar according to the results in our measured
data. It is up to the researchers to adopt which algorithm on the practical application.

Although in offshore water, samples 1 and 3 have a missed detection because of the
weak echo energy of some targets, compared with the high false alarm number of the
CFAR detector, the Faster R-CNN will not cause a false alarm. In distant water, the Faster
R-CNN can avoid false detection and detect ship targets accurately as there are fewer
islands and reefs with a strong echo energy. In addition, strong sea clutter and interference
were observed, which made the CA-CFAR detector cause more false alarms. The number
of false alarms was higher than that of the Faster R-CNN. In sample 5, the CA-CFAR and
GOCA-CFAR detectors have a missed detection, which made the final recall rate lower
than that of the Faster R-CNN. In terms of the detection time, the average detection time
of the Faster R-CNN was 0.6489 s, whereas that of the CA-CFAR was 0.9595 s and the
GOCA-CFAR was 1.3910 s. The detection time of the Faster R-CNN is faster than that
of them.

Table 4 lists the results of specific further comparative experiments. We compared the
influences of the VGG16 and ResNet50 feature extraction networks on the target detector
and added the K-means clustering algorithm to calculate the anchor size. The detection
result of the VGG16 network was better than that of ResNet50 for this data set. The
fundamental reason is that the target size in the data set was small, and the resolution was
lower than that of the ordinary optical image. After several convolutions and pooling, the
deep semantic information was not rich enough, and more details were lost. Moreover,
the ResNet50 network had more layers, which slowed the detection speed. Therefore, we
adopted a relatively shallow feature extraction network, that is, VGG16. We also changed
the activation mode of each layer after convolution. The mAP was raised to 92.27% after the
PReLU activation function was used. Compared with the original Faster R-CNN algorithm,
the improved method enhanced the target recognition accuracy rate by 5.89%, recall rate by
7.11%, and mAP by 10.86%. It also reduced the false alarm number by 23 and the average
detection time by 0.3138 s.

In the existing research, there is no theoretical expression to reflect the direct relation-
ship between Faster R-CNN’s final detection threshold (i.e., confidence) and the false alarm
rate. Therefore, quantitative analysis is very difficult and can be obtained by the Monte
Carlo simulation experiment, despite a huge amount of computation. In other words, in
our application, there is indeed a certain relationship between confidence and the power
of the noise plus sea clutter component. In the case of a certain confidence, the higher the
power of the noise plus sea clutter component is, the greater the possibility of false-alarm
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rate will be. Besides, the target detection mechanism is different between the CFAR detector
and the proposed detector. For the CFAR detector, the target is detected when its amplitude
exceeds certain threshold, while for the proposed detector based on Faster R-CNN, the
target is detected by its morphological characteristics. Therefore, when the noise plus sea
clutter component forms a certain shape which is similar to the shape of the target, the
proposed detector may mistakenly the corresponding noise plus sea clutter component
as a false alarm because the morphological characteristics of the target are learned by the
proposed detector, which leads to the increase in the false-alarm rate.

5. Conclusions

This study proposed a target detection method of the coastal defense radar based on
deep learning. Compared with the two-dimensional CFAR algorithm, the proposed method
showed good anti-clutter and anti-jamming ability, higher recognition accuracy and recall
rate, and fewer false alarms. Moreover, the average detection time per image was faster
than that of the CA-CFAR and GOCA-CFAR. When multiple images must be detected, the
speed difference between them was more obvious, meeting practical application in military
reconnaissance and monitoring.

Some improvements on the feature extraction network, activation function, and RPN
were made on the basis of the Faster R-CNN; hence, mAP was improved by 10.86%. This
study made a novel attempt to apply deep learning to the target detection of the coastal
defense radar. The experimental results verified the feasibility and effectiveness of the
method. It is believed that in the near future, deep learning will solve more complex
sea-surface target detection problems.
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