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Abstract: UAV-based multispectral multi-camera systems are widely used in scientific research for
non-destructive crop traits estimation to optimize agricultural management decisions. These systems
typically provide data from the visible and near-infrared (VNIR) domain. However, several key
absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR)
domain. Therefore, this study investigates a novel multi-camera system prototype that addresses
this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter
combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and
NRI, were applied using data obtained on a single observation date at a winter wheat field experiment
located in Germany. Ground truth data were destructively sampled for the entire growing season.
Likewise, crop heights were derived from UAV-based RGB image data using an improved approach
developed within this study. Based on these variables, regression models were derived to estimate
fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the
NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R2: 0.57 to 0.66).
Both VIs were further validated against the sampled ground truth data (R2: 0.75 to 0.84). These
results indicate the imaging system’s potential for monitoring crop traits in agricultural applications,
but further multitemporal validations are needed.

Keywords: unmanned aerial vehicle (UAV); near-infrared (NIR); short-wave infrared (SWIR);
biomass; nitrogen concentration; nitrogen uptake; crop moisture; crop height; winter wheat; preci-
sion agriculture

1. Introduction

In light of the increase in the global population, food security will be a significant
concern in the next decades [1]. This security can be enhanced by good decision support
in crop management, and for that purpose, non-destructive imaging technologies are
of key importance, especially when it comes to diagnosing in-season site-specific crop
status [2–4]. In this context, the most promising research area is precision agriculture that
utilizes proximal and remote sensing technologies [5]. In the last decade, remote sensing of
crops changed significantly in two ways: (i) open access satellite data enabled the analysis
of large multi-temporal data sets in spatial resolutions of at least 10 to 20 m [6,7] and
(ii) progress in new data acquisition and analysis approaches were facilitated by the fast
development of Unmanned Aerial Vehicles (UAVs) as sensor carrying platforms for RGB,
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multi- and hyperspectral, LiDAR, or thermal sensing systems [8–12]. Studies on UAV-based
sensing of crops have demonstrated the potential of such non-destructive approaches in
determining crop traits [13–15]. As shown in many studies since 2013, robust crop height
data, which have a strong link to biomass, can be derived from stereo-photogrammetric
and GIS analyses [16–18].

A general problem is that estimation of nitrogen concentration (NC) from spectral
data over different plant constituents is only indirectly possible since NC has no unique
spectral features in the VNIR-SWIR range. According to Berger et al. [19], most studies only
use the VNIR (400 to 1000 nm) to determine crop traits, especially nitrogen, in relation to
chlorophyll. However, this approach neglects the foliar biochemical contents, such as plant
proteins, which have faint spectral components in the short-wave infrared (SWIR) and
whose link to different crop traits has hardly been studied so far, leading Berger et al. [19]
to recommend including this domain explicitly. Likewise, Stroppiana et al. [20] state that
this wavelength range has the potential to reveal new approaches or indices for vegetation
monitoring. Herrmann et al. [21] attribute the under-exploration of this domain to tradi-
tional and to technical aspects. Those aspects have meant that expensive and heavyweight
equipment, such as portable field-spectroradiometers or hyperspectral scanner systems on
various airborne platforms, have been used so far. As a result of technological advances
in recent years, however, these former shortcomings are increasingly being overcome,
enabling new application scenarios. Exemplary in this context, Kandylakis et al. [22] devel-
oped a methodology for estimating water stress in vineyards using the unfiltered spectral
response (900 to 1700 nm) of a SWIR imager combined with a VNIR multispectral multi-
camera system (Parrot Sequoia; Parrot Drone SAS, Paris, France) using a UAV. However,
no multi-camera system based on VIS-enhanced InGaAs (600 to 1700 nm) cameras with
application-specific applicable narrow-band bandpass filters appear to have been used.

Within the latest research activities on UAV-based monitoring of crops, Jenal et al. [23]
presented a new and unique sensing system for UAVs, a VNIR/SWIR imaging system
that enables the acquisition of two filter-selectable wavelengths in the range of 600 to
1700 nm. This research’s primary motivation is driven by several publications indicating
two- or four-band NIR/SWIR vegetation indices (VIs) as robust estimators for crop traits.
To predict winter wheat biomass, Koppe et al. [24] fitted the Normalized Ratio Index (NRI)
to the best-performing wavelengths, 874 and 1225 nm, from hyperspectral satellite data.
Gnyp et al. [25] also investigated winter wheat introducing a four-band vegetation index
(VI), the GnyLi. Bendig et al. [9] and Tilly et al. [26] evaluated the GnyLi on barley biomass
data sets showing high R2 and outperforming VNIR VIs. Camino et al. [27] investigated
VNIR/SWIR imaging for N retrieval in wheat and concluded that VIs centered at 1510 nm
outperform chlorophyll and structural indices. While these wavelength bands have been
successfully applied in field studies, they are not covered by comparable multispectral
earth observation (EO) missions, such as Sentinel-2 (see Figure 1). Three of the four selected
wavebands in this study are located in the “spectral gap” from 955 and 1355 nm indicated
in Figure 1. This gap in the Sentinel spectral sensitivity might contribute to the low number
of studies investigating the use of these wavelengths for precision agriculture.

According to Kumar et al. [28], the vegetation compounds’ spectral characteristics
are present in this segment and are of interest for further investigations. Absorption min-
ima caused by canopy moisture, cellulose, starch, and lignin can be found at around
970 and 1200 nm [28–30]. Reflectance maxima lie roughly at 910 and 1100 nm and are
caused by components of protein content, lignin, and intercellular plant structures [28,29].
Roberts et al. [30] provide a detailed review on VIs for retrieving data on vegetation struc-
ture, canopy biochemistry, e.g., pigments or moisture, or plant physiology.

This study aims to evaluate and validate a novel VNIR/SWIR multi-camera system’s
performance and potential to assess crop traits using a winter wheat field trial at the Cam-
pus Klein-Altendorf (North Rhine-Westphalia, Germany) as a case study. More specifically,
the objectives are to (i) regress UAV-based and manually measured crop heights against
ground truth data, (ii) apply resulting regression models to estimate crop traits (fresh
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and dry) biomass, crop moisture, NC, and N uptake, and (iii) evaluate and validate the
relationship between NIR/SWIR-based vegetation indices and crop traits.

Figure 1. Typical reflectance spectra for green and dry grass plotted from the ASTER spectral library [31], the center
wavelengths of Sentinel-2A [32] (dashed vertical blue lines), and the applied center wavelengths of the VNIR/SWIR
multi-camera system for the GnyLi and the NRI (dashed vertical orange lines).

2. Study Site and Methods
2.1. Trial Description

Winter wheat was grown in an experimental field (50°37′11.85′′N and 6°59′45.47′′E)
at the research site Campus Klein-Altendorf (CKA, www.cka.uni-bonn.de, last accessed on
4 March 2021), which is located near the City of Bonn, Germany. The CKA is the largest
off-site laboratory experimental farm of the Faculty of Agriculture at the University of
Bonn. The winter wheat trial is managed by the Institute of Crop Science and Resource
Conservation (INRES, University of Bonn, Germany). The soil type can be described as
a Haplic Luvisol on loess. The site is characterized by an Atlantic climate with a mean
annual precipitation of 603 mm and a mean annual temperature of 9.6 °C (1956–2020). The
crops are grown under conventional management with regular application of pesticides,
fungicides, and growth regulators. A crop rotation of winter barley–winter barley–sugar
beet–winter wheat is maintained in the experimental field. At the time of sowing, the
pH value averaged 6.7, and the humus content was 1.4 %. Per 100 g of soil portion, P2O5
content was 20 mg, K2O content was 13 mg, and MgO content was 7 mg. Mineralized
nitrogen (Nmin) content was 10 kg ha−1 at a soil depth of 0 to 30 cm, 32 kg ha−1 at 30 to
60 cm, and 18 kg ha−1 at 60 to 90 cm.

The winter wheat trial can be described as a split-plot design divided into five rows
(see Figure 2). Each row is, in turn, subdivided into three nitrogen treatments (N1-N3).
Each nitrogen treatment contains six different winter wheat varieties, first released in 1935
(see Table 1, [33]). On 11 November 2019, these varieties were randomly sown in plots
measuring 7.0× 1.5 m using a row spacing of 11.3 cm, resulting in a total number of 18
plots per row. Cultivars were grown under three different nitrogen levels, receiving either
0 (N1), 120 (N2), or 240 kg N ha−1 (N3). The 18 randomized crop-treatment combinations
were replicated in the five rows, leading to 90 plots for the field trial. Nitrogen was supplied
as calcium ammonium nitrate, with the first application during wheat tillering (17 March),
the second at the beginning of stem elongation (16 April ), and the third during the late
booting stage (18 May) in 2020.

www.cka.uni-bonn.de
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Table 1. Winter wheat varieties.

No Variety Year of Release

1 Heines II 1935
2 Heines VII 1950
3 Heines Rot 1949
4 Jubilar 1961
5 Sperber 1982
6 Tommi 2002

Figure 2. Location map and additional information of the winter wheat experiment at Campus Klein-Altendorf (2019/2020).

2.2. Biomass Sampling, Nitrogen Concentrations, and Height Measurements

Biomass sampling was performed destructively within one of the five rows (no. 4, see
Figure 2) approximately every two weeks, resulting in a total number of six observation
dates (8 April, 28 April, 13 May, 26 May, 9 June, and 2 July). During these observation dates,
the complete plant biomass was cut using standard scissors at a length of 50 cm along three
different sowing rows with three replicates for each plot. We excluded the two outermost
rows from sampling to avoid edge effects. After measuring each sample’s fresh biomass
(FBM) weight, sub-samples were oven-dried (at 105 °C for 1–2 days) to calculate the plant
dry biomass (DBM) (g). The remaining plant biomass samples were oven-dried at 60 °C
until reaching a constant weight and ground for the subsequent analysis of carbon (C) and
NC (%) using a C/N analyzer (EuroEA3000, EuroVector S.p.A. (Italy)). Manual height
measurements of all 90 plots were taken on the first five observation dates by holding a
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folding rule in the center of each plot and visually reading the crop height at the head of
that plot.

2.3. UAV Data Acquisition for Crop Height Analysis—Crop Height Workflow

UAV-derived crop heights (CH) were produced using a DJI© Phantom 4 RTK (P4RTK).
The P4RTK is equipped with a 1" global shutter CMOS sensor providing 20 megapixels in
RGB. The P4RTK connects to an RTK base station for precise geotagging of the image data.
Figure 3 displays the P4RTK during take-off, the base station, and the flown flight path
pattern. The same flight plan was used for all UAV campaigns on nine dates: 26 March,
7 April, 28 April, 13 May, 26 May, 2 June, 12 June, 1 July, and 21 July. For each date, approx.
400 photos were acquired from a flight altitude of 25 m above ground level (AGL). Besides
the UAV data acquisition, 12 Ground Control Points (GCPs) were permanently installed
and georeferenced with an RTK-GPS (Topcon GR-5).

Figure 3. The utilized UAV for crop height analysis is (a) a DJI© Phantom 4 RTK, which can be operated in RTK mode
using (b) a base station. Flight planning is also possible (c).

Numerous studies have proven that UAV-derived image data for Structure from Mo-
tion and Multi-View Stereopsis (SfM/MVS) analysis provide a robust method to derive
CH [17,34,35]. Therefore, we essentially followed the Crop Surface Model (CSM) approach
introduced by Hoffmeister et al. [36] for terrestrial laser scanning data, which was success-
fully applied on a UAV data set for winter barley by Bendig et al. [16]. The latter used
Agisoft Photoscan for SfM/MVS analysis to generate 3D data and Digital Orthophotos
(DOPs). For this study, we used Metashape (Version 1.5.2, Agisoft LLC, St. Petersburg, Rus-
sia) for SfM/MVS analysis. We exported the DOPs and Digital Surface Models (DSMs) into
ESRI’s ArcGIS software to compute CH from the DSMs. In this study, however, accounting
for the suggestions by Lussem et al. [37], we tested a newly elaborated analysis workflow:
(i) we used the direct RTK-georeferenced P4RTK images and batch-processed them directly
in Metashape without using GCPs, (ii) we georeferenced DOPs and DSMs to the GCPs in
ArcGIS, (iii) we normalized the elevation of all DSMs to the same take-off point of each
UAV campaign in ArcGIS, and (iv) we computed crop heights in ArcGIS, subtracting the
digital terrain model (DTM) from 26 March from all other dates. Step (iii) was intended
and necessary due to appropriately setting the same x,y,z-data of the P4RTK base station on
26 March and 28 April. The ground sampling distance was approx. 0.007 m for the DOPs
and approx. 0.013 m for the DSMs. Figure 4 shows the DSM from 26 March, the CSM from
12 June, and the CH, computed by subtracting the 26 March DSM from the 12 June CSM.
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Figure 4. Visualization of (a) the normalized base Digital Surface Model (DSM) at the beginning of the growing season 2020
on 26 March. In the middle, (b) represents a normalized Crop Surface Model (CSM) for 12 June, and (c) is the CH computed
by subtracting (a) from (b).

2.4. VNIR/SWIR Imaging System and Vegetation Indices

This study’s evaluation applies a novel VNIR/SWIR multi-camera system [23], cam-
SWIR. In a permanent grassland trial, Jenal et al. [38] successfully tested this prototype for
its suitability in estimating forage mass. The system’s modular two-part design means it
can be integrated into various aerial remote sensing platforms, focusing on UAV-based
multi-rotor vehicles (see Figure 5). The centerpiece consists of the Spectral Camera Unit
(SCU), which combines two VNIR enhanced SWIR cameras based on the semiconductor
material InGaAs. Two single-wavelength image data sets are captured per flight. For this,
each camera of the system is adopted with an application-specific bandpass filter via
specially designed inter-changeable filter flanges to derive well-established VIs in the
VNIR/SWIR spectral range.

Figure 5. Overview of the VNIR/SWIR multi-camera imaging system mounted on a UAV.
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Table 2 summarizes the two NIR/SWIR-based VIs, GnyLi and NRI, which were chosen
to evaluate the system’s spectral performance in this study. The four-band GnyLi was
developed by Gnyp et al. [25] using hyperspectral narrow-band vegetation indices in
winter wheat. This VI uses two local minima and maxima in the reflectance spectrum
of vegetation between 900 and 1300 nm (see Figure 1). Absorption by canopy moisture,
moisture stress, and plant water content dominate these two minima [30]. Overtone
bands of starch (around 970 nm) as well as cellulose, starch, and lignin (around 1200 nm)
also affect both absorption ranges [28–30]. The two reflectance maxima around 910 and
1100 nm are dominated by the plant leaves’ intercellular structures and to a minor extent
by overtone bands of protein and lignin [28,29,39]. Thus, there are two biomass-related
and two moisture-sensitive spectral components in the GnyLi equation.

In contrast to the bandpass wavelengths selected by Gnyp et al. [25], commercially
available, narrow-band hybrid bandpass filters were selected at center wavelengths of
980 and 1200 nm for the reflectance minima and 910 and 1100 nm for the reflectance max-
ima, with a spectral bandwidth (full width-half maximum, FWHM) of (10± 2) nm each.
This bandwidth already meets the spectral resolution, at least in the SWIR, of some hyper-
spectral sensors, especially in the field of EO satellite missions. A comprehensive overview
can be found in Berger et al. [19].

Table 2. NIR/SWIR vegetation indices derived from the camera system and used in this study.
The wavebands used differ from the original selection of Gnyp et al. [25] and Koppe et al. [24], partly
due to the limited range of readily available narrow-band and high-performance bandpass filters for
this application.

Name Equation Reference

GnyLi (R910 · R1100)− (R980 · R1200)
(R910 · R1100) + (R980 · R1200)

[25]

NRI R910 − R1200
R910 + R1200

[24]

The second VI uses an NDVI-like equation. This so-called normalized ration index
(NRI) is widely used with different wavelengths, mainly in the VNIR domain [40,41].
Koppe et al. [24] extended this index to the NIR/SWIR range by empirical testing with
Hyperion data and found high coefficients of determination between this narrow-band
VI and above-ground biomass in winter wheat. In this study, the wavelengths of 910 and
1200 nm applied in the GnyLi VI were also used for the two-band NRI to cover the biomass
and the moisture part of the winter wheat reflectance spectrum. A key advantage of both
SWIR-based VIs over VNIR-based VIs, such as NDVI, is that they are not as susceptible to
saturation issues due to increasing biomass density or leaf cover [42–45], which typically
reaches nearly 100 % in the mid-vegetative stage of crops [26]. As a result, it is possible to
monitor the increasing amount of biomass beyond this stage.

2.5. Spectral Image Data Acquisition and Processing—Spectral Workflow

The camSWIR system acquired the spectral image data around noon on 2 June 2020. It
took 28 min to perform two consecutive flights to collect the four necessary spectral bands.
The first flight took off at 11:31 a.m. CET. Each flight lasted about 9 min. The remaining
time was required for the bandpass-filter-equipped filter flange replacement and the
corresponding camera calibration. During both flights, solar radiation conditions were
stable and without any cloud coverage. The flight altitude of the UAV was set to 34 m
(AGL). In post-processing, the raw image data were flat-field-calibrated and converted
from digital number (DN) to reflectance values using two different approaches, both based
on the Empirical Line Method [46]. A simple workflow was performed via a one-point
calibration with a series of images taken from a spectrally precisely characterized Zenith™
polymer white panel with 95% Lambertian reflectance before each flight. This white panel
method is abbreviated as WPM in this study. The more complex variant involved six



Remote Sens. 2021, 13, 1697 8 of 32

differently graded (0, 10, 25, 50, 75 and 100 % black shading) near-Lambertian 80× 80 cm
gray panels positioned directly next to the experimental field. They were recorded several
times during the UAV flights. These gray panels were then identified in five corresponding
images for each waveband. Their averaged DN was determined (see Figure A3) by a
Python script (version 3.7, Python Software Foundation) based on the roipoly module.
A transfer function per wavelength channel was then calculated with these values (see
Figure A2) and the grayscale panels’ reflectance data previously measured using ASD
FieldSpec3 (Malvern Panalytical Ltd, Malvern, United Kingdom) (ASD). These functions
were then used to convert the four DN image data sets to reflectance data. This workflow
will be subsequently abbreviated as ELM. Additionally, for calibration purposes, a series of
dark images were acquired before each flight. All post-processing steps were performed in
the Python programming language using IPython [47] in a JupyterLab environment [48].

After calibration, each of the four reflectance image data sets for both calibration
methods was processed separately in a photogrammetric software suite (Metashape v1.6.2,
Agisoft LLC, St. Petersburg, Russia) to an orthomosaic. Coordinates of twelve permanent
and evenly distributed ground control points (GCPs, see Figure 2) were used for precise
georeferencing in Metashape. After processing, these eight single-waveband orthomosaics
were used to derive two sets of GnyLi and NRI VI orthomosaics in QGIS (version 3.14, QGIS
Association, www.qgis.org last accessed on 4 March 2021) for both calibration methods.
Figure 6 shows an example of the two orthomosaics for the ELM calibration method.
The averaged VI values for each plot were then extracted via the zonal statistics tool.
These VI data sets could then be used to evaluate and validate the relationship between
SWIR-based vegetation indices and crop traits in the subsequent regression analyses.

Figure 6. (a) GnyLi and (b) NRI orthomosaics processed from the four ELM-calibrated waveband orthomosaics (910, 980,
1100 and 1200 nm) derived from the camera system’s spectral image data.

2.6. Crop Trait Estimation Workflow

A comprehensive analysis workflow was designed and performed to evaluate the new
camSWIR system (see Section 2.4) for monitoring crop traits. Figure 7 gives an overview of

www.qgis.org
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the central data acquisition and analysis steps. The analysis workflow comprises six main
data sets (I-VI) and one data set for validation, as described in the following.

(I) This data set represents the UAV data acquisition of RGB images using a P4RTK for
stereo-photogrammetric analysis resulting in crop height data (UAV crop height).
This part (crop height workflow) is described in detail above in Section 2.3, and these
crop height data are of central importance for further data analysis.

(II) In the field experiment, manual and destructive samplings of crop height and biomass
were conducted. As described in Section 2.2, biomass was weighed before and after
drying to determine fresh and dry biomass. The difference between fresh and dry
biomass is considered the crop moisture content (crop moisture: CM). Dry biomass
samplings were further analyzed for NC in the laboratory.

(III) The third input data set for the analysis workflow originates from the newly de-
veloped camSWIR system flown on 2 June. The multi-camera system was opti-
mized to derive two NIR/SWIR vegetation indices, the NRI and the GnyLi (compare
Section 2.4). Section 2.5 describes the spectral workflow that transforms the raw DN
image data sets into plot-wise VI reflectance data sets. For more details on the perfor-
mance of the two VIs, see also [9,15,23–25,27,38].

(IV) Regression models (RM) were created for the destructive field sampling plots (18 plots
per date: n = 108) from (I) the UAV-derived crop height data and from (II) the manual
and destructive sampling data, resulting in four regression models for biomass (fresh
and dry), crop moisture, and NC. In Figure 8, the 108 sampling plots of Row 4 are
shown. Each color represents a sampling date starting with orange for 8 April and
ending with dark green for 2 July.

(V) These four regression models from step (IV) were then applied to the remaining
7.0× 1.5 m plots of Row 1, 2, 3, and 5 using the P4RTK CH data (I) as well as the
manual CH data (II) as input. This approach allowed biomass (fresh and dry), crop
moisture (CM), and NC to be estimated for the 72 test plots (18 per row). This step is
possible because numerous studies have already proven the robustness of using CH
as an estimator for biomass [49–55] and using biomass as an estimator for NC and
N uptake [15,38,56]. With the derived data for dry biomass and NC, the N uptake
could be calculated in line with Lemaire et al. [57] for the 72 test plots. Due to the
abnormal UAV-derived crop heights for 2 June, an additional data set was generated
by interpolating the UAV-derived crop height of 26 May and 12 June linearly for
2 June. This data set is named UAV crop height interpolated (P4RTK [i]).

(VI) The camSWIR-based VIs (NRI and GnyLi) were regressed against the five crop traits
(V). Regression coefficients were used to evaluate the camSWIR’s potential for moni-
toring crop traits.

(VII) The proposed analysis workflow (I - VI) was validated by regression analyses of
the five different field parameters (FBM, DBM, CM, NC, and N uptake) from the 18
destructive sampling plots and the two NIR/SWIR VIs, GnyLi, and NRI, considering
two different spectral calibrations methods. Quality measures for better comparison
were calculated (see Section 2.7). Again, the values for 2 June were linearly interpo-
lated between the two sampling dates of 26 May and 12 June. The N uptake was
derived from the 18 values of DBM and NC. In this validation, the sampled field and
lab data were directly analyzed against the VIs.
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Figure 7. Simplified scheme of the developed crop trait estimation workflow.

Figure 8. Image of 108 sampling plots (18 per date, color-coded).
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2.7. Statistical Measures

To evaluate the estimation accuracy of the derived regression models, we calculated
the coefficient of determination R2,

R2 =

(
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

)2

, (1)

the root mean square error (RMSE),

RMSE =

√
Σn

i=1(xi − yi)2

n
, (2)

and the normalized RMSE (NRMSE),

NRMSE =
RMSE

ȳ
× 100 %, (3)

for a comprehensive comparison of the individual models [58]. Where xi is the ith estimated
variable, yi is the ith observed variable by the RM, x̄ is the average of estimated variable x,
and ȳ represents the average of observed variable y. The variable n specifies the number of
elements in a data set.

3. Results
3.1. UAV Crop Height Data Evaluation

UAV-derived CH data sets (see Section 2.3) were used to estimate fresh and dry
biomass, crop moisture, an indirect estimation of NC, and N uptake for the 72 non-
destructively sampled plots of rows 1, 2, 3, and 5 (see Figure 7). Therefore, the UAV-derived
CH data were evaluated using results from manual CH measurements (see Section 2.2).
These manual measurements were performed on 8 April, 28 April, 13 May, 26 May, and
9 June for all 90 experimental field plots. UAV-based CH were significantly linearly corre-
lated with manual CH for the five observation dates (R2 = 0.95, RMSE = 0.001, p < 0.001)
(Figure 9a,b). This linear relation indicates that UAV-based CH can be accurately derived
from UAV image data for the sampling plots (n = 90, Figure 9a). Additionally, the deter-
mined UAV CH for the remaining 72 plots (n = 360, Figure 9b) were also highly correlated
to the respective manually measured CH values so that they could be used to estimate the
five crop traits for each of the 72 plots (Figure 7 (V)).

The results of the CH analysis are shown for six dates in Figure 10. The figure shows
that the derived CH data capture the winter wheat growing stages well and that “non-
growing” objects such as foot- or driving paths are easy to recognize. Even the small,
destructive sampling areas in Row 2 (compare Figure 2) are clearly recognizable. Detailed
validation of the generated CH data is presented in Figure 9.

An unexpected decrease in the UAV-derived CH was related to data obtained on
2 June, the UAV-based VNIR/SWIR data sampling date. This decrease is unrealistic and
contrasts with all other data sets, indicating progressive plant growth throughout the
growing season. Figure 11 shows the DOP and derived CH. Visually, the data look good,
but detailed analysis shows a non-linear error, giving some plots an unrealistic drop in
crop growth compared to that of 26 May. The latter represents an erroneous output of the
methodology. A more in-depth analysis resulted in a systematic error for all plots of the
zero N-input variants (N1). Figure 11a (also compare Figure 2) shows that these plots have
a characteristic bright reflectance due to the lower vegetation cover.
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Figure 9. (a) Scatter plot for the manually measured CH versus the UAV-based CH for the 18 destructive sampling plots for
all five comparable dates. (b) Scatter plot for the manually measured CH versus the UAV-based CH for the remaining 72
test plots for all five comparable dates (p < 0.001 for all regression models).

Figure 10. UAV-derived development of crop height in meters over the growing season 2020 for (a) 7 April , (b) 28 April,
(c) 13 May, (d) 26 May, (e) 12 June, and (f) 1 July.
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Moreover, these are the plots that show the lowest CH in Figure 11b–d present an
enlarged part of row 2, where the bright, almost outshining, soil reflectance of the N1 plots
seems to dominate, resulting in false modeling of the ground instead of the crop canopy.
As a consequence, the affected plant heights are modeled too shallowly. For 1 July, only
variety no. 3 shows the same faulty behavior for the N1 fertilizer plots in all row replicates.

Figure 11. UAV-derived CH data for 2 June (CH legend from Figure 4 applies): (a) DOP, (b) derived CH map, (c) enlarged
area of DOP (red rectangle in (a), (d) enlarged area of CH map (red rectangle in (b).

Further examination of all plot data for CH on 2 June confirms this finding. Firstly,
in Figure 12, all CH values for all plots in Row 2 are plotted. The N2 and N3 N-variant
plots show good and expected CH values, while all N1 plots show this significant decrease
in crop growth, which is impossible. Secondly, a complete visualization of all CH data
of rows 1, 2, 3, and 5 is displayed in Figure A1 in Appendix A. In particular, the N1 plot
values show these significantly low CH values, with two exceptions included in Figure A1.
Considering this effect, we used the data of 2 June with caution and created additionally a
linearly interpolated, more realistic CH data set for 2 June using 26 May and 12 June data.
This issue is addressed further in the discussion.
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Figure 12. Bar chart representation of CH derived by the UAV for row 2 for all flight dates. For all N1 treatment plots’
varieties, the crop height workflow resulted in an unexpected drop in plant growth for 2 June. This phenomenon is also
evident in all N1 stages of the other rows (see Figure A1). Variety no. 3 also shows negative growth for 1 July for all N1
treatments. The corresponding erroneous crop height values are marked with a hatched overlay in black.
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3.2. Crop Traits Estimation Models

Regression fits between FBM, DBM, and CM with UAV-based (Figure 13a,d,g) and
manually measured (Figure 13b,e,h) CH indicate a statistically significant linear relation.
In contrast, as shown in Figure 13c,f,i, there was a non-linear decrease in NC over the
growing season. This curve shape is also known as the nitrogen dilution effect and is
best described by a power function [59]. Therefore, three non-linear regression models,
based on a power-law fit, for estimating NC were derived from FBM, DBM, and CM (see
Section 3.4 for further details).
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Figure 13. Scatter plots of the linear regression models for P4RTK and manual CH against the fresh and dry biomass as
well as crop moisture data of the 18 destructive sampling plots for the five and six sampling dates, respectively. Each
column contains a non-linear regression model for estimating NC from the three different biomass parameters. Left column:
regression models for fresh biomass (a–c). Center column: regression models for dry biomass (d–f). Right column:
regression models for crop moisture (g–i). (p < 0.001 for all regression models).

Accuracy measures indicate lower errors and higher regression coefficients for model-
based estimates of FBM, DBM, and CM if they are based on UAV-derived CH compared
with those based on manually measured CH data (Table 3).
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Table 3. Regression performance results for the estimation models for fresh (FBM) and dry biomass (DBM), crop moisture (CM)
and N concentration (NC) against UAV-based and manually measured CH data. (p < 0.001 for all regression models).

FBM (t ha−1) DBM (t ha−1) CM (t ha−1) NC%

P4RTK Manual P4RTK Manual P4RTK Manual FBM DBM CM

R2 0.91 0.83 0.94 0.91 0.85 0.75 0.58 0.65 0.54
RMSE 4.12 5.62 1.02 1.20 3.75 4.83 0.41 0.38 0.43

NRMSE (%) 19 25 17 20 23 30 24 22 25

3.3. Regression Analyses of Vegetation Indices and Biomass

Based on the regression models from Section 3.2 derived from the 18 destructive
sampling plots, the respective data were estimated for the remaining 72 test plots. These
data sets were then used in a further step to evaluate the VI data sets of the GnyLi and the
NRI (ELM and WPM calibration) as estimators. Since the three biomass models (fresh, dry,
moisture) are based on CH as the estimator, the biomass data sets were derived using three
different CH data sets for the survey on 2 June. The first data set is the CH determined by
the P4RTK image data on 2 June. However, due to the erroneous height data, the CH from
two dates specified to be correct (26 May and 12 June) were linearly interpolated for 2 June
and used in the model to estimate the biomass parameters. Since CH data for 2 June was
also not available for the manual measurement, these data were also linearly interpolated
from the two manual CH data sets (26 May and 9 June) and then used to estimate the
values for FBM, DBM, and CM for the remaining 72 test plots. In combination with the four
VI data sets, this resulted in twelve models for each biomass parameter. Figure 14 displays
the twelve plots for the FBM data sets estimated by the three different CH data sets. The
best-performing CH data set seems to be from 2 June (left column) with an R2 of 0.75 to
0.77 throughout all parameters. However, the RMSE is significantly reduced by more than
20 % compared to the P4RTK-based models and less than 15 % to the manual-height-based
models. Since these data are considered erroneous (see Section 3.1), they are included for
completeness only.

The center and right columns of Figure 14 present the scatter plots for the FBM derived
from the interpolated CH data (P4RTK, manual) and the two VIs with both calibration
methods. It can be seen that the FBM values derived from the P4RTK CH data (center)
with an R2 of 0.57 to 0.59 are considerably more accurate than the FBM values based on
the manually measured CH (right column) with an R2 of 0.33 to 0.36. Additionally, the
UAV-based regression models have the lowest RMSE 3.95 to 4.04 t ha−1 and NRMSE (11 %)
values. More significant errors are mainly linked to the plots receiving greater nitrogen
amounts (N3, blue diamond markers).

Figure 15 displays, like Figure 14, the models for the VIs as estimators, but here for
the dry biomass (DBM) estimated from the three different CH data sets for the remaining
72 test plots. Due to the underlying relationship of CH as the joint estimator, these models
exhibit similar performance behavior to those shown in Figure 14, even compared to each
other. The left column again shows the co-incidence of the VIs with the erroneous CH
data from 2 June with a better R2 compared to the other two models based on interpolated
CH values.
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Figure 14. Scatter plots for the fresh biomass (FBM) data estimated for the 72 non-destructive test plots with the FBM-model
based on three different crop height data sets with the spectral camera VIs acquired on 2 June. Left column: crop height
directly derived from P4RTK RGB data set of 2 June (a–d). Center column: linear interpolated crop height from P4RTK
RGB data set of 26 May and 12 June (e–h). Right column: linear interpolated crop height manually measured on 26 May
and 9 June (i–l). (p < 0.001 for all regression models).
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Figure 15. Scatter plots for the dry biomass (DBM) data estimated for the 72 non-destructive test plots with the DBM-model
based on three different CH data sets with the spectral camera VIs acquired on 2 June. Left column: CH directly derived
from P4RTK RGB data set of 2 June (a–d). Center column: linearly interpolated CH from P4RTK RGB data set of 26 May
and 12 June (e–h). Right column: linearly interpolated CH manually measured on 26 May and 9 June (i–l). (p < 0.001 for
all regression models).

Figure 16 shows the resulting regression models based on both VIs as crop moisture
estimators. Since crop moisture is directly related to wet and dry biomass, the performance
of these models is almost identical to the models shown in Figures 14 and 15 but again in a
different magnitude relationship. Table 4 summarizes the regression analyses’ results for
the three parameters FBM, DBM, and CM.



Remote Sens. 2021, 13, 1697 18 of 32

0.100 0.125 0.150 0.175 0.200 0.225 0.250
NRI WPM

0

10

20

30

40

50

C
ro

p 
M

oi
st

ur
e 
(t
⋅h
a−

1 )
 P
4R

TK R2= 0.76
RMSE= 3.62
NRMSE= 0.14

(a)

y = 167.71x-7.441

0.100 0.125 0.150 0.175 0.200 0.225 0.250
NRI WPM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK
 [i
]

R2= 0.57
RMSE= 2.79
NRMSE= 0.11

(e)

y = 84.25x+10.059

0.100 0.125 0.150 0.175 0.200 0.225 0.250
NRI WPM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 M

an
ua

l [
i]

R2= 0.33
RMSE= 3.14
NRMSE= 0.12

(i)

y = 58.43x+14.679

0.20 0.25 0.30 0.35
NRI ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK R2= 0.77
RMSE= 3.53
NRMSE= 0.14

(b)

y = 127.28x-11.596

0.20 0.25 0.30 0.35
NRI ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK
 [i
]

R2= 0.59
RMSE= 2.73
NRMSE= 0.10

(f)

y = 64.52x+7.803

0.20 0.25 0.30 0.35
NRI ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 M

an
ua

l [
i]

R2= 0.36
RMSE= 3.09
NRMSE= 0.12

(j)

y = 45.41x+12.923

0.20 0.25 0.30 0.35
GnyLi WPM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK R2= 0.76
RMSE= 3.62
NRMSE= 0.14

(c)

y = 145.50x-17.840

0.20 0.25 0.30 0.35
GnyLi WPM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK
 [i
]

R2= 0.58
RMSE= 2.75
NRMSE= 0.10

(g)

y = 73.84x+4.613

0.20 0.25 0.30 0.35
GnyLi WPM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 M

an
ua

l [
i]

R2= 0.34
RMSE= 3.11
NRMSE= 0.12

(k)

y = 51.56x+10.797

0.25 0.30 0.35 0.40 0.45
GnyLi ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK R2= 0.75
RMSE= 3.67
NRMSE= 0.15

(d)

y = 109.52x-16.417

0.25 0.30 0.35 0.40 0.45
GnyLi ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 P
4R

TK
 [i
]

R2= 0.58
RMSE= 2.76
NRMSE= 0.10

(h)

y = 55.71x+5.290

0.25 0.30 0.35 0.40 0.45
GnyLi ELM

0

10

20

30

40

50

C
ro
p 
M
oi
st
ur
e 
(t
⋅h
a−

1 )
 M

an
ua

l [
i]

R2= 0.34
RMSE= 3.11
NRMSE= 0.12

(l)

y = 38.99x+11.235

 
N Treat 1 N Treat 2 N Treat 3

Figure 16. Scatter plots for the crop moisture (CM) data were estimated for the 72 non-destructive test plots with the CM
model based on three different CH data sets with the spectral camera VIs acquired on 2 June. Left column: CH directly
derived from P4RTK RGB data set of 2 June (a–d). Center column: linear interpolated CH from P4RTK RGB data set of
26 May and 12 June (e–h). Right column: linear interpolated CH manually measured on 26 May and 9 June (i–l). (p < 0.001
for all regression models)
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Table 4. Results of the linear regression analyses for both calibration methods (WPM, ELM) of both VIs (G: GnyLi, N: NRI)
and the estimated (by three different CH) crop traits: fresh and dry biomass and the crop moisture. Three CH: P4: P4RTK
crop height, M: manual crop height, [i]: interpolated crop height values. (p < 0.001 for all regression models).

FBM (t ha−1) DBM (t ha−1) CM (t ha−1)

VI CH R2 RMSE NRMSE
(%) R2 RMSE NRMSE

(%) R2 RMSE NRMSE
(%)

NELM P4 0.77 5.11 14.49 0.77 1.58 15.83 0.77 3.53 13.96
GELM P4 0.75 5.31 15.07 0.75 1.65 16.46 0.75 3.67 14.51
NWPM P4 0.76 5.25 14.87 0.76 1.63 16.25 0.76 3.62 14.33
GWPM P4 0.76 5.25 14.88 0.76 1.63 16.26 0.76 3.62 14.33
NELM P4[i] 0.59 3.95 10.66 0.59 1.22 11.60 0.59 2.73 10.29
GELM P4[i] 0.58 4.00 10.80 0.58 1.24 11.75 0.58 2.76 10.42
NWPM P4[i] 0.57 4.04 10.91 0.57 1.25 11.87 0.57 2.79 10.53
GWPM P4[i] 0.58 3.99 10.77 0.58 1.24 11.71 0.58 2.75 10.39
NELM M[i] 0.36 4.52 12.35 0.36 1.43 13.59 0.36 3.09 11.84
GELM M[i] 0.34 4.56 12.44 0.34 1.44 13.70 0.34 3.11 11.94
NWPM M[i] 0.33 4.60 12.56 0.33 1.46 13.82 0.33 3.14 12.04
GWPM M[i] 0.34 4.56 12.45 0.34 1.44 13.70 0.34 3.11 11.94

3.4. Regression Analyses of Vegetation Indices and NC and N uptake

As shown in Figure 13f, the best predictor for NC was DBM. The corresponding non-
linear regression model had the highest R2 of 0.65 and the lowest RMSE of 0.38 compared
to the RM based on FBM (R2: 0.58, RMSE: 0.41) or CM (R2: 0.54, RMSE: 0.43). Since the
DBM was estimated with three different CH data sets, as shown in Section 3.3, this also
resulted in three data sets for the estimated NC. These data sets were then finally further
investigated with regression analyses, with the two VIs, GnyLi, and NRI (WPM, ELM), as
estimators. Again, this results in twelve regression models for the flight date on 2 June,
shown in Figure 17. The equations exhibit a negative slope. This phenomenon resulted
from the decrease in NC with an advanced plant growth state for the N2 and N3 plots but
not for the zero-fertilization N1 plots.

The regression models based on the erroneous CH data from the RGB image data
acquired on 2 June appear to perform well, as in the previous analyses, with R2 of 0.71
to 0.73. However, they should be considered as an artifact. Compared to the results with
the interpolated CH data from Section 3.3, the analysis data for the VIs estimators for the
UAV-based NC estimators are better, with R2 of 0.65 to 0.67, than the comparable estimators
for biomass (see Figures 14–16). The regression models based on the VIs and the NC
estimated with the manually measured CH data again perform weakest, with an R2 of
0.39 to 0.42 (Table 5). These results are slightly higher than the regression analyses of the
VIs and the biomass parameters (Section 3.3). The RMSE for the estimated NC based on
interpolated CH data sets (P4RTK, Manual) is comparatively low.

Figure 18 shows the regression analysis results for N uptake using the two VIs, GnyLi
and NRI (WPM, ELM), as estimators. The N uptake was calculated from the values for
DBM and NC of the 72 test plots. These two features were also derived using the established
regression models from Section 3.2 and the three different CH for the 2 June survey date.
Each CH-related model is arranged in its corresponding column in Figure 18.
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Figure 17. Scatter plots for the N concentration (NC) data estimated for the 72 non-destructive test plots with the NC-model,
based on the DBM estimator RM for three different CH data sets, with the spectral camera VIs acquired on 2 June. Left
column: CH directly derived from P4RTK RGB data set of 2 June (a–d). Center column: linear interpolated CH from P4RTK
RGB data set of 26 May and 12 June (e–h). Right column: linear interpolated CH manually measured on 26 May and 9 June
(i–l). (p < 0.001 for all regression models).
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Figure 18. Scatter plots for the N uptake data estimated for the 72 non-destructive test plots with the NC and DBM
RM-model, based on the DBM estimator RM for three different CH data sets, with the spectral camera VIs acquired on
2 June. Left column: CH directly derived for 2 June P4RTK RGB data set (a–d). Center column: linear interpolated CH
from 26 May and 12 June P4RTK RGB data sets (e–h). Right column: linear interpolated CH manually measured on 26 May
and 9 June (i–l). (p < 0.001 for all regression models).
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Table 5. Results of the simple linear regression analyses for both calibration methods (ELM, WPM) of both VIs (NRI, GnyLi)
and the estimated (by three different CH) crop traits: NC and N uptake. Three crop heights: P4: P4RTK crop height, M:
manual crop height, [i]: interpolated crop height values. (p < 0.001 for all regression models).

NC (%) N uptake (kg ha−1)

VI CH R2 RMSE NRMSE (%) R2 RMSE NRMSE (%)

NRIELM P4 0.73 0.11 7.67 0.78 14.98 11.41
GnyLiELM P4 0.71 0.11 7.88 0.76 15.60 11.88
NRIWPM P4 0.73 0.11 7.66 0.77 15.33 11.68

GnyLiWPM P4 0.72 0.11 7.75 0.77 15.38 11.71
NRIELM P4[i] 0.67 0.04 3.21 0.61 10.82 7.86

GnyLiELM P4[i] 0.66 0.04 3.25 0.60 10.95 7.96
NRIWPM P4[i] 0.65 0.04 3.31 0.59 11.09 8.06

GnyLiWPM P4[i] 0.66 0.04 3.24 0.60 10.93 7.94
NRIELM M[i] 0.42 0.05 3.75 0.37 12.67 9.21

GnyLiELM M[i] 0.41 0.05 3.78 0.36 12.77 9.28
NRIWPM M[i] 0.39 0.05 3.83 0.35 12.89 9.38

GnyLiWPM M[i] 0.41 0.05 3.78 0.36 12.77 9.29

3.5. Regression Analyses of Vegetation Indices and Ground Truth Data

To validate the results from the previous regression analyses (compare Section 2.6, step
VI), the spectral information of the two VIs, GnyLi, and NRI (ELM, WPM), was derived
from the remaining standing biomass in the 18 destructive samplings plots on 2 June (see
Figure 7, dark green and previous sampling area). These four VI data sets were then
analyzed with the linearly interpolated ground truth data sets of 26 May and 12 June from
these plots in simple linear regression models. Figure 19 shows the scatter plots of the
individual analyses of the VIs as an estimator for the ground truth data of FBM, DBM, CM,
NC, and N uptake. As explained in Section 2.6, CM was derived from FBM and DBM, and
the N uptake was processed from Nc and DBM. The results consistently show a high R2

of at least 0.73 to a maximum of 0.87. Table 6 summarizes the particular linear regression
results for each VI as an estimator for the respective crop trait.

Table 6. Regression analyses’ results for the VIs as estimators for the sampled ground truth data (FBM: fresh biomass, DBM:
dry biomass, NC: N concentration, CM: crop moisture, NUP: N uptake) of the 18 destructive sample plots. (p < 0.001 for all
regression models).

VI Crop Trait R2 RMSE NRMSE (%)

NRIELM FBM 0.82 3.79 10.82
NRIWPM FBM 0.75 4.47 12.77

GnyLiELM FBM 0.81 3.83 10.92
GnyLiWPM FBM 0.77 4.29 12.25

NRIELM DBM 0.81 0.89 8.99
NRIWPM DBM 0.73 1.05 10.64

GnyLiELM DBM 0.80 0.90 9.14
GnyLiWPM DBM 0.75 1.02 10.33

NRIELM CM 0.82 2.95 11.74
NRIWPM CM 0.75 3.47 13.77

GnyLiELM CM 0.81 2.97 11.82
GnyLiWPM CM 0.77 3.32 13.18

NRIELM NC 0.83 0.11 9.11
NRIWPM NC 0.79 0.13 10.06

GnyLiELM NC 0.82 0.12 9.23
GnyLiWPM NC 0.81 0.12 9.67

NRIELM NUP 0.87 0.02 13.95
NRIWPM NUP 0.82 0.02 16.52

GnyLiELM NUP 0.87 0.02 14.30
GnyLiWPM NUP 0.84 0.02 15.88
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Figure 19. Scatter plots for the VI data for 2 June as estimators for the individual crop traits linearly interpolated from 26 May and 12 June of the 18 destructive sampling plots. (a–d)
camSWIR VIs and FBM, (e–h) camSWIR VIs and DBM, (i–l) camSWIR VIs and crop moisture, (m–p) camSWIR VIs and NC, (q–t) camSWIR VIs and N uptake. (p < 0.001 for all
regression models).
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4. Discussion

In this study, a newly developed VNIR/SWIR imaging system for UAVs, the cam-
SWIR, is evaluated for crop trait monitoring of winter wheat. The focus is on two veg-
etation indices (VIs), the NRI [24] and the GnyLi [25], which used near and short-wave
infrared (NIR/SWIR) wavelengths (see Table 2). Previous studies showed that these
indices outperformed VIs using bands from the visible and near-infrared (VIS/NIR)
domain [9,24–26,38,56,60]. Moreover, several authors indicate the SWIR domain’s potential
for crop trait monitoring [15,19,30,61–64].

The presented results in this case study for winter wheat demonstrate this new sensor’s
potential to derive crop traits such as biomass, NC, N uptake, and crop moisture. Although
not typically used, these wavelengths’ potential for monitoring agricultural systems has
also been shown in other studies. For example, Ceccato et al. [65] indicate the SWIR
domain’s potential to derive leaf water content. Honkavaara et al. [66] indicate the same
for monitoring surface moisture of a peat production area. Camino et al. [27] demonstrated
the advantage of the SWIR domain for retrieval of crop nitrogen. Finally, Psomas et al. [67]
and Koppe et al. [24] proved the NIR/SWIR bands’ suitability for biomass monitoring in
grasslands and winter wheat. The selection of the applied bandpass filters in this study
represents a compromise due to availability and cost compared to the original studies by
Koppe et al. [24] and Gnyp et al. [25], which used field spectroradiometer and hyperspectral
satellite data. If available in future studies, narrower (< 10 nm), more wavelength-specific,
bandpass filters should be used to investigate an effect on the estimation performance of the
VIs with the wavelengths applied in [24,25]. In particular, when it comes to spectral features
involving leaf chemicals such as proteins that also have an indirect link to NC, using narrow-
band filters with the appropriate center wavelengths [29,68] is crucial. Otherwise, when
broader bandwidths are applied, this information about the fine spectral features is lost in
the superimposed spectrum [69]. Furthermore, water absorption has to be considered as it
overlays all other features to a large extent in the SWIR domain [64].

The NRI and GnyLi performed well as an estimator for different crop traits for the
72 test plots (Figure 7, step V and VI) in our study. In a first approach, we calculated
comparatively high R2 values (NRI, GynLi) for FBM (R2: 0.77, 0.75), DBM (R2: 0.77, 0.75),
NC (R2: 0.73, 0.71), N uptake (R2: 0.78, 0.76), and crop moisture (R2: 0.77, 0.75) with low
NRMSEs ranging from 8 to 16 %. However, these good results for one date (2 June) result
from a supposed spurious effect in the P4RTK RGB image data processed in the crop height
workflow described in Section 2.3. The low vegetation cover in the N1-treatment where
nitrogen supply was omitted caused a significant CH error in the SfM/MVS analysis. This
effect is most likely due to the strong reflectance of the high soil coverage and should be
further investigated in the future. However, for all other observation dates, the P4RTK
image data tracks crop growth with high accuracy (R2: 0.95 for the 18 destructive sampling
plots and R2: 0.95 for the remaining 72 test plots) compared to the crop heights measured
by hand with a folding ruler. The RMSE of 0.05 m is within the expected resolution for
stereo-photogrammetric height measurement from image data for both regression models
(see Figure 9).

To avoid the negative effect in the CH data, a second validation data set was pro-
duced by linearly interpolating the CH for 2 June to provide more reliable CH data. The
regression models based on this interpolated data set resulted in moderately lower R2

values for FBM (R2: 0.59, 0.58), dry DBM (R2: 0.59, 0.58), NC (R2: 0.67, 0.66), N uptake
(R2: 0.61, 0.60), and crop moisture (R2: 0.59, 0.58). A reduction in RMSE (more than
20 %) and NRMSE (4 percentage points) was also observed in the regression models of
the interpolated data sets. Thus, while the variability in crop traits explained by the
model was lower, absolute and mean-normalized prediction errors decreased. This de-
crease was mainly due to lower errors for predicting crop traits in the N1 treatment (see
Figures 14–18).

Compared to these findings, the regression analysis results used to validate both VIs
using the ground-truth-based crop traits data from the 18 destructively sampled plots (see
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Figure 2 and Figure 7 step VII) consistently showed an even higher accuracy, ranging from
R2: 0.73 to R2: 0.87, and lower RMSE values. This difference originates from a weaker
correlation between UAV-derived CH data, which are the base for estimating the crop
traits of the 72 test plots for 2 June. Therefore, this slightly weaker correlation affects the
estimation accuracy of the final step of the crop trait estimation workflow (Figure 7 step VI),
in which the UAV-derived crop traits are estimated using the VIs in regression models. In
contrast, the base regression models of the destructively derived crop traits for all sampling
dates performed better (see Figure 13) with the UAV-derived CH (R2: 0.54 to 0.94). Based
on these CH, crop traits were estimated in turn for regression analyses with the VIs for the
remaining 72 test plots. This slightly weaker relationship affects the last analysis step’s
estimation accuracy (Figure 7 step VI).

The same relationship can be observed in the regression analyses based on the man-
ually measured CH. The comparison of the two CH data sets’ performance revealed
significant differences in estimation accuracy related to the VIs, whereby the crop traits’
regression models based on the manually measured CH performs worse (R2: 0.33 to
0.42) than the P4RTK-based crop traits (R2: 0.57 to 0.67). This difference is described by
Bareth et al. [70]. It occurs because UAV-derived CH data, unlike point-wise manually mea-
sured ones, represent a mean plant height value of an entire plot accounting for the plant
density resulting from zonal statistics. Another solution to provide CH data for reliably esti-
mating crop traits might be utilizing UAV-LiDAR data [71–73] and should be investigated in
future research.

Li et al. [45] investigated the performance of established VIs and tested for optimal
wavelength combinations in the VIS/NIR domain to retrieve NC for certain growing stages.
In their study on winter wheat, the authors found that all of the 77 published VIs and the
best waveband combinations performed poorly (R2 < 0.29). Similar results are described
by Mistele et al. [74] for maize. Gnyp et al. [75] investigated field spectra in rice and
found similar moderate to poor R2 when applying VIs across all growing stages (R2 < 0.5).
Reaching a higher R2 of up to 0.8 was only possible by using step-wise multiple linear
regression (MLR) or narrow NIR/SWIR bands for the complete data set summarizing all
growing stages. Stroppiana et al. [20] present similar results from several studies, showing
moderate to low R2 for N retrieval for distinct growing stages. In general, most studies
report only moderate to poor R2 for a single survey date. Thus, the ability of VIs in the
VIS/NIR domain to estimate crop NC is limited. In particular, this applies to studies based
on single survey dates. Considering the results from this study, we, therefore, suggest
evaluating in more detail the performance of systems operating in the SWIR domain in
future studies on date-specific crop trait estimation.

The results show that the recently introduced imaging system produces reliable
VNIR/SWIR image data for the four selected wavebands. While only grayscale panels,
destructively sampled crop data and estimated crop traits based on CH data could be used
in this study, Jenal et al. [38] additionally used field-spectroradiometer measurements
(350 to 2500 nm) of grassland canopies. In the latter study, very high correlations between
both independent reflectance data sets have already been demonstrated. In this study, the
spectral quality of the image data was shown again, and similar excellent results were
produced for the grayscale panel calibration (ELM) method (Figure A2) as described in [38].
In determining the panel reflectances in the WPM-calibrated images (Figure A3) and
regressing them with the panel reflectances, the quality of the WPM calibration method
was successfully tested (Figure A4). The easy-to-use calibrated VNIR/SWIR spectral
image data sets could be processed to derive plot-specific vegetation index reflectance
values. An appropriate methodology was elaborated in previous studies [23,38]. The high
sensitivity over almost the entire NIR/SWIR range of the InGaAs sensors used provides
a high signal-to-noise ratio, which is crucial according to Stroppiana et al. [20], and such
sensors are a missing technology for crop trait monitoring. NIR-enhanced silicon-based
VIS imagers are mainly affected by this issue due to a drop in sensitivity at their spectral
detection limits. However, non-enhanced InGaAs sensors (900 to 1700 nm) also reach their
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spectral limits in the NIR, with steep sensitivity drops at both spectral ends. For this reason,
VIS-NIR-enhanced InGaAs sensors (600 to 1700 nm) have advantages as they partially
overcome these problems, especially in the NIR/SWIR domain.

Comparing the tested image reflectance calibration techniques (ELM and WPM, see
Section 2.5), both performed similarly (Tables 4–6), with slight differences in R2 values
dependent on the data set but not systematic. Thus, distinct recommendations on specific
index-calibration method combinations could not be identified. This observation is again
consistent with the findings of Jenal et al. [38].

5. Conclusions and Outlook

The results presented in this study indicate that the VNIR/SWIR multi-camera system
camSWIR is suitable for acquiring spectral image data in the NIR/SWIR. The derived
vegetation indices were demonstrated to be capable of estimating agronomic relevant crop
traits in winter wheat. In comparison with destructively measured crop trait data, both
tested VIs (GnyLi and NRI) reached high estimation accuracies (R2: 0.73 to 0.87) in the
regression models for validation.

The findings of this study further imply that by applying the proposed multilevel crop
trait estimation workflow, biomass-related crop traits can be estimated in regression models
using SfM/MVS-derived CH data from UAV RGB imagery. Such applications are beneficial
for a reliable assessment of crop traits using UAV data since the availability of ground truth
data is most often the limiting factor. In this study, this workflow’s implementation led to
bivariate regression models based on both NIR/SWIR VIs and the estimated crop traits,
based on UAV-derived crop heights, which reached high accuracies (R2: 0.57 to 0.67).

The CH data for 2 June, which were considered unrealistic since they suggested a
drop in the seasonal crop height development, raise the intriguing research question of
this method’s limitations. Therefore, this phenomenon requires further investigation and
methodological improvements in order to avoid compromising effects. Alternatively, CH
derived from UAV LiDAR data should also be investigated.

The results presented here are based on data from a single observation data. Thus they
are noteworthy but not yet representative and need to be confirmed by further studies.
Future evaluations of the camSWIR imaging system using multi-temporal and multi-year
data acquisition campaigns on a winter wheat field trial are planned. To allow for a compar-
ison with established methods, such evaluations optimally also include data from airborne
VNIR imaging systems and spectral ground truth using a portable spectroradiometer in
the field.

Given that future evaluations confirm the results of this study, spectral data collected
by the VNIR/SWIR multi-camera system can provide additional information for more
accurate yield estimation or efficient fertilizer management in precision agriculture.
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Appendix A. P4RTK Crop Height - Bar Plots
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Figure A1. Graphical visualization of CH values for all relevant flight dates and all winter wheat varieties of rows 1, 2, 3,
and 5 of the experimental field. The unexpectedly derived negative plant growth for the 2 June flight date by the crop height
workflow is mainly found in the N1 plots, with three exceptions. Another noticeable phenomenon is the drop-in crop growth
of variety no. 3 in all N1 stages of flight date 1 July. The corresponding erroneous CH values are marked with a hatched
overlay in black.
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Appendix B. Reflectance Calibration by Grayscale Panels (ELM)
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Figure A2. Regression analyses of the grayscale panel DN values measured in the flat-field corrected
image data and the reflectance of the gray panels, measured by a portable ASD FieldSpec3 spec-
troradiometer (Malvern Panalytical Ltd, Malvern, United Kingdom) (ASD). For each of the four
wavelength bands (a–d), five images were analyzed, and the resulting DNs of the respective gray
panels were averaged. (p < 0.001 for all regression models).

Appendix C. WPM Calibration Method Test

Figure A3. Last step of a developed Python script to determine the averaged pixel values of selected
areas. Here the resulting grayscale panels’ reflectance values for one WPM-calibrated image are
displayed. The same script is used when determining the average digital numbers of the grayscale
panels in the flat-field calibrated images for deriving the transfer function for converting the DN to
reflectance values.
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Figure A4. Regression analyses of the gray panel reflectance values in the WPM-calibrated
images and the reflectance of the gray panels, measured by a portable ASD FieldSpec3
spectroradiometer (Malvern Panalytical Ltd, Malvern, United Kingdom) (ASD). For each
of the four wavelength bands (a–d), five images were analyzed, and the resulting re-
flectance of the respective gray panel was averaged. (p < 0.001 for all regression models).
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