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Abstract: By 2050, two-third of the world’s population will live in cities. In this study, we develop a
framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW)
from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was
extracted to generate labelled data for ten classes, including three classes representing low, middle,
and high level of imperviousness. We used the output of the 2017 classification and information
based on radiometric bi-temporal change detection for retrospective classification. Besides spectral
bands, we calculated several indices and various temporal composites, which were used as an
input for Random Forest classification. The results provide information on three imperviousness
classes with accuracies exceeding 75%. According to our results, the imperviousness areas grew
continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha,
comprising around 30% increase. The information on the expansion of urban areas was integrated
with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis
and the integration of population data, the spatial heterogeneity of urban expansion and population
growth was analysed, showing that the urban expansion rates considerably excelled population
growth rates in some regions in NRW. The study highlights the applicability of earth observation
data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and
targeted planning.

Keywords: impervious surface; Landsat time series; change detection; SDG 11.3.1; population change

1. Introduction

An urban sprawl that often results in the conversion of natural vegetation cover and
the expansion of the spatial footprint of impervious surfaces is one of the most striking land-
use changes. Urbanization, which is caused by economic development and continuous
population growth, as well as changing lifestyles, and residential and retail uses within the
urban fringes is one of the most important drivers of terrestrial change [1,2]. As the global
trend of urbanization is expected to further increase the urban share of the world population
from about 55 percent in 2018 to 68 percent by 2050 [3], understanding transformations of
urban areas, and navigating those transformations towards more sustainable path-ways is
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of high societal relevance. Growing urbanization makes urban areas highly dynamic [4],
thus, making the research on the detection of land-use patterns of great importance.

One of the critical components of rapid urbanization is the expansion of impervious
surfaces. These areas, such as building rooftops, roads, parking areas, which comprise
residential, industrial, or commercial land continuously take over large areas of natural and
semi-natural land (e.g., grassland, forest and cropland area). The main part of urban areas,
the area and dynamics of impervious surfaces can be used as an essential indicator for
evaluating the degree of urban sprawl [2,5,6]. Therefore, the assessment of extent, spatial
patterns, and dynamics of impervious surfaces [7] is crucial in further understanding the
impacts on urban development, population distribution and density, social conditions, and
fluctuating house prices.

Among the Sustainable Development Goals (SDGs) Goal 11 highlights the importance
of “making cities inclusive, safe, resilient and sustainable.” The targets associated with
this goal, namely target 11.3, focuses on the sustainable urbanization and improvement
of opportunities for participatory, integrated and sustainable urban planning and man-
agement [8–10]. Specifically, the indicator SDG 11.3.1, defined as the ratio of the land
consumption rate to the population growth rate, is used to describe the relationship be-
tween urban expansion and demographic change. A global study in 2011 shows that urban
areas have grown more than three times as much as the urban population [11]; studies at
national level showed a difference of three-to-five times [12]. Considering that the spatial
and demographic changes in the urban areas are essential to understanding the progress
towards sustainable growth, assessment of the linkages between urban expansion and
demographic change can be beneficial for sustainable urbanization, as well as targeted
planning, in order to effectively monitor land consumption growth [13].

In order to monitor progress towards SDG 11 and accompanying targets, such as SDG
11.3.1, there is a need for accurate and timely representation of different aspects of urban
conditions, including land cover and land use (LC/LU) [14]. The assessment of urban
change and expansion can deeply benefit from Earth Observation (EO). It is recognized
as one of the main tools for urban monitoring as it provides continuous spatiotemporal
data [15–18]. Based on Remote sensing (RS) images and derived metrics different methods
for urban mapping have been developed [19,20], such as per-pixel sub-pixel (linear spectral
unmixing) analysis, and data fusion with volunteered geographic information [18]. EO has
the capacity to significantly supplement to demographic and other spatial data, at a large
scale, at varying spatial resolution, and repeatedly over time [10,11], which can be used
both in the SDG framework [6,12,13], and in general, for the development of urban develop-
ment indicators [14,21]. These indicators often rely on medium or high-resolution satellite
image-based classification using per-pixel, sub-pixel (based on vegetation-impervious
surface-soil model), and object-based methods. Among these methods, sub-pixel informa-
tion extraction, with different algorithms based on spectral mixture analysis, have been
developed [5,6,22]. Nevertheless, these models tend to overestimate in regions with small
impervious areas and underestimate in regions with large proportions, due to the similarity
in spectral properties among vegetation, soil, and impervious surface materials [23].

Several methods have been described for satellite-based imperviousness change anal-
ysis, such as pre- and post-classification approaches. The multi-temporal stacked images
are classified directly when using the pre-classification approach. Although it has been
shown to be accurate for impervious surface mapping, it requires comprehensive reference
data, including both land cover labels, and information on change type [2,24–26]. The
post-classification analysis classifies each image individually, and information regarding
the change is derived based on per-pixel comparison [27,28], nevertheless, the limited
availability of multi-temporal retrospective reference data has been a challenge [29].

Several global products exist that map settlements, which were produced with the
use of RS data, such as the Global Human Settlement Layer (GHSL) [30], the Global Urban
Footprint (GUF) [31] and the World Settlement Footprint (WSF) [32]. These products have
a high spatial resolution, abstract artificial land as built-up areas and urban footprints,
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and have global coverage. Furthermore, at a European level, Copernicus high-resolution
layers provide several thematic layers, including the imperviousness level [33]. Although
the data have high spatial resolution and relevant thematic context, it is only available
for five-time steps (2006–2018), thus, limiting the analysis of densification processes to a
smaller, recent time interval. Besides the limitation of different continental to global land
cover products, with the limited coverage over time, available long-term products often
lack thematic context and present data that support the analysis of single class (built-up
areas/urban/settlement) changes [9]. Therefore, within-class densities and their dynamics
are often not assessed.

Urbanization has been one of the most prominent change processes in Central Europe
coupled with simultaneous sociodemographic changes [34,35]. Around 73% of the Euro-
pean population lives in cities, which is projected to reach 82% by 2050. The expansion of
built-up areas was observed in most regions of Europe, even in areas where the population
has declined [36]. In Germany, the land consumption and reallocation of natural and agri-
cultural land to built-up and transportation-related areas exceeds 60 ha per day [24,37,38].
Although in recent years, artificial development in Germany has shown decrease, espe-
cially for diffuse residential sprawl, the area around industrial and commercial sites has
increased significantly during 2006–2012, which was followed by decline in the period 2000–
2006 [39]. Therefore, the need to monitor and accurately quantify these changes increases.
In Germany, in general, but also in the German federal state of North Rhine-Westphalia
(NRW), parallel development has been observed, with a distinct growth of settlements
and transportation infrastructure. In the national sustainability strategy, presented in 2002,
the 30-ha goal was introduced by the German government aimed at reducing Germany’s
land consumption to a maximum of 30 ha per day until 2030 [4]. Although the daily land
consumption has declined during the past years, it was still at 10 ha per day in NRW [40].
Furthermore there were changes applied to the cadastral data recording, which made the
year-to-year comparison challenging. Alongside the introduction of ALKIS (Official Real
Estate Cadaster Information System) as the official real estate cadaster information system,
all German federal states have replaced their previous records. In NRW, the last cadastral
authorities switched over in 2015. With the changes in some of the categories of cadastral
system [41], the areas belonging to the category “urban” have not changed much in terms
of quantity, but a lot in terms of location.

Based on this, the objectives of this study are; first, to implement an automated
retrospective classification approach for observing land use and imperviousness dynamics
during the last 30 years; second, to analyze the spatial trends of urban sprawl in NRW,
and; third to assess the intensity of densification and population dynamics to support the
monitoring of SDG indicator 11.3.1.

2. Study Area and Data
2.1. Study Area

The study area covers the German federal state of North-Rhine Westphalia (NRW)
(Figure 1). It is the most densely populated state in Germany, counting 526 persons
per km2 [42]. NRW has 396 municipalities, including 22 independent cities. Different
LC/LU characterizes this area. Around half of the state area is covered by seminatural
arable lands, and forests cover 20%. Built-up areas comprise around 20% of the area. The
area includes the Rhine-Ruhr Metropolitan Area (RRMA) (Figure 1), which is the largest
metropolitan region in Germany with over 10 million inhabitants [42], and which has
the largest area of continuously high urban sprawl [36]. Although the population has
decreased during the last decade in NRW, the population has grown from 1985 to 2017
by more than 7% [42]. Unlike the trends within the RRMA mentioned above, some areas,
such as Cologne and Düsseldorf, which are the largest cities in NRW, had a continuous
population increase. During the same period, the land area within NRW dedicated to
settlement and transportation infrastructure increased [40]. Accordingly, the study area
is heterogeneous and challenging when it comes to monitoring urban change dynamics,
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along with the highly urbanized areas, it comprises rather rural areas that are currently
experiencing high urbanization rates.
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Figure 1. North Rhine-Westphalia (NRW), western Germany with the highlighted Rhine-Ruhr Metropolitan Area (RRMA)
and cities with big population.

2.2. Data

Due to the study’s long time-span, Landsat surface reflectance Level-2 data (https:
//espa.cr.usgs.gov/, last accessed on 24 April 2021) were selected as the primary source of
data. We targeted at 5-year steps from 1985 and downloaded data for 1985, 1990, 1995, 2000,
2005, 2010, 2015, and 2017. Landsat sensors (TM, ETM+, OLI) provide advantages for urban
growth monitoring and change detection, in terms of spatial resolution (30 m × 30 m),
spectral characteristics (visible, near infrared, shortwave infrared, thermal infrared), and
temporal coverage.

As the primary source of reference information, official geodata from the German
Authoritative Topographic-Cartographic Information System (ATKIS) was extracted, in
order to generate labeled data for 10 classes. For the classes water, coniferous, mixed, and
deciduous forests, arable land, grassland, and open-pit mine samples were extracted from
the Digital-base Landscape Model (BASIS-DLM) for 2017. In ATKIS DLM, the topographic
features of the landscape are described by point, line, and shape in vector format with
information describing residential area, traffic, vegetation, water, administrative area,
and relief forms, with each category containing additional levels (e.g., different types of
roads) [16]. ATKIS data are available since 1990, and the data are continuously updated.
Unfortunately, it is not possible to reconstruct past time steps from the official release.
Therefore, reference data exists only for 2017 in this study. In order to further interpret the
change patterns in the study area, population data for administrative regions in NRW were
extracted and analyzed [42].

https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
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3. Methods

The proposed method can be summarized in three major steps (Figure 2). The first
step is data preparation and pre-processing of Landsat images. The second step is the
baseline classification, implemented for the year 2017, which included the generation of
labeled data for three imperviousness classes as well as the classification with a land-use
map as an output. In the third step, we perform a per-pixel change detection analysis to
detect pixels that are stable between two-time steps, and thus, can be used as an input for
classification. This procedure was iterated for the years that preceded 2015, resulting in
five change detection analysis. Detailed procedures of the approach are described below.
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Figure 2. Workflow for land use classification presented for baseline year and 2015. For the preceding timesteps, the changes
are calculated with the last image as the reference, and the ATKIS data are limited to the unchanged areas between two
consecutive time steps.

3.1. Data Processing

To overcome the impact of cloud and cloud shadow, we used the FMASK algorithm for
Landsat cloud masking [43]. Images with more than 80% clouds were excluded from further
analyses. Following the cloud mask, we calculated spectral indices, namely the Normalized
Difference Vegetation Index (NDVI) [44,45] and the Normalized Difference Water Index
(NDWI) [46], as well as Tasseled cap wetness, greenness and brightness (Table 1) [47]. We
implemented a pixel-based compositing approach before the classification procedure and
calculated temporal metrics [48–51] (e.g., 10th, 25th, 50th, 75th, 80th and 90th percentiles of
annual time series, as well as a minima and maxima for both annual and growing season
time series), which resulted in composites for each target year. We extracted eleven types of
image features from each compositing result, including six surface reflectance (green, blue,
red, NIR, SWIR1 and SWIR2) bands and the spectral indices (NDVI, NDWI, TC greenness,
wetness, brightness). As there were differences in the coverage of cloud free pixels during
different years, the imagery was reduced to the growing season (e.g., 1985, 2010). Therefore,
the total number of input features that was used in a single year classification was 99. Since
it was not possible to generate a gapless dataset for 1985 the imagery from 1986 was used
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as well. Due to the low quality of the composite in 1995, this timestep was excluded from
further analysis.

Table 1. Input variables used in LU/LC classification.

Input Description Compositing

NDVI Normalized difference vegetation index
NDWI Normalized difference water index

TCC Tasseled Cap Components (greenness,
wetness, and brightness)

Minimum, maximum, 10th, 25th, 50th, 75th,
80th and 90th percentile, mean over growing

season (April-September) and year
Landsat TM, ETM+ and OLI bands Green, Blue, Red, NIR, SWIR1, SWIR2

3.2. Land Cover and Land Use Classification

To create the land-use maps for seven timesteps, the Random Forest (RF) [52] classifier
was selected, as it is known to be robust for large-area land cover classification [53–55],
and specifically useful with a large number of features [2]. For all classifications, the RF
classifier was implemented with 500 trees and the square root of the total number of input
variables as the number of variables to split at each node. The analysis was mainly carried
out with R statistical software (randomForest package [56]) [57].

As one of the aims of the study was to estimate the changes with the differentiation
of several imperviousness classes, an additional step was carried out for the generation
of samples for the baseline year. First, regression was run based on ATKIS data. The
data in ATKIS DLM, which represents residential areas, as well as roads were used. On a
generated 30 m grid, the percentage of the cover of each grid cell with different built-up
surfaces was estimated. Then RF regression was used to create a continuous layer at 30 m
resolution showing the degree of imperviousness. Based on this layer, three classes of high,
middle and low imperviousness samples were separated based on the percentage of the
impervious area, corresponding to higher than 80%, 40–80% and less than 40% impervious
surfaces per pixel. [22,58,59]. Similar classification schemes can be observed in other
products, such as Corine Land cover, where continuous urban fabric class corresponds
to areas with more than 80% imperviousness [60]. This approach has been shown to be
suitable for deriving consistent classification results in urban areas with the required high
precision. Furthermore, it identifies which regions experience scattered, diffusive, and
dispersed urban growth. Combined with the thematic information, representing the other
classes, RF classifier was run for 2017 with the use of 20,000 samples. The classes represent
both environmentally and socio-economically important classes that can also capture the
changes during the time span of the study. These classes include vegetated areas, such as
forests, croplands and grasslands, as well as impervious areas. We separated water class
to capture water bodies in the study area. As NRW includes highly industrial areas with
formerly intensive coal mining, we included a separate class for open pit mine, in order to
reduce the misclassification of these areas with urban classes.

Following the generation of accurate output for the baseline year, the Iteratively
Reweighted Multivariate Alteration Detection (IR-MAD) was used [61,62], in order to
derive the areas with no change, which are the basis for the extraction of reference samples
for the classification of the preceding timestep. The IR-MAD transformation identifies
suitable invariant pixels for radiometric normalization with a multivariate change detection
algorithm [41] that iteratively increases the weight of non-change observations, and thereby,
enhances the discrimination of substantial spectral changes between images from different
time periods [63,64]. For our analysis, only the median composites of spectral bands and
indices (in total 11 bands) were used in the change detection procedure, and a threshold of
0.25 was chosen for the chi-square image based on the IR-MAD algorithm to extract the
unchanged area.

Finally, based on baseline classification and change detection, we applied a stepwise
classification framework to former years by selecting new training samples using spectral
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information from unchanged pixels. Due to the changes between the timesteps and the
subsequent decrease of the number of unchanged pixels, the number of samples decreased
with each timestep. We assessed the accuracy of the final maps based on confusion
matrices [65]. For the classification reference, we split the data randomly proportionally
for training and validation. From these, we derived overall accuracy (OA), as well as
producer’s (PA) and user’s (UA) accuracy.

The baseline map of 2017 was compared to the two available products at national
level [66,67].

3.3. Intensity Analysis and Comparison with Population Data

To further understand the underlying processes of land-use change and urban growth
and to evaluate whether the growth was sustainable, intensity analysis was applied. In
general, the intensity analysis evaluates the predicted uniform rate of change compared to
the observed rate of change among categories [68,69], characterizing the process of land
use change. It also evaluates the land use change by setting the stability. Although the
stable land use conversion may not always result in sustainable development, it can still be
an indicator and basis for it [70].

Furthermore, the population data at a district level were used to compare the rates
of urban growth and population change and calculate the ratio of land consumption rate
(LCR) to population growth rate (PGR). It is based on the ratio of Land Consumption Rate
and Population Growth Rate (LCRPGR) (Equations (1)–(3)) [8,51,71],

LCRPGR = LCR/PGR (1)

LCR =
LN

(
Urb(t+N)/Urbt

)
y

(2)

PGR =
LN

(
Pop(t+N)/Popt

)
y

(3)

where Urbt and Urb(t+N) is the areal extent of the land consumed at the initial reference
year t and at the final year t + N; Popt and Pop(t+N) input the total population of the spatial
unit at the initial reference year and at the final reference year, y is the number of years
between t and t + N.

4. Results and Discussion
4.1. Land-Use Classification and Changes between 1985–2017

The classified maps differentiated between ten classes: Arable land, grassland, decid-
uous forest, coniferous forest, mixed forest, water, open-pit mines as well as low, medium,
and high levels of imperviousness. The baseline classification of 2017 as well as the levels
of imperviousness based on RF regression are shown in Figure 3. The resulting maps had
acceptable quality, exceeding 75% of overall accuracy. Table 2 presents the OA, UA and
PA for all time steps and UA and PA for the three impervious classes as the main target
of the study in particular. The baseline map of 2017 was compared to the two available
products at national level [66,67]. The maps had high agreement, especially for the classes
of high- and mid-levels of imperviousness with the interim land cover product for class
build up [66]. Whereas, all imperviousness classes had high agreement with class artificial
land in the case of a second product [67].
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for 2017 baseline time step.

Table 2. Accuracies of obtained maps.

Year OA
PA for Low, Middle,

and High
Imperviousness Class

UA for Low, Middle,
and High

Imperviousness Class

Accuracies for
Aggregated Urban Area

Accuracies for
Aggregated Non-Urban

Areas

PA UA PA UA

2017 89.0% 89.3 90.5 94.4 89.4 90.5 94.4 96.3 93.04 92.7 96.2
2015 87.0% 77.9 93.9 90.1 81.5 90.7 90.1 94.6 91.3 90.9 94.7
2010 80.0% 62.9 77.9 90.5 69.3 83.2 87.5 93.1 90.7 91.2 92.3
2005 79.1% 82.9 76.2 89.9 78.2 92.4 82.6 94.8 92.1 94.6 96.7
2000 80.2% 63.1 78.1 90.2 69.1 83.5 87.8 93.1 96 96.2 93.3
1990 75.3% 54.9 67.6 90.1 65.1 79.7 80.8 91.3 95.8 95.8 91.4
1985 77.3% 61.1 69.8 87.4 74.5 75.7 82.9 87.7 95.9 96.1 88.3

We observed an accuracy decrease for the retrospective classification. Several factors
can cause this accuracy decrease. First, due to the change detection, the number of un-
changed pixels that can be used for training and validation decreases over the years. In the
case of our study the total number of reference data decreased by 50% from 2017 to 1985.
At the same time, we observe a large drop in accuracies for the time step of 1990, which has
the biggest interval for change detection. Furthermore, the resolution of Landsat (30 m),
which is higher than the size of many urban objects, can be the cause of mixed pixels and
result in misclassifications [15]. We observed this issue, especially for low imperviousness
levels, which exhibited lower PA and UA.

In contrast, the high impervious class was the most accurately classified class, with
accuracies exceeding 80%. Another reason for the drop in accuracy can be the reduced
data availability before the launch of Landsat-7 in 1999. Among the input variables,
NDVI and NDWI, TC brightness minima and maxima, as well as green, red, NIR, and
SWIR median and 90th percentile were among the essential input bands for classification.
The combination of these metrics provided information on three imperviousness classes,
helping to minimize misclassifications by minimizing seasonal effects and changes.

For 32 years, urban expansion resulted in large-scale increases in other land-use types
transforming into a different level of imperviousness. The transitions of land-use are
shown in Figure 4. The year 2005 was selected as a middle timestep, as it followed the
implementation of the national sustainability strategy in 2002. It can be seen that arable
land, forests, and grassland are the primary land resources for urban expansion. Transitions
cause the increase in the low imperviousness class from arable land, grassland, and small
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changes in the forest classes. Simultaneously, a high level of dynamics can be observed
between the three imperviousness classes, indicating a transition from low to middle and
high level of imperviousness. The analysis of the maps shows that impervious surfaces
comprised about 552,464 ha in 1985. Three decades later, impervious surfaces increased by
more than 167,000 ha in 2017. The multiyear classification can contribute to quantification
of the changes in areas where time series of reference data is not available. Specifically,
according to the study of the Federal Institute for Research on Building, Urban Affairs and
Spatial Development concluded that an accurate monitoring of land consumption during
the conversion period from ALK/ALB to ALKIS, i.e., before and after 2016, is not less
than difficult [72]. Three alternative databases were compared but none of them fulfilled
the criteria of a possible replacement. ATKIS and LBM-DE (Digital land cover model for
Germany) data are often outdated. Accordingly, the suggested approach provides insights
on land consumption in NRW with a high resolution and temporal consistence. This makes
the data of high value for researchers and the official statistical offices.
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Figure 4. Sankey plot for land-use changes observed in NRW from 1985 to 2017.

Because the degree and dynamics of imperviousness can be used as critical indicators
for assessing the sustainability of land-use changes, we analyzed the intensity level of the
changes (Table 3). The interval level of intensity shows the size and speed of change across
different time intervals. The category level of the intensity analysis gives information about
which land use category is relatively dormant or active during a particular time interval.
During our study period, the 2005–2017 interval was fast compared to uniform growth,
while the earlier 1985–2005 interval was slower than uniform growth.
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Table 3. Intensity of change.

Intensity Change Category Time Interval Annual Intensity of Change (%)

Interval level
1985–2005 1.71
2005–2017 2.72

Transition level
1985–2005

From Low to middle 0.49
From low to high 0.32

From middle to high 1.16

2005–2017
From low to middle 1.38

From low to high 0.24
From middle high 0.62

At the category change intensity of grassland, water, forests, as well as low and high
imperviousness exhibited greater than the average intensity during 1985–2005, indicating
active change. The changing intensity of arable land was less than the average intensity,
indicating rather dormant change. Between 2005 and 2017, open-pit mine and the middle
imperviousness class exhibited greater than average change intensity. The rate at which
other land use categories are converted to imperviousness is higher than the transition rate
of imperviousness classes to other land use categories.

Based on the results of our intensity analysis, between 1985 and 2005 the high and
middle imperviousness classes were targeted from the low imperviousness class. In the
case of 2005–2017, transitions from low to high impervious level were largely avoided.

The gain intensity of impervious areas (Figure 5) in the first interval was higher than
the annual uniform intensity of 1.71 for the low and the high imperviousness classes, thus
making them an active land use category. During this period, other classes, such as arable
land or open-pit mine were dormant, with gain intensity lower than uniform. For the
second interval, compared to the uniform change rate of 2.72, the middle imperviousness
level was an active class. Coupled with the analysis at a community level (Figure 6), these
metrics can reveal the patterns of urban change. When considering the net urban growth,
the more rural eastern region in NRW had the highest relative gains during the last 30 years
(Figure 6).
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4.2. Land Consumption and Population Dynamics

Figure 7 shows the relationship between the LCR and PGR trends presented in the
LCRPGR. LCRPGR estimates for the period 1985–2005 are positive in most municipalities.
This shows parallel increase of both population growth and soil consumption rate. In
various areas, the ratio varies between zero and one. In these municipalities, a simultane-
ous increase in the population growth rate can be observed. In the period 2005–2017, the
proportion of municipalities that presented a negative estimate of LCRPGR was higher,
showing the soil consumption increase combined with urban population reduction. This
indicates that land use changes and population growth are not always in parallel, un-
derlining the detachment of population growth as the main underlying cause of urban
growth. Municipalities with high LCRPGR can be found in the peri-urban surroundings
of the Rhine-Ruhr metropolitan region and in the rural areas in the Northern part. As a
result, 1985–2005 was a period of rural growth (according to the population pattern in
Figure 7a), while 2005–2017 was a period of urbanization (i.e., growth of urban population,
rural exodus, Figure 7b).
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Figure 8 shows LCR and PGR, extracted for municipalities, RRMA, independent cities
and non-metropolitan regions. Land consumption mainly occurs in non-independent cities,
i.e., rural areas, and has accelerated in some rural municipalities. Population growth was
slower in RRMA than the rest in 1985–2005 but is equal in 2005–2019. However, PGR has
generally decreased. The average land consumption has lowered slightly for both RRMA
and other municipalities.

Using three imperviousness classes, distinct patterns have shown the densification
processes and conversions from low and middle levels to high imperviousness from 1985 to
2017 (Figure 9). This is an advantage compared to one single urban class in the classification
(Figure 6), which can omit patterns of the densification processes that can act as important
indicators of sustainable growth. In general, densification is preferred over expansion
and the development of new building areas since forests and agricultural areas can be
preserved. Nevertheless, continuous increases in densification hold challenges, such as
in logistics and urban climate [40]. This is the type of urban growth, which is the hardest
to monitor with binary classification. The observation of the class low imperviousness
and the transformation of that class to higher imperviousness levels provide the chance to
observe densification of metropolitan regions, but also observe modification of land use
for further ecosystem-oriented analyses. One of the main limitation of the study is the
inaccuracies for the low imperviousness class, but they are still acceptable, considering the
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heterogeneity of the class and the spatial resolution of the dataset used. Nevertheless, our
study allows land consumption information to be updated at a spatial scale adequate for
land use planning at an administrative level. As opposed to existing datasets, our results
reveal spatial patterns of densification and intensification within urban agglomerations.
The approach considered the specific German situation, where the often conflicting interests
in land use planning lead to small-scale changes and distinct patterns of densification in
urban centers, and extensive land use conversion in the urban fringe. These processes
are neither adequately addressed in existing global products nor in other approaches of
urban change monitoring. As opposed to most published papers that often focus on urban
areas with high growth rates, our study covers a heterogeneous region with predominantly
small-scale urbanization, resulting in densification rather than more areal growth. We
provide a methodology that allows us to detect and quantify these specific changes, which
can have fundamental implications for socio-economic processes. As a result, the applied
methodology contributes to urban mapping by offering a reliable way to account for
changes with limited data and further extends the approach for SDG indicator estimation.
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Although the applied approach showed potential for urban growth analyses, further
investigations can be improved by integrating other datasets, such as night time lights.
The addition of SAR data from TanDEM-X and Sentinel-1 can further delineate the ur-
ban structures and accurately reveal densification processes [73]. This study focused on
the classification of imagery at a regional scale. In future studies, Landsat data can be
complemented with Sentinel-2 and applied at a larger scale to derive LU/LC information
at both high spatial and thematic resolution. Future research should focus on method
transferability on multiple levels. The approach can be implemented and applied over
the larger scale with the availability of the change detection algorithm on Google Earth
Engine [74] and available Landsat time series.

5. Conclusions

This study presents an approach for automated retrospective LU/LC classification
with the use of the spectral information of unchanged pixels. The method’s performance
indicates that it is a promising approach for quantifying the changes in land use, including
the derivation of several levels of impervious surfaces, with the use of reference data
only for the baseline timestep. The analysis indicates a continuously growing impervi-
ousness area during 1985–2017 in our study area. Further analysis of intensity showed
the importance of identifying three imperviousness levels, which can better describe the
densification processes of the urban areas in the study site. Using the approach, land con-
sumption information was updated at a spatial scale, adequate for land use planning at an
administrative level. By conducting an intensity analysis and the integration of population
data, the spatial heterogeneity of urban expansion and population growth was assessed.
We observed that the urban expansion rates considerably increased population growth
rates in some of the regions in NRW, indicating more expansive urban growth patterns.
Land consumption has accelerated in at least some of the rural municipalities. Furthermore,
it is much lower in the RRMA as compared to the remaining municipalities. The analysis
of LCRPGR showed that, especially for 2005–2017, land use change and population growth
were not simultaneous. The former relationship of population growth and urban growth
can be dismissed for the study area in Western Germany. This is an important finding as it
proves that when it comes to SDG 11.3.1 urban, as well as rural areas are not maintaining
an efficient land use policy, so that a sustainable settlement development until 2030 is hard
to be seen in the Federal State of North Rhine-Westphalia. Especially the periurban regions
are experiencing an inefficient settlement growth. The study highlights the applicability
of earth observation data for accurately quantifying urban change for further sustainable
targeted planning practices.
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