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Abstract: Broadband emissivity is a crucial parameter for calculating the radiation budget, still, it
adopts a constant value in land surface models due to a lack of adequate observations. Arid regions
have complex underlying surfaces and estimations of the broadband emissivity in such areas
suffer from high spatial variation and uncertainty. Here, we propose a novel method for estimating
broadband emissivity in the 8-14 um range based on Fourier-transform infrared spectroscopy
(FTIR) observations, moderate resolution imaging spectrometer (MODIS) emissivity, the leaf area
index (LAI) and reflectance products. The proposed method exploits FTIR observations, MODIS
single-channel emissivity, reflectance and the LAI to fit a linear regression of the broadband
emissivity, so the optimal equation includes emissivity, reflectance and the LAI, with an R? and
root-mean-squared error of 0.942 and 0.08. Then we used the proposed method to generate a
broadband emissivity map of Northwest of China, the broadband emissivity estimated by the
method showed higher variations and finer distribution in arid areas and sparsely vegetated
regions compared to data from the global land surface satellite and land model. An analysis of
the relationship between the broadband emissivity, land-use type and soil moisture found an
existing but not linear relationship, which indicated that the relationship was complicated under
the inhomogeneous surface of wetness and vegetation. In conclusion, our results suggest that
the proposed method can accurately estimate the broadband emissivity in arid regions. In future
research, we will test the data in a land model.

Keywords: broadband emissivity; FTIR; MODIS; LAI arid region

1. Introduction

The land surface thermal-infrared (TIR) broadband emissivity (BBE) is a key parameter
used to calculate the Earth’s surface energy budget [1-5]. The emissivity is defined as the
ratio of energy emitted from natural material to that from an ideal blackbody at the same
temperature [6]. Typically, the broadband wavelength of BBE ranges from 8 to 14 um, which
is used to determine the long-wave radiation in the atmosphere from the surface and has
been used in the land surface models and general circulation models [7-9]. However, due to
the lack of reliable regional emissivity observations, the BBE used in the land surface model
was derived from parameter tables by a look-up table and defined according to each land-
use type. Thus, every kind of land use matches a constant, or simple schemes are adopted
in surface modeling frameworks [10-12]. For example, the unified Noah land model of
the National Center for Atmospheric Research Applications Laboratory uses a look-up
table from VEGPARM.TBL to match the vegetation categories of each cell to acquire the
land use type. It then calculates the emissivity according to the areal fractional coverage of

Remote Sens. 2021, 13, 1686. https:/ /doi.org/10.3390/1s13091686

https:/ /www.mdpi.com/journal/remotesensing


https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7335-801X
https://orcid.org/0000-0003-2386-3485
https://doi.org/10.3390/rs13091686
https://doi.org/10.3390/rs13091686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13091686
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13091686?type=check_update&version=2

Remote Sens. 2021, 13, 1686

20f 17

green vegetation [13-15]. This approach will cause an obvious difference between estimated
and real BBE. Previous sensitivity studies by a climate model indicated that a decrease of
BBE by 0.1 would increase the simulated surface and air temperatures by about 1 K and
decrease the upward radiation more by than 8 W-m~2 over the Sahara Desert. One feasible
way to overcome this lack is to use remote sensing data to retrieve the BBE. Past research
suggested that satellite-derived BBE could improve the performance of climate models [6].
In addition, remote sensing data with a higher spatial and temporal resolution can be helpful
for land surface process studies at the regional scale and serve as medium-scale data to
validate coarse-resolution data, thereby improving our understanding of land-atmosphere
interactions [16].

In recent decades, great efforts have been made to determine BBE from remote sensing
thermal infrared (TIR) data [17]. Three such methods can be employed to estimate regional
land surface BBE. The first method is classification-based and involves measuring the BBE
from each type of land surface in a laboratory, then assign the measured value for the type
of land surface. Wilber et al. mapped the global BBE with 10" x 10’ spatial resolution,
the global surface was divided into 18 types and each cell was filled with a constant
BBE that was measured by spectral data [18]. With the development of remote sensing
technology, fractional vegetation coverage (FVC) and normalized difference vegetation
index (NDVI) have been used to estimate BBE. This approach has been widely used to
retrieve land surface temperatures by predetermining surface emissivity [19]. This method
obtains a highly accurate static BBE value of specific surface types, but one disadvantage is
that it cannot represent the inhomogeneous surface and it is hard to obtain high-quality
BBE. The second method involves converting the emissivity from TIR narrowband to
broadband by adopting a linear combination. Previous studies proposed an approach
to using the moderate resolution imaging spectroradiometer (MODIS) data or advanced
space-borne thermal emission and reflection radiometer (ASTER) narrowband emissivity
data to estimate the BBE [7], Ogawa et al. mapped the North African BBE (8-13.5 um)
using the ASTER emissivity product (90 m), the range of the BBE was found to be between
0.85 and 0.96 for the desert [3]. Jin et al. converted MODIS TIR narrowband emissivities
into BBE, deriving the estimated BBE improved the performance of global climate models
over desert areas [6]. As the number of satellites with TIR channels increases, this method
has been extended to Landsat, Fengyun Visible Infrared Imaging Radiometer Suite (VIIRS)
and Spinning Enhanced Visible Infra-Red Imager (SEVIRI) satellite Data [19-22]. Based on
MODIS narrowband emissivity products, the second method has been used to produce a
global land surface satellite (GLASS) BBE dataset for the years from 1981 to 2010 [23-25].

The third method directly establishes a relationship between field-measured spectral
data and the narrowband emissivity to estimate the BBE [26,27]. This method has practical
physics-based regression with the narrowband emissivity of the remote sensing data and it
is correlated with the real surface emissivity. Li et al. explored using this method based on
portable Fourier Transform InfraRed thermal spectroscopy (FTIR) and MODIS products to
estimate emissivity in the Taklamakan Desert (TD) and it examined whether this approach
could achieve higher accurate BBE than others, the range of the estimated BBE value range
from 0.89 and 0.91 over the desert [27]. Aynigar et al. figured out that the GLASS data
obviously overestimated the BBE across the TD. They performed coefficients optimization
of the GLASS broadband emissivity based on FTIR and MODIS data over the TD, which
estimated that BBE better agrees with field-measurements [28]. Previous studies suggest
that the third method is more suitable for BBE estimation of non-vegetated arid regions,
but areas with sparse vegetation should not be ignored, so the method still needs to be
improved for the entire arid region.

The accuracy of the first method of BBE retrieval is poor due to each type of land
surface has noticeable differences that result in uncertainty. Bare soil, for example, affects BBE
estimations owing to the soil texture, color and moisture. The ASTER narrowband emissivity
indicated that soil emissivity varies from 0.86 to 0.98 [29]. If we adopt a default soil BBE
value, the errors will exceed 0.1, which amplifies errors in radiation temperature in the surface
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radiation budget [10]. Thus, the first method is not acceptable for retrieving BBE estimations
in a model. The second method relies on different remote sensing products. These data have
different spatial or temporal resolutions. For example, the ASTER revisiting period is 16 days,
and the MODIS revisiting period is 8-day. Thus, the method is limited [7] and cannot be
extended to vegetated areas. Furthermore, MODIS NDVI products have poor data quality
over the vegetation-covered area, so the BBE derived from NDVI is incorrect in vegetated
regions [30]. Semi-empirical regression methods are often highly efficient at retrieval and easy
to implement. Thus, a high-quality vegetation parameter should be adopted. Carlson et al.
indicated that the leaf area index (LAI) has a high correlation with the BBE and described a
linear regression equation to estimate the BBE from Landsat data. This approach performed
well in vegetated areas [31]. Generally, surface spectral data is effective and can be used to
acquire the BBE directly. Liu used FTIR surface spectral measurements of the Taklimakan
Desert and calculated the BBE [32]. Cheng et al. performed field measurements validated by
MODIS land surface emissivity products (MOD11B1) over the hinterland of the Taklimakan
Desert [26]. The field-measured spectral emissivity is consistent with MODIS single-channel
narrowband emissivity. Unfortunately, the FTIR measurement method merely aims at point
observations and cannot obtain regional BBE estimations. Remote sensing data could be used
to measure regional narrowband emissivity but such data cannot represent broadband spectral
emissivity [33,34]. The three methods mentioned above exclusively use remote sensing and
spectral library data and land surface characteristics vary considerably. Li and Liu used
the MODIS narrowband emissivity and spectral data measured by FTIR fitted with a linear
regression equation to assess the BBE of the Taklimakan Desert. Although their equation
represented the BBE of the desert well and with high accuracy, it could not reflect the BBE in
vegetated areas and they did not establish the relationship with NDVI or LAL

Therefore, to mitigate the variation and uncertainty in land surface emissivity estima-
tions in arid areas, we propose a method to fit the linear regression equations to estimate
the BBE. The equations include the MODIS narrowband emissivity, LAI products and
field-measured spectral data. The proposed method exploits the advantages of both FTIR
and remote sensing, and we consider vegetated areas to improve the accuracy of the BBE
produced from MODIS data.

The structure of this paper is arranged as follows. The introduction of the study area,
remote sensing data, spectral measurements and BBE calculations are described in Section 2.
The physical mechanism and proposed method are introduced in Section 3. The results
and analysis are presented in Section 4. A discussion is provided in Section 5 and the main
conclusions are summarized in Section 6.

2. Study Area and Data
2.1. Study Area

Arid lands are commonly defined as regions in which the annual potential evapotran-
spiration (PET) greatly exceeds annual precipitation (P) [35-37]. Driven by the underlying
trend of global warming, this region is very sensitive to both climate change and land
use/land cover change [38,39]. This research focused on the arid land region in northwest
China, where land cover is dominated by bare soil and sparse vegetation, as shown in
Figure la. Our field-measurements were mainly taken in the Taklamakan Desert (TD), the
Gurbantunggut Desert (GD) and the Turfan Basin (TB). These regions have an extremely
arid climate. Among them, TD and TB average annual precipitation 10~38 mm, while
the average annual evapotranspiration is over 3200 mm, the soil texture of TD and TB
are sand and dark brown gravel (Figure 1b,c) and the hinterland of TD and TB without
vegetation [40,41]. GD has a mean annual precipitation of 135 mm, but its potential evap-
oration is more than 2000 mm, where land use is covered by sparse needle-leaved scrub
(e.g., Sacsaoul, Rose willow) as shown in Figure 1d, where soil texture is mostly sand and
clay [42]. The arid land is a sensitive region to climate change response, emissivity is an
important parameter for determining the surface radiation budget in climate, weather
and hydrological models [3], the higher accuracy emissivity of arid land contributes to



Remote Sens. 2021, 13, 1686 40f17

( a) 15E 80°0'E 35°0'E 90°0'E 95°0'E 100°0'E

40°0'N 45°0'N 50°0'N

35°0'N

improving the performance of models. This study proposes a new method based on FTIR
spectral measurement and MODIS products to estimate broadband emissivity, and this
work has a positive significance for climate prediction and simulation in the arid area.
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Figure 1. Field-measured sites of FTIR arid region from Google Earth (a) and surface picture (b-d).

2.2. Remote Sensing Data

The proposed method needs narrowband emissivity, reflectance and LAI products. The
narrowband emissivity is derived from MODIS land surface temperature and emissivity
(MOD11B1) products (https:/ /Ipdaac.usgs.gov/products/mod11b1v061/) (accessed on 10
November 2020). The data are tile-based, and grids in the sinusoidal projection are produced
daily at 5 km. The revisiting period is daily [17]. The MOD11B1 product is produced using a
physically-based day/night algorithm. It consists of 14 equations for the solution of 14 land-
surface and atmospheric parameters based on the day/night observations of the seven infrared
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MODIS bands (bands 20, 22, 23, 29, 31, 32 and 33) [43]. We collected bands 29 (8.40-8.70 um),
31(10.78-11.28 um) and 32 (11.77-12.27 um) because these bands emissivity values have a
high relationship with the BBE. MODIS band 31 is expected from laboratory data [44—46], and
these bands’ wavelengths are closer to the BBE wavelength in the range of 8 to 13.5 pm. In ad-
dition, MODIS channel 7 (MODO09A1) (https:/ /lpdaac.usgs.gov/products/mod09alv006/)
(accessed on 11 November 2020) was chosen because it has a high correlation with the broad-
band emissivity, and it is highest of all among the MODIS reflective channels [2]. The surface
reflectivity of soil and rock is determined by their mineral composition, as is their emissivity.
Generally, quartz-rich (5iO;) sand has higher reflectivity and a lower emissivity but mafic
minerals with lower SiO; content generally have lower reflectivity and a higher emissivity.
Cheng et al. proposed a disaggregation approach that utilizes the established BBE-reflectance
relationship to estimate high spatial resolution BBE for bare soils from Landsat surface re-
flectance data [4]. The LAl is a dimensionless quality that characterizes plant canopies. The
LAI is one of the plant biophysical factors that affect the canopy spectral reflectance of
plants and directly affects the emission of radiation [47]. The LAI products used here com-
prise MODIS MOD15A2H products (https:/ /lpdaac.usgs.gov/products/mod15a2hv006/)
(accessed on 18 November 2020). These data have the same spatial resolution as MOD11B1.

To evaluate the performance of our method, we chose the global land surface satellite
(GLASS) BBE products for comparison and analysis. GLASS products have been widely
used in remote sensing (http:/ /www.glass.umd.edu/) (accessed on 10 November 2020) [24].
Nevertheless, we used the global land cover map GLC2015 from the European Space Agency
(ESA) climate change initiative project (http://maps.elie.ucl.ac.be/CCI/viewer/download.
php) (accessed on 16 November 2020), which has a high accuracy classification beyond
74.58% and we applied it to a numerical weather forecast model [48,49]. The land cover
data were used to analyze the feature of BBE distribution and land cover. Soil moisture data
were used to interpret the relationship between the BBE estimations. The soil products of
Soil Moisture Active Passive (SMAP) Level-4 radiometer data (https://cmr.earthdata.nasa.
gov /search/concepts/C1920755724-NSIDC_ECS.html) (accessed on 15 November 2020)
were employed here [50] to investigate the characteristic distributions between soil moisture
and BBE.

3. Spectral Data and BBE Calculations
3.1. Spectral Data Measurements

We conducted the field measurements in June 2018 and the entire observation period
lasted for three weeks, the observation period was sunny and there was no precipitation
in the observation area before and after one week, so the land surface almost without
variation. The spectral data derived from the TD, TB and GD, and the date of the field
acquisitions of each region are 4 June to 10 June; 13 June to 15 June; 18 June to 22 June
2018, respectively. These regions are the typical arid areas, with widely distributed desert,
sparse vegetation. The observation sites are marked in Figure 1a. The observation path
crossed through the entire arid region. The Model 102 Portable FTIR Spectrometer (Model
102F), powered by a lead-acid battery, and a Labsphere gold plate were used to measure
the spectral data under a clear sky. The thermal emission at a wavelength spectral range
of 2 to 16 um was measured. It was detected at a spectral resolution range of 2-24 cm ™!,
with an indium antimonide (InSb) detector. The emissions at the wavelength (A) from
8-14 um were measured with a mercury cadmium telluride (HgCdTe) at 4 cm ™! resolution,
with a standard observation deviation of less than 1% [51]. The radiance of the instrument
was calibrated by a blackbody, jointed to the FTIR and controlled by the observed tem-
perature. The operating temperature was between air temperature and the land surface
temperature. Site measurements were repeated three times and were finished in 10 min
to avoid uncertainty and error. Most of the spectral measurements are located in areas
with barren soil that were sparely vegetated, because measuring the emissivity of sparsely
vegetated to nearly fully vegetated surfaces in the field is technically challenging [52].
The details of the observations and field measurements are described by Liu et al. [34].
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The emissivity spectrum was derived from the radiometric measurements by the iterative
spectral smooth temperature and emissivity separation algorithm [53]. Figure 2 shows the
derived emissivity spectra curve in the spectral range of 8 to 14 um over three types of arid
surfaces and plotted MODIS narrowband emissivity values denoted by circles in bands 29,
31 and 32 in the same position, MODIS emissivity are very close to the measured at the
specified wavelength. The emissivity of the driest Taklimakan Desert has the lowest value,
especially when the wavelength ranged between 8 and 12 um. The Turpan Basin is covered
by dark brown gravel and its emissivity value is slightly greater than that of the TD. The
GD is covered by sparse scrub and has a higher soil moisture, so has, comparatively, the
highest emissivity among three regions.

Calculated Emissivity

band 31 band 32

Taklamakan Desert, at Temp=38.19°C

Turpan|Basin, at Temp=51.9C

Gurbantunggut desert, at Temp=45.3C
T T T T

|
11 12 13 14
Wavelength(um)

Figure 2. Field-measured emissivity spectra of desert, barren soil and gravel. Land surface sites the over Northwest of
China arid region. The circles denote the emissivity values from MODIS bands 29 (red), 31 (yellow) and 32 (blue). These
three spectral observation points are respectively sites 7, 25 and 41 in Figure 1a.

3.2. Converting Spectral Data to BBE

Land surface emissivity values are required but not spectral curve values in the
8-14 um band [54,55]. The formula for converting wide-band surface emissivity spectra to
surface emissivity ¢ is as follows:

2 e (A)B(A, Ts)dA
& =

1
2 B(A, Ty)dA

where A; and A, are the wavelength range of the integral equation—namely, the thermal
infrared atmospheric window spectral wavelength range of 8 to 14 um [55], here, &5(A) and
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B(A, Ts) in the equation are continuous functions. To facilitate the calculation, the integral
equation is discretized as:

Ap

Y. es(A)B(A, Ts)dA

A=N
& =

@

A2
Y. B(A,Ts)oA
A=A,

To improve the accuracy, the wavelength range of 8 to 14 pum is divided into 375 in-
tervals of A in the calculation. Therefore, we use a MODIS thermal infrared narrowband
emissivity, which can be briefly described as

A
X-f fi(A)eaBa(T)dA

& =

Aiy ! ©)
TH0Bmar

where fi(A) is the spectral response function. According to the Equations (1) and (3), the
broadband emissivity can be represented by different thermal infrared narrowband emissiv-
ity linear combinations [56]:

4 AG+1)
Y [ eaBi(T)dA
=1 A3) . / 5
ey = - = Zgiﬁ i %Z Si€is 4)
[ BA(T)dA = =
Al
where ¢; and g; can be expressed respectively as
AGi+1)
J Bx(T)dA
v
;=20 )
J BA(T)dA
Al

Conceptually, g; is the coefficient of combination, which has a relationship with the
thermal radiation luminance of the blackbody and is independent of the emissivity of
a single band [57]. Based on these physical theories, we employ the thermal infrared
bands of emissivity from MODIS products to estimate the BBE. The reflectance of MODIS
channel 7 is sensitive to and fraction of vegetation and soil moisture; additionally, the
emissivity has a relationship with the soil texture, organic matter and soil moisture,
previous studies have demonstrated an empirical relationship between the BBE and
reflectance [53], so the reflectance also reflect emissivity variation [2]. Moreover, the LAI
has a high relationship with the BBE over vegetated areas [58]. The emissivity of MODIS
bands 30 is absorbed by ozone and this band has considerable uncertainty. Arid regions
have large areas covered by barren land and sparse vegetation, with high reflectance
and low emissivity. We propose three equations that involve the MODIS narrowband
emissivity, band 7 reflectance and LAI products in view of the above situation. These
three equations are expressed as follows:

egg = a4 - €9 +b-e31 + €3, (6)

egp = - €9 +b-e31+c-e3p+d-ay, )

egp =a-€x9+b-e31+c-exp+d-ay+e-LAI (8)
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where g, b, ¢, d and e are regression coefficients; €9, €31 and e3; are the narrowband emissiv-
ity of MODIS bands 29, 31 and 32, respectively; a7 is the MODIS channel 7 reflectance and
LAl represents the MODIS LAI product. Equation (7) comprises the narrowband emissivity
of MODIS bands 29, 31 and 32. Equation (8) adds the MODIS channel 7 reflectance based
on Equation (7). Equation (9) involves MODIS LAI products based on Equation (8). The
regression coefficients are the key to producing the regional BBE used to measure sites that
match the value from MODIS products that fit the linear regression equation to determine
the coefficients.

4. Results and Analysis
4.1. BBE Estimation Equation
Based on the proposed equations, we employed 44 in situ BBE measurements with

the value extracted from MODIS emissivity, reflectance and LAI products to calculate the
regression coefficients as follows:

e = 0.121ep9 + 0.462¢371 + 0.523¢3), 9)
EBB — 0.08829 + 0.485831 + 0.536832 —0.152 - a7, (10)
e = 0.07¢09 + 0.484¢3; + 0.436¢3, — 0.079 - a7 + 0.176 - LAL (11)

These three equations are assessed in Table 1. The R? and RMSE of Equation (9) are
0.83 and 0.17, respectively. The Equation (9) produced BBE exclusively from emissivities of
MODIS bands 29, 31 and 32 is not incredibly accurate because its lack of surface reflectance
would lead to cannot reflect the soil textures and minerals over complex underlying
surfaces. Equation (10) adds the reflectance, and thus the R? is reduced by 8.4% compared
to Equation (9). Reflectance provides more land use information and helps to improve the
BBE estimation accuracy. Equation (11) includes both MODIS channel 7 reflectance and LAI
products, the reflectance could represent the soil texture variation in spatial, and also LAI
can reflect vegetation distribution well. Its determination coefficient R? was 0.94, and the
RMSE was reduced to 0.08 compared to Equation (11). Figure 3 shows a scatterplot of BBE
estimated by Equation (11) and in situ field-measured BBE, it illustrates the estimated BBE
is close to the observed in the BBE value range from 0.90 to 0.92. The assessment results
indicated that the uncertainty of Equation (11) is about £0.006. Obviously, a significant
linear relationship existed between the BBE of estimated and field-measured. From the
above statistics, Equation (11) is the best estimation equation, therefore, we recommend
Equation (11) as the optimal approach for estimating the BBE in arid regions. In general,
the new method is an attempt to overcome the uncertainty in estimating BBE in arid
regions [30]. Notice that the LAI was normalized before use, and we limited the estimated
BBE in (0.8~1.0) for regional estimations.

Table 1. Accuracy of the three proposed regression equations.

Statistic Index Equation (9) Equation (10) Equation (11)
R? 0.83 0.88 0.94
RMSE 0.17 0.1 0.08
Bias 0.14 0.09 —0.007

4.2. Estimating BBE of Arid Region

We used regression (11) with MODIS data (MOD11B1, MOD09A1, MCD15H2) ac-
quired over the Northwest of China for estimating the BBE. The above MODIS products
covered Central Asian arid regions (tile: H23~26, V3~5) and were collected from May to
August in 2018. The products were pre-processed by MRT (MODIS Reprojection Tool). We
transferred the projection to geographic coordination and reformatted the data from HDF
(Hierarchical Data Format) to TIFF (Tagged Image File Format). Then we used ArcGIS to
generate the arid-region BBE map based on Equation (11) of June 16, 2018, as shown in
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Figure 4. The BBE ranged between 0.89 and 0.99 with more detail at the spatial variation
distribution. The majority lower BBE with most range from 0.89 to 0.92 over bare soil
surface (denoted in blue), the dominant regions such as the TD and the GD. The higher BBE
value is between 0.96 and 0.98, most located over oases where major land-uses are cropland,
prairies and forests. The BBE map describes detailed spatial variation over vegetated areas
and vegetation—desert transition zones, where major land cover type is open shrub, the
ranges BBE from 0.94 to 0.96 over sparsely and partially vegetated (denoted in yellow to
orange). The highest BBE is nearly 0.99 over water bodies such as lakes or reservoirs such
as Balkhash Lake (denoted red). The BBE values range from 0.95 to 0.99 in Kazakhstan,
where the land cover is sparse grassland, rain-fed croplands and sparse vegetation. From
the above results BBE was closely related to the land cover types.

0.98 4R*=0.94 5
|Bias=-0.007
0.97 | RMSE=0.08
IN=44 o 6
0.96 - S
] o} e
110.95 - ©©
m J
m ©)
50.94 - o 4
- ©) ©)
£0.93 ‘
n T O]
Wo.92 4 ©
] O
0.91 1 0 ©
oz’ &
O
0.90 -

| L | L L
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
Measured BBE

Figure 3. The scatterplot of BBE measured and BBE estimated by Equation (11) from the MODIS products.
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Figure 4. Estimated broadband emissivity map over Northwest of China.
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4.3. Comparison with BBE of GLASS and Model Used Default Value

To further analyze the difference between this data and other products, we com-
pared the estimated BBE in June 2018 with GLASS and land models (Noah) that used
emissivity values by a look-up table. From Figure 5a, its clear to see that the GLASS
BBE value (about 0.94) is higher than that estimated our estimated MODIS (0.90) over
deserts when referring to Figure 4. Figure 6 shows histograms and scatterplot of the BBE
of GLASS and our method generated over the Taklimakan Desert, the GLASS BBE is
concentrated between 0.92 to 0.94, whereas our estimated range is 0.90 to 0.915, two peak
BBE value at approximately 0.905 and 0.93, respectively. The GLASS BBE illustrates an
inhomogeneous distribution in the eastern part of the Taklimakan Desert. The GLASS
BBE of vegetated regions (oasis cropland and prairies) range from 0.97 to 0.98 and the
BBE in sparse vegetation areas was about 0.96. The BBE estimated from MODIS over
the above-mentioned land surface was higher than GLASS. Notably, the GLASS BBE
of water bodies is the default (No-data) correspond to white, whereas the estimated
BBE is 0.99. The land model used emissivity maps from Figure 5b, where the value was
generated by using a look-up table and land-use type matching. Obviously, to see that
each type of land cover has a unique value without variation and there is no gradient
variation of vegetation and desert in spatial distribution. The BBE of Noah are 0.90
and 0.985 for barren or sparsely vegetated land and oasis cropland, respectively, which
approximates our estimated BBE from MODIS. The land surfaces in arid regions are
complex, varied and non-homogeneous. Thus, our estimated BBE is closer to reality.

GLASS
BB

* I0.99 E

(a) :75:°IU'F, )

Figure 5. GLASS BBE data (a) and the emissivity derived from look-up table of Noah (b) over Northwest of China.
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4.4. Analysis of the Relationship with Land Cover and Soil Moisture

Emissivity has a close relationship with land-use types and soil moisture [59,60]. To
further investigate the spatial distribution of the correlation of BBE with land-use and
soil moisture, we conducted a contrast analysis of the BBE distribution to the land cover
map and soil moisture. Figure 7a displays each type of land-use over arid region, where
dominant land-use types are desert and sparse vegetation. There exists a high correlation
between the BBE and land-use types distribution characteristics refer to Figure 4. The
barren soil (label: 200, 201, 202, according to the land cover code introduced in Appendix
(Table A1) have a lower emissivity, with a value of approximately 0.90. Furthermore,
the cropland (label: 20) and water body areas (label: 210, denoted in blue) are consistent
with the BBE (denote in red). The BBE characterizes various features over vegetated
areas and vegetation—desert transition zones, primarily due to emissivity from the most
variable part of the TIR spectrum, especially vegetation areas. Further to say, the patterns
of the BBE and land-use are very similar.
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Estimated BBE

The influence of soil moisture in thermal infrared emissivity is a known fact [61]. The
relationship BBE and soil moisture was investigated using the soil SMAP soil moisture
products, as shown in Figure 7b, it is clear to see that barren soil has the lowest soil
moisture (less than 0.05 m3/m?) such as TD and GD and the corresponding emissivity is
the lowest, according to Figure 4, the pattern of which is consistent with soil moisture. The
soil moisture of the Tianshan Mountains and in dense vegetation areas is a higher value,
which corresponds to the lowest values of BBE. Figure 8 shows a scatterplot of BBE and
soil moisture over the arid region, it illustrates that the BBE increases with increasing soil
water content. According to the variation trend of BBE and soil moisture in spatial over
TD, we conducted a natural logarithm function between BBE and soil moisture, while the
R? is very low. BBE still changed to some extent in the region with very low soil moisture,
this dependence is negligible, indicating that soil color and soil texture influenced the
contrast emissivity. Nevertheless, oasis cropland has medium soil moisture, whereas the
corresponding area has a higher BBE (0.985). The results demonstrate that the BBE was
determined by both the surface wetness and vegetation conditions. Besides, due to lack
of snow mountains, so it’s hard to deduct a linear relationship over ice/snow land cover
(Figure 7a denoted in white).
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Figure 8. The scatterplot of estimated BBE and volumetric moisture content of soil over TD.
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5. Discussion

Our proposed method’s primary purpose is to compensate for the often-poor quality
of MODIS emissivity products and improve the accuracy of BBE estimation over arid
regions. Previous studies proposed methods that only use remote sensing data in different
thermal infrared bands to estimate BBE and are not validated by spectral measurement.
Considering the spatial differentiation of soil texture and FVC over arid regions, we propose
to add LAI and reflectance into the linear fitting equation. Based on the field-measurement
spectral and MODIS products to fit a linear equation to estimate BBE, the above results
and analysis indicate that Equation (11) has the best performance; the primary reasons are
that our equation provides more information on the land surface characterization. Our
estimated BBE compared to GLASS and model used a default value, the BBE was lower
than the GLASS over deserts and better agreed with ground measurements and the oasis-
cropland BBE was higher than GLASS. The BBE described more detailed spatial variation
than GLASS over vegetated area and vegetation—desert transition zones. In addition, the
BBE used in the model depends entirely on the land-use types, it has static values on the
same type without spatial differentiation, obviously, which is not in line with the actual
situation. Moreover, our BBE value was close to 0.99 over water bodies but GLASS had no
available data. Then, we analyzed the similar relationship of the BBE and land-use types.
The BBE distributions of desert, water bodies and cropland were consistent with each type
of land-use. The results indicated a high relationship between BBE and soil moisture. To
sum up, our results show that BBE estimations with the proposed method have a high
spatial dynamic range and facilitate accurate land surface BBE estimations in arid regions.
Furthermore, this study proves that the emissivity variation with soil moisture, so we can
try to add soil moisture as a variable into the method to further improve the accuracy of
estimating BBE.

It is necessary to emphasize that this study is very local, and we did not measure the
spectral over forest and cropland areas. This method may have uncertainties in estimating
BBE. On one hand, we will take more measurements on forest, crop and urban areas, to
supplement more spectral data over different types of land-use and try to extrapolate this
method to other regions. On the other hand, we look forward to performing extensive tests
of our retrieved BBE estimations in a land model in future studies.

6. Conclusions

The objective of this study was to explore a new method that uses different MODIS
products with situ field-measured surface spectral data to fit linear regression equations for
estimating the broadband emissivity in arid regions. We interpreted the physical mechanism
of the multiple narrowband emissivity linear combination and we proposed three linear
equations that include different MODIS products. First, we calculated field-measured spectral
data and converted these data to BBE in the wavelength range of 8-14 pm, then, we extracted
in situ values from MODIS products of the narrowband emissivity, reflectance and LAI,
the coefficients of the established linear regression equations and were validated by field-
measured emissivity data. The first equations had the lowest correlation; the R? was 0.83,
and the RMSE and average bias were 0.17 and 0.14, respectively. The third equation involved
reflectance and LAI products and its accuracy improved significantly. The reflectance of
MODIS in channel 7 could be used to determine inhomogeneous soil texture, especially
over barren soil land-use type. Thus, reflectance is necessary for estimating the BBE in arid
regions. Equation (11) added LAI data based on Equation (11) and provided more vegetation
information, which further improved the accuracy of BBE Even though Northwest of China
is a region dominated by a vast desert, some oases exist, with agricultural areas, prairies
and forests distributed in the northern and southern areas of the Tianshan Mountains, these
vegetated areas have a higher BBE and are closely associated with the LAL As a consequence,
the BBE estimated with Equation (11) described detailed spatial variation over vegetated areas
and vegetation—desert transition zones. Then, we compared the BBE estimated with Equation
(11) to the GLASS BBE products, the GLASS BBE over the desert was higher than 0.94 and
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was obviously overestimated compared to field measurements. The BBE estimated by our
method ranged from 0.90 to 0.92 and thus agreed well with FTIR observations. A significant
difference is that the real BBE for a body of water should be close to 1, where our estimated
BBE was nearly 0.99, whereas the GLASS BBE had no available data. We demonstrated that
the BBE was influenced by soil moisture, vegetation fraction and soil texture by analyzing
the relationship between the BBE, land cover and soil moisture. Our estimation method
comprehensively considers land surface conditions, and the method mitigates the variation
and uncertainty in the range of land surface emissivity estimations in arid regions and showed
a correlation with land-use type and soil moisture. This study provided a new perspective
on estimating BBE from joint ground observation and satellite data, and the results of our
comparative evaluation of the proposed method demonstrated its superior performance
over previous methods. Furthermore, the framework developed in this study can easily be
extended to other remote sensing data.
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Appendix A

Table A1. ESACCI GLC2015 land cover map classification index table.

Label land Cover Description
0 No Data
10 Cropland, rainfed
20 Cropland, irrigated or post-flooding
30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%)
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%)
50 Tree cover, broadleaved, evergreen, closed to open (>15%)
60 Tree cover, broadleaved, deciduous, closed to open (>15%)
70 Tree cover, needle-leaved, evergreen, closed to open (>15%)
80 Tree cover, needle-leaved, deciduous, closed to open (>15%)
920 Tree cover, mixed leaf type (broadleaved and needle-leaved)
100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
120 Shrubland
130 Grassland
140 Lichens and mosses
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
160 Tree cover, flooded, fresh or brackish water
170 Tree cover, flooded, saline water
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water
190 Urban areas
200 Bare areas
210 Water bodies

220 Permanent snow and ice




Remote Sens. 2021, 13, 1686 15 0f 17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm
for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998,
36, 1113-1126. [CrossRef]

Zhou, L.; Dickinson, R.E.; Ogawa, K; Tian, Y,; Jin, M.; Schmugge, T. Relations between albedos and emissivities from MODIS and
ASTER data over North African Desert. Geophys. Res. Lett. 2003, 30, 2026. [CrossRef]

Ogawa, K.; Schmugge, T.; Rokugawa, S. Estimating broadband emissivity of arid regions and its seasonal variations using
thermal infrared remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 334-343. [CrossRef]

Cheng, J.; Liang, S. A disaggregation approach for estimating high spatial resolution broadband emissivity for bare soils from
Landsat surface reflectance. Int. J. Dig. Earth 2017, 1, 691-702. [CrossRef]

Becker, E; Li, Z.L. Temperature independent spectral indices in thermal infrared bands. Remote Sens. Environ. 1990, 32, 17-33.
[CrossRef]

Jin, M,; Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations.
J. Clim. 2006, 19, 2867-2881. [CrossRef]

Ogawa, K.; Schmugge, T. Mapping surface broadband emissivity of the Sahara desert using ASTER and MODIS data. Earth
Interact. 2004, 8, 1-14. [CrossRef]

Bonan, G.B.; Oleson, K.W.; Vertenstein, M.; Levis, S.; Zeng, X.; Dai, Y.; Dickinson, R.E.; Yang, Z. The land surface climatology of
the community land model coupled to the NCAR community climate model. J. Clim. 2002, 15, 3123-3149. [CrossRef]

Zhou, L.; Dickinson, R.E.; Tian, Y,; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy balance
simulations with use of satellite-based emissivity data over Northern Africa and the Arabian Peninsula. J. Geophys. Res. 2003, 108,
4795-4803.

Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground
measurement, remote sensing and model simulations. IEEE ]. Sel Top. Appl Earth Obs. Remote Sens. 2010, 3, 225-240. [CrossRef]
Sellers, P.J. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275,
502-509. [CrossRef]

Norman, ].M.; Anderson, M.C.; Kustas, W.P. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour.
Res. 2003, 39. [CrossRef]

Chen, F; Janji, Z.; Mitchell, K. Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the
NCEP Mesoscale Eta Model. Boundary Layer Meteorol. 1997, 85, 391-421. [CrossRef]

Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system.
Part I: Model description and implementationy. Mon. Weather. Rev. 2001, 129, 569-585. [CrossRef]

Yang, Z.L.; Niu, G.Y.; Mitchell, K.E. The community Noah land surface model with multiparameterization options (Noah-MP):
2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116. [CrossRef]

French, A.N.; Jacob, F.; Anderson, M.C. Surface energy fluxes with the advanced spaceborne thermal emission and reflection
radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sens. Environ. 2005, 99, 55-65. [CrossRef]

Dash, P. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—current trends. Int. J.
Remote Sens. 2006, 23, 2563-2594. [CrossRef]

Wilber, A.; Kratz, D.; Gupta, S. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation; NASA /TP-1999-
209362; NASA Langley Technical Report Server; 1999; Available online: http://techreports.larc.nasa.gov/1trs (accessed on 11
November 2018).

Meng, X.; Cheng, J.; Liang, S. Estimating land surface temperature from Feng Yun-3C/MERSI data using a new land surface
emissivity scheme. Remote Sens. 2017, 9, 1247. [CrossRef]

Jiang, G.M,; Li, Z.L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of
MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326-340. [CrossRef]

Zhou, S.; Cheng, J. Estimation of high spatial-resolution clear-sky land surface-upwelling longwave radiation from VIIRS/S-NPP
data. Remote Sens. 2018, 10, 253. [CrossRef]

Borbas, E.E.; Hulley, G.; Feltz, M. The combined ASTER MODIS emissivity over land (CAMEL) part 1: Methodology and high
spectral resolution application. Rermote Sens. 2018, 10, 643. [CrossRef]

Cheng, J.; Liu, H,; Liang, S. A Framework for Estimating the 30 m Thermal-Infrared broadband emissivity from Landsat surface
reflectance data. J. Geophys. Res. Atmos. 2017, 122, 11405-11421. [CrossRef]

Ren, H.; Liang, S.; Yan, G.; Cheng, ]. Empirical algorithms to map global broadband emissivities over vegetated surfaces. IEEE
Trans. Geosci. Remote Sens. 2013, 51, 2619-2631. [CrossRef]

Glynn, C.H.; Simon, ].H.; Elsa, A.; Nabin, M.; Tanvir, I.; Michael, A. The ASTER global emissivity Dataset (ASTER GED): Mapping
Earth’s emissivity at 100 m spatial scale. Geophys. Res. Lett. 2015, 10, 7966-7986.

Cheng, J.; Liang, S.; Dong, L.; Ren, B.; Shi, L. Validation of the Moderate-Resolution Imaging Spectrometer (MODIS) land surface
emissivity products over the Taklimakan Desert. ]. Appl. Remote Sens. 2014, 8, doi. [CrossRef]

Li, HQ.; Wu, X.P; Ali, M.; Huo, W.; Liu, Y. Estimating surface broadband emissivity of the Taklimakan Desert using FTIR and
MODIS data. Spectrosc. Spec. Anal. 2015, 26, 2414-2419.


http://doi.org/10.1109/36.700995
http://doi.org/10.1029/2003GL018069
http://doi.org/10.1109/TGRS.2007.913213
http://doi.org/10.1080/17538947.2017.1341559
http://doi.org/10.1016/0034-4257(90)90095-4
http://doi.org/10.1175/JCLI3720.1
http://doi.org/10.1175/1087-3562(2004)008&lt;0001:MSBEOT&gt;2.0.CO;2
http://doi.org/10.1175/1520-0442(2002)015&lt;3123:TLSCOT&gt;2.0.CO;2
http://doi.org/10.1109/JSTARS.2010.2048556
http://doi.org/10.1126/science.275.5299.502
http://doi.org/10.1029/2002WR001775
http://doi.org/10.1023/A:1000531001463
http://doi.org/10.1175/1520-0493(2001)129&lt;0569:CAALSH&gt;2.0.CO;2
http://doi.org/10.1029/2010JD015140
http://doi.org/10.1016/j.rse.2005.05.015
http://doi.org/10.1080/01431160110115041
http://techreports.larc.nasa.gov/1trs
http://doi.org/10.3390/rs9121247
http://doi.org/10.1016/j.rse.2006.07.015
http://doi.org/10.3390/rs10020253
http://doi.org/10.3390/rs10040643
http://doi.org/10.1002/2017JD027268
http://doi.org/10.1109/TGRS.2012.2216887
http://doi.org/10.1117/1.JRS.8.083675

Remote Sens. 2021, 13, 1686 16 of 17

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Yalkun, A.; Mamtimin, A.; Liu, S.; Liu, Y. Coefficients optimization of the GLASS broadband emissivity based on FTIR and
MODIS data over the Taklimakan Desert. Sci. Rep. 2019, 9, 1-8.

Cheng, J.; Liang, S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product.
J. Geophys. Res. Atmos. 2014, 19, 614-634. [CrossRef]

Jiménez-Muiioz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved land surface emissivities over agricultural
areas using ASTER NDVI. Remote Sens. Environ. 2006, 103, 474—487. [CrossRef]

Carlson, T.N.; Ripley, D.A. On the relationship between NDVI, fractional vegetation cover, and leaf area index. Remote Sens.
Environ. 1997, 62, 241-252. [CrossRef]

Liu, Y.Q.; Mamtimin, A.; Huo, W. Estimation of the land surface emissivity in the hinterland of Taklimakan Desert. ]. Mt. Sci.
2014, 11. [CrossRef]

Cheng, J.; Xiao, Q.; Li, X;; Liu, Q.; Du, Y.M. Multi-layer perceptron neural network based algorithm for simultaneous retrieving
temperature and emissivity from hyperspectral FTIR data. Spectrosc. Spec. Anal. 2008, 28, 780-783.

Li, Z.L.; Wu, H.; Wang, N.; Shi, Q.; José, A.; Wan, Z.M.; Tang, B.H. Land surface emissivity retrieval from satellite data. Int. |.
Remote Sens. 2012, 34, 3084-3127. [CrossRef]

Hulme, M. Recent climatic change in the world’s drylands. Geophys. Res. Lett. 1996, 23, 61-64. [CrossRef]

Wang, H.; Chen, Y.; Chen, Z. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region,
northwest of China, during 1960-2010. Hydrol. Processes 2013, 27, 1807-1818. [CrossRef]

Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081-10094. [CrossRef]
Huang, J.; Li, Y,; Fu, C. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719-778. [CrossRef]
Sun, J.; Zhang, M.; Liu, T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999:
Relations to source area and climate. J. Geophys. Res. Atmos. 2001, 106, 10325-10333. [CrossRef]

Yang, Y.; Zhao, C.; Han, M. Temporal patterns of shrub vegetation and variation with precipitation in Gurbantunggut Desert,
Central Asia. Adv. Meteorol. 2015, 2015. [CrossRef]

Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl.
Climatol. 2012, 108, 345-354. [CrossRef]

Zhou, X.; Lei, W. Hydrological interactions between oases and water vapor transportation in the Tarim Basin, northwestern
China. Sci. Rep. 2018, 8, 13431. [CrossRef]

Liang, S. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared
imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 264-274. [CrossRef]

Wan, Z.; Li, Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE
Trans. Geosci. Remote Sens. 1997, 35, 980-996.

Petitcolin, E; Vermote, E. Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data.
Remote Sens. Environ. 2002, 83, 112-134. [CrossRef]

Neinavaz, E.; Roshanak, D.; Andrew, K.; Skidmore, T.; Groen, S. Emissivity of terrestrial materials in the 8-14 um atmospheric
window. Remote Sens. Environ. 1992, 42, 83-106.

Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; Wieren, S. Estimation of vegetation LAI from hyperspectral reflectance data:
Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. 2008, 10, 358-373. [CrossRef]

Plummer, S.; Lecomte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the
global climate observing system. Remote Sens. Environ. 2017, 203, 2-8. [CrossRef]

Li, H.; Zhang, H.; Mamtimin, A. A New Land-Use dataset for the weather research and forecasting (WRF) Model. Atmosphere
2020, 11, 350. [CrossRef]

Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground
measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82-94. [CrossRef]

Korb, A.R,; Salisbury, ] W.; Aria, D.M. Thermal-infrared remote sensing and Kirchhoff’s law: 2. Field measurements. J. Geophys.
Res. 1999, 104, 15339-15350. [CrossRef]

Borel, C.C. Surface emissivity and temperature retrieval for a hyperspectral sensor. IGARSS 1998. Sensing and Managing the
Environment. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing, Seattle, WA, USA, 6-10 July 1998;
Volume 1, pp. 546-549. [CrossRef]

Cheng, J.; Liang, S. Estimating global land surface broadband thermal-infrared emissivity from the advanced very high-resolution
radiometer optical data. Int. J. Digit. Earth 2013, 6 (Suppl. 1), 34—49. [CrossRef]

Zhou, D.K,; Larar, A.M.; Liu, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans.
Geosci. Remote Sens. 2010, 49, 1277-1290. [CrossRef]

Tang, B.H.; Wu, H,; Li, C; Li, Z.L. Estimation of broadband surface emissivity from narrowband emissivities. Opt. Express. 2011,
19, 185-192. [CrossRef] [PubMed]

Tang, B.H.; Shao, K,; Li, Z.L. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS
satellite data. Int. |. Remote Sens. 2015, 36, 1-15. [CrossRef]

Li, J.; Li, J.; Weisz, E.; Zhou, D K. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophys.
Res. Lett. 2007, 34. [CrossRef]


http://doi.org/10.1002/2013JD020689
http://doi.org/10.1016/j.rse.2006.04.012
http://doi.org/10.1016/S0034-4257(97)00104-1
http://doi.org/10.1007/s11629-014-3090-5
http://doi.org/10.1080/01431161.2012.716540
http://doi.org/10.1029/95GL03586
http://doi.org/10.1002/hyp.9339
http://doi.org/10.5194/acp-13-10081-2013
http://doi.org/10.1002/2016RG000550
http://doi.org/10.1029/2000JD900665
http://doi.org/10.1155/2015/157245
http://doi.org/10.1007/s00704-011-0537-2
http://doi.org/10.1038/s41598-018-31440-3
http://doi.org/10.1109/36.905234
http://doi.org/10.1016/S0034-4257(02)00094-9
http://doi.org/10.1016/j.jag.2008.02.005
http://doi.org/10.1016/j.rse.2017.07.014
http://doi.org/10.3390/atmos11040350
http://doi.org/10.1016/j.rse.2019.01.015
http://doi.org/10.1029/97JB03537
http://doi.org/10.1109/IGARSS.1998.702966
http://doi.org/10.1080/17538947.2013.783129
http://doi.org/10.1109/TGRS.2010.2051036
http://doi.org/10.1364/OE.19.000185
http://www.ncbi.nlm.nih.gov/pubmed/21263556
http://doi.org/10.1080/01431161.2015.1040132
http://doi.org/10.1029/2007GL030543

Remote Sens. 2021, 13, 1686 17 of 17

58.

59.

60.

61.

Cheng, J.; Liang, S.; Verhoef, W. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using
a radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2015, 54, 905-917. [CrossRef]

Stathopoulou, M.; Cartalis, C.; Petrakis, M. Integrating Corine Land Cover data and Landsat TM for surface emissivity definition:
Application to the urban area of Athens, Greece. Int. ]. Remote Sens. 2007, 28, 3291-3304. [CrossRef]

Hulley, G.; Veraverbeke, S.; Hook, S. Thermal-based techniques for land cover change detection using a new dynamic MODIS
multispectral emissivity product (MOD21). Remote Sens. Environ. 2014, 140, 755-765. [CrossRef]

Mira, M.; Valor, E.; Boluda, R. Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land
surface temperature determination. J. Geophys. Res. Earth. 2007, 112. [CrossRef]


http://doi.org/10.1109/TGRS.2015.2469535
http://doi.org/10.1080/01431160600993421
http://doi.org/10.1016/j.rse.2013.10.014
http://doi.org/10.1029/2007JF000749

	Introduction 
	Study Area and Data 
	Study Area 
	Remote Sensing Data 

	Spectral Data and BBE Calculations 
	Spectral Data Measurements 
	Converting Spectral Data to BBE 

	Results and Analysis 
	BBE Estimation Equation 
	Estimating BBE of Arid Region 
	Comparison with BBE of GLASS and Model Used Default Value 
	Analysis of the Relationship with Land Cover and Soil Moisture 

	Discussion 
	Conclusions 
	
	References

