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Abstract: Wine quality is the final outcome of the interactions within a vineyard between meteoro-
logical conditions, terrain and soil properties, plant physiology and numerous viticultural decisions,
all of which are commonly summarized as the terroir effect. Associations between wine quality and
a single soil or topographic factor are usually weak, but little information is available on the effect of
terrain (elevation, aspect and slope) as a compound micro-terroir factor. We used the topographic
wetness index (TWI) as a steady-state hydrologic and integrative measure to delineate management
zones (MZs) within a vineyard and to study the interactions between vine vigor, water status and
grape and wine quality. The study was conducted in a commercial 2.5-ha Vitis vinifera ‘Cabernet
Sauvignon’ vineyard in Israel. Based on the TWI, the vineyard was divided into three MZs located
along an elongate wadi that crosses the vineyard and bears water only in the rainy winter season.
MZ1 was the most distant from the wadi and had low TWI values, MZ3 was closest to the wadi and
had high TWI values. Remotely sensed crop water stress index (CWSI) was measured simultaneously
with canopy cover (as determined by normalized difference vegetation index; NDVI) and with field
measurements of midday stem water potential (Ψstem) and leaf area index (LAI) on several days
during the growing seasons of 2017 and 2018. Vines in MZ1 had narrow trunk diameter and low
LAI and canopy cover on most measurement days compared to the other two MZs. MZ1 vines
also exhibited the highest water stress (highest CWSI and lowest Ψstem), lowest yield and highest
wine quality. MZ3 vines showed higher LAI on most measurement days, lowest water deficit stress
(Ψstem) during phenological stage I, highest yield and lowest wine quality. Yet, in stage III, MZ3
vines exhibited a similar water deficit stress (CWSI and Ψstem) as MZ2, suggesting that the relatively
high vigor in MZ3 vines resulted in higher water deficit stress than expected towards the end of
the season, possibly because of high water consumption over the course of the season. TWI and its
classification into three MZs served as a reliable predictor for most of the attributes in the vineyard
and for their dynamics within the season, and, thus, can be used as a key factor in delineation of MZs
for irrigation. Yet, in-season remotely sensed monitoring is required to follow the vine dynamics to
improve precision irrigation decisions.

Keywords: UAV; CWSI; NDVI; irrigation management zones; topographic wetness index; in-field
spatial variability; Vitis vinifera
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1. Introduction

Spatial variability in terrain (elevation, slope and aspect) and soil properties (texture
and depth) can lead to different extents of soil water availability even within a small
vineyard [1]. Therefore, genetically identical vines of the same age differ in vine growth
and vigor and in vine physiological parameters. The accumulated effect over the years can
lead to high variation in grape yield and fruit maturity. As variability increases, irrigation
efficiency decreases, such that the full potential of the vineyard cannot be achieved [2].
Precision irrigation through irrigation management zones (IMZs) strategy aims at targeting
this challenge. Generally, delineation of MZs is a way of classifying the spatial variability
within a field [3]. In the context of irrigation, a MZ is a subregion of a field that is (relatively)
homogeneous in its water availability for which a single rate of irrigation is appropriate.

In semiarid areas, soil hydraulic and physical properties often control vine water
status [4], and therefore can be used to delineate IMZs. Among those properties, maps of
apparent soil electrical conductivity (ECa) have been extensively used to delineate MZs
in vineyards [5,6]. Elevation, slope, soil texture and soil depth have also been utilized for
MZ delineation in vineyards [7–9]. It has been shown in previous studies that topographic
inclination and slope can be key factors affecting soil and vine water dynamics [10,11].
Topographic wetness index (TWI), a steady-state hydrologic variable, mainly determined
by slope, can be a good parameter for IMZ as it provides an estimate of the water drainage
dynamics within the field during the winter and thus affects vine water availability during
the spring and summer [12]. In recent studies, TWI was used for flood risk assessment [13]
and as an additional variable for IMZ delineation in vineyards [9,14].

Stem water potential (Ψstem) is a sensitive indicator for vine water status [15] and
should be frequently monitored when used to drive irrigation management [16–18]. En-
hancing fruit quality for red wine production necessitates accurate control of the water
deficit during the growing season [19]. For instance, grape berry development can be
inhibited by temporary water deficit during stage I (anthesis-bunch closure), thus inducing
a high skin-to-pulp ratio [16]. Since most of the fruit color and phenolic and aromatic
components are concentrated in the skins, higher skin-to-pulp ratio in the grape must is de-
sirable [20]. In addition, it was shown that water deficit during stage III (veraison-harvest)
also promotes high concentrations of anthocyanins in red wine grapes and their wines [21].
However, severe water deficit stress resulted in negative effects on a vineyard’s endurance
because of structural damage to the xylem and deterioration of the hydraulic system of the
vine [17].

In order to adopt best irrigation practices in a vineyard, an IMZ strategy should
include frequent monitoring of vine water status to drive appropriate local irrigation
management [2]. Yet, while on the scale of the entire vineyard Ψstem can be measured in
a few representative vines, MZ-based irrigation requires additional laborious and time-
consuming measurements to represent the water status in each IMZ. Aerial thermal-
imaging could serve as an alternative way of assessing the spatial variability of water
status in the vineyard. In previous studies, ground based, proximal and airborne thermal
imagery was used for irrigation scheduling [22] or for water status assessment [23–25] in
vineyards. Thermal imaging was also used to estimate in-field spatial variability of water
deficit stress [26] and to classify a vineyard into IMZs [14].

Delineation of IMZs using geomorphological data of soil texture and
topography [27,28] is based on the assumption that IMZs are static. Each IMZ is character-
ized by a different level of water availability, and differences between IMZs are assumed
to be stable throughout the season. Further, it is generally assumed that vine water status
is positively correlated with soil water availability. Accordingly, in IMZs with high water
availability vines would grow more canopy and would not suffer from water shortage,
while in IMZs with low water availability vines would suffer from water deficit stress
and grow a smaller canopy. However, recent studies have indicated that the relationships
between soil water availability and plant water status is complicated. For example, vines
with higher water availability and LAI at the beginning of season were found to reach
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higher water deficit stress at the end of the season because of wider vessels and increased
specific hydraulic conductivity [17,29] or greater leaf area [26].

The objective of this study was to characterize the seasonal dynamics of vine vigor and
water deficit stress in TWI-based MZs and to assess its effects on fruit yield, fruit quality
and wine quality. The study demonstrates the role of aerial remote sensing in mapping the
variability of vine vigor and water status required for a MZ-based irrigation strategy.

2. Materials and Methods
2.1. Study Site

The study was conducted in a commercial vineyard of Vitis vinifera L. ‘Cabernet Sauvi-
gnon’ grafted onto 101-14 rootstock in Mevo-Beitar, Israel (31◦43′N; 35◦06′E;
Figure 1). Vine spacing was 1.5 m within rows and 3 m between rows (2222 vines per
hectare), and the vineyard consisted of 5522 vines. The vines were planted in 2011, with
a row direction of 117–297◦, and were trained to a vertical shoot positioned trellis sys-
tem with two foliage wires on each side. The elevation of the vineyard varied from 672
to 702 m above sea level (Table 1), with the eastern part reaching higher elevation and
gradually declining towards the west. The area’s lithology is dominated by limestone,
frequently mixed with chalk and marl, and covered with shallow terra-rosa soil. During the
2017-2018 growing seasons, the vineyard was drip-irrigated using a computer-controlled
system (Dream 1, Talgil, Israel) with one drip line (16 mm) per row at 1.6 L/h in-line,
pressure-compensated drippers spaced 0.75 m apart (Uni-Ram, Netafim, Israel). Irrigation
was based on crop coefficients and potential evapotranspiration, calculated according
to the ASCE Penman-Monteith equation [30]. At all fruit development stages, the basic
crop coefficient was 0.2. Ψstem measurements were used to correct the irrigation factor as
described at Bahat et al. [31].
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Figure 1. The study site: (a) vineyard location within Israel; and (b) Mevo-Beitar experimental
vineyard. Management cells are represented in black squares with different English alphabet letters
(n = 20). Measurement vines are marked as blue dots (n = 120), and yield-monitored vines (n = 240)
as blank open circles.

The vineyard was delineated into 20 management cells (MCs; referred by the let-
ters A–T) and 6 vines per MC (120 vines in total) were selected as measurement vines
(Figure 1).
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In 2017, irrigation was uniform for the entire vineyard and reached 98 mm for the
season. In 2018 a drip precision irrigation system was installed in the western block (MCs
A–J). In that season, the vineyard was irrigated with a total of 32 mm on average, with most
of the western MCs receiving within ±5 mm of the average. The exception to this being
MC C, which was irrigated with 66 mm, which had no impact on this study’s results [31].
More detail of the site and experiment can be found at the project story map website [32].

Table 1. Descriptive statistics of terrain and soil variables in the vineyard. CV stands for coefficient of variation (%), N
stands for number of data points.

Parameter Symbol Source Mean Range CV
(%) N Season

Topographic wetness index TWI Local digital elevation survey 6.9 3.96–11.1 20.3 2045 2011
Soil electrical conductivity
(dS/m) at 0–75 cm depth ECa Verris 3100 field measurement 31.2 0.3–97.5 39.1 4037 2018

Elevation (masl) Elevation Local digital elevation survey 689.1 672.9–702 0.37 2045 2011
Soil depth (cm) Soil depth Direct soil samples 82.5 34–141 23.8 81 2017

2.2. Terrain and Soil Measurements

The spatial variability of soil and terrain was mapped and quantified by various field
attributes (Figure 2a–d, Table 1). A contour digital elevation model (DEM) with spatial
resolution of 1 m was created based on a local elevation survey using real time kinematic
global positioning system (RTK). The DEM was further used to create topographic layers
using the ‘Topo to Raster’ tool in ArcMap 10.6 (ESRI Inc. Redlands, CA, USA), includ-
ing elevation (Figure 2a) and slope, and was further analyzed to create the TWI layer
(Figure 2b). TWI was originally proposed by Beven and Kirkby [33] and provides a relative,
not absolute, measure of the soil moisture status of each pixel in a defined area. The index
was calculated using the “dynatopmodel” package in R [34] by the equation:

TWI = ln
(

A
tanβ

)
(1)

where A is the specific area, or the upstream contributing area (m2) for each pixel, and β is
the local slope in the steepest down slope direction in degrees.

Apparent electrical conductivity (ECa) was determined on 10 April 2018 by a four-
probe soil resistance sensor (Soil EC 3100; Veris Technologies, Salina, KS) at field capacity
as recommended by the protocol for conducting a field-scale ECa survey [35]. Data from
the shallow layer (0–75 cm) were utilized for this study as it represents the vast majority
of expected grapevine active root zone [36]. An ECa map (Figure 2d) was created from
4037 points recorded using the geostatistical module contained in ArcMap 10.6, interpolated
according to the inverse distance weighting (IDW) method.

Soil depth levels were measured using an 80 cm diameter hydraulic earth auger
connected to a small tractor at 81 randomly selected points defined using stratified random
sampling. The exact depth was recorded when the auger reached bedrock. A soil depth
map (Figure 2c) was created using the geostatistical module contained in ArcMap 10.6,
interpolated according to the IDW method.

2.3. Plant Vigor Measurements
2.3.1. Ground Measurements

LAI of the 120 measurement vines was determined during the growing season using
a canopy analysis system (SunScan model SS1-R3-BF3; Delta-T Devices, Cambridge, UK).
The system was operated using the standard protocol recommended by the manufacturer,
and all measurements were conducted while the zenith angle was below 30◦. The LAI
values obtained were compared with measurements following destructive defoliation
of leaves from 39 vines (3 cultivars from 6 sites), using an area meter (model 3100; Li-
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Cor, Lincoln, Nebraska). The two measurement methods were found to have strong
linear relationship [37]. Trunk diameter was measured during January 2017 using digital
calipers (075430, Signet, Taiwan) for all vines (n = 5522), at a height of 50 cm above ground,
representing the cumulated multi-year vine vigor.
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2.3.2. Remote-Sensing

Canopy cover was determined as the covered fraction (%) of NDVI within each MZ
polygon. NDVI was calculated from a multispectral image of high spatial resolution
(8 cm). The image was acquired between 11:45–12:00 Israel Standard Time by an airborne
multispectral camera MicaSense RedEdge MX (MicaSense® Inc, Seattle, WA, USA). The
RedEdge MX has five sensors (blue: 465–485 nm, green: 550–570 nm, red: 663–673 nm,
red edge: 712–722 nm, and near infrared: 820–860 nm). It also has an external irradiance
sensor with GPS and inertial measurement unit (IMU) placed on top of the UAV to capture
sensor angle, sun angle, location, and irradiance for each image during flight. Red and
near infrared (NIR) bands were used to calculate NDVI using the equation:

NDVI =
ρ(NIR)− ρ(Red)
ρ(NIR) + ρ(Red)

(2)

where ρ(NIR) is the reflectance value for near infrared band (center wavelength 0.84 µm)
and ρ(Red) is the reflectance value for the visible red band (center wavelength 0.668 µm).
NDVI values range between −1 and +1. Values below an empirical threshold of 0.3 were
excluded as they mostly represented soil and weeds (Table 2).
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Table 2. Descriptive statistics of variables based on remote sensing retrievals.

Parameter Symbol Source Mean Range Pixel
Size (cm)

Number of
Campaigns Season

Canopy cover CC UAV multispectral imagery 28.6 24.9–30.8 6.7 2 2017
Canopy cover CC UAV multispectral imagery 27.5 18.2–30.5 8.0 8 2018

Crop water stress index CWSI UAV thermal imagery 0.32 0.21–0.44 6.8 3 2017
Crop water stress index CWSI UAV thermal imagery 0.30 0.16–0.57 9.1 7 2018

2.4. Water Status Measurements
2.4.1. Ground Measurements

Midday stem water potential was measured around solar noon (12:00–14:30) on all
measurement vines (n = 120). At four major phenological stages (Figure 3) we measured
Ψstem on additional vines (extended measurement; n = 154) to allow for spatial interpola-
tion using the kriging method (ArcMap 10.6). The measurements were conducted using
pressure chambers (model Arimad 3000, MRC, Holon, Israel) according to the procedures
of Boyer [38]. A mature, fully expanded, leaf from each measurement vine was bagged
2 h prior to acquisition with aluminum and plastic bags. The time elapsing between leaf
excision and chamber pressurization was less than 20 s. Leaf stomatal conductance (gs)
was measured on all measurement vines in the western block (n = 60) at three phenological
stages during 2017, using a portable gas exchange measurement system (model LI-6400,
Li-Cor) around solar noon (12:00–14:30). Further descriptive statistics can be found in
Table 3.
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Table 3. Descriptive statistics of physiological variables. CV stands for the coefficient of variation (%).

Parameter Symbol Source Mean Range CV (%) N Season

Leaf area index
(m2/m2) LAI-17 Field measurement

using SunScan 0.75 0.37–1.3 24.6 120 vines over
5 measurement days 2017

Leaf area index
(m2/m2) LAI-18 Field measurement

using SunScan 0.88 0.2–1.75 39.4 120 vines over
4 measurement days 2018

Trunk diameter (mm) TDM Field measurement
using hand caliper 40.4 4.9–72.8 18.5 5522 vines 2017

Midday stem water
potential (MPa) Ψstem

Field measurement
using pressure chamber −1.03 −0.38–−2.02 30.3 120 vines over

9 measurement days 2017

Midday stem water
potential (MPa) Ψstem

Field measurement
using pressure chamber −1.0 −0.5–−1.9 25.1 120 vines over

9 measurement days 2018

Stomatal conductance
(µmol H2O/m2/s) gs

Leaf measurement using
Li-Cor 6400 0.180 0.002–0.399 63.7 60 vines over

3 measurement days 2017

2.4.2. Remote-Sensing

Crop water stress index (CWSI) based on canopy temperature [39] is widely used
as a plant water stress indicator and as a tool for mapping in-field variability. Thermal
imagery acquired at 11:45–12:00 from a UAV equipped with a FLIR SC655 thermal camera
(FLIR® Systems, Inc., Bilerica, MA, USA) with 640 pixels × 480 pixels, sensitive in the
spectral range of 7.5–13 µm and a measurement accuracy of ±0.5 ◦C was used to evaluate
the vineyard’s canopy surface temperature. Image processing for pure canopy extraction
included two major steps: 1. a temperature threshold of 45 ◦C was determined by a visual
analysis of the temperature bimodal histogram to remove soil-associated pixels and 2.
for masking other non-canopy pixels (mostly shade and grass), we used an NDVI image
from the same campaign to indicate pixels with values above an empirical threshold of 0.3.
Finally, the following equation was used as CWSI [39]:

CWSI =
Tcanopy− Twet

Tdry− Twet
(3)

where Tcanopy is the temperature of the canopy, Twet is the temperature of a fully transpiring
canopy and Tdry is the temperature of a non-transpiring canopy. Calculation of Tcanopy was
done at the vine level—polygons of 80 cm × 140 cm for all 5522 vines were created, and
the coolest 33% of the pixels within each of the polygons were averaged following Meron
et al. [40]. Twet was calculated at the whole vineyard scale using the average temperature
of the coolest 5% of the canopy pixels [41,42]. Tcanopy and Twet were calculated using the
“raster” package in R [43]. For Tdry calculation, a portable meteorological station was
positioned within the vineyard, which recorded the temperature during all hours of data
collection at the canopy height by a data logger (Campbell Scientific, Logan, UT, USA). The
average ambient air temperature during the flight was calculated. Tdry was calculated as
Tair + 7 ◦C [41].

2.5. Yield and Fruit Quality Measurements

Yield was measured in two steps. First, hand-picked yield was determined at the vine
scale. Twelve vines from each MC were selected, each vine was individually harvested
and its total fruit weight and cluster number recorded, thus allowing calculation of cluster
weight. Secondly, a mechanical grape harvester (New Holland, Braud 9040) with a con-
tinuous weighing system was used for spatial yield mapping at a resolution of 5 m. An
interpolated thematic yield map (Figure 2e) was generated as described above (Section 2.2).
Total soluble solids (TSSs) and fruit anthocyanin were determined for 104 geo-referenced
sample sites within the vineyard that were collected a day before harvest. Twelve fruit
clusters were collected at each sample site and were hand-crushed for fruit analysis using
an automatic fruit must analyzer (SA-13, Maselli, Italy). Further descriptive statistics can
be found in Table 4.
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Table 4. Descriptive statistics of yield and wine variables. CV stands for the coefficient of variation (%).

Parameter Symbol Source Mean Range CV (%) N Season

Yield (ton/ha) Yield Mechanical harvester 7.4 2.1–12.6 26.6 2634 points 2017–2018
Cluster weight (g) CW Hand harvest 110.8 46.8–174.9 17.6 240 vines 2017–2018

Cluster number CN Hand harvest 47.1 29–87 17.9 240 vines 2017–2018

Berry weight (g) BW Fruit samples 1.3 0.75–1.6 9.3 50 berries from
104 sample points 2018

Wine score Wine
score

Micro-vinification and
professional

wine evaluation
85.2 78.7–89.6 3.1 20 wines each season 2017–2018

2.6. Wine Quality Assessments

The grapes of each MC (n = 20) were transported to Ariel winery and, after an over-
night cooling, fruit must samples were taken for sugar content, pH and TA analyses. Wines
were separately vinified using the following oenological technique: crushing and destem-
ming; addition of SO2 (11 mg/Kg) and dry selected yeast (25 mg/Kg); 8-d fermentation
at a controlled temperature in 100 L stainless steel tanks with three punches of the cap
every day. Finally, the 20 wines were put in demijohns for malolactic fermentation and
aging for 6 months. After bottling, the wines were tasted and evaluated by a test panel of
7–8 professional winemakers. The wine tasting was a “double-blind test,” with anonymous
labels on the bottles of wines according to the ‘Organisation International de la Vigne et du
Vin’ [44].

2.7. Vineyard Delineation to Management Zones

The relative influence of the three soil and terrain variables on vine water status was
assessed using a predictive boosted trees model as a function of extended measurements
of Ψstem at 4 different phenological stages. The boosted trees model produces an additive
decision tree model that is based on many smaller decision trees that are constructed in
layers. The tree in each layer consists of a small number of splits, typically five or fewer.
Each layer is fit using the recursive fitting methodology [45]. Topographic wetness index
and soil depth had the highest impact. At the beginning of the season, TWI had a higher
impact on Ψstem variance implying that TWI better represents the soil water availability
resulting from winter and spring precipitation. Therefore, TWI was selected as the basis
for MZ delineation.

Delineation to MZs was determined using Iso Cluster unsupervised classification
tool in ArcMap 10.6. The vineyard was delineated into 2, 3, 4 or 5 zones. Then, a single
factor ANOVA was performed, and a goodness of variance fit (GVF) was calculated for
each classification result of MZ, in order to minimize the member deviation from the class
mean (within groups) while maximizing class mean deviation from other classes (between
groups). The optimal number of MZs was determined when GVF reached a minimal
threshold of 0.8, following Lowrance et al. [46].

2.8. Data Analysis

Analysis of variance (ANOVA) was performed to reveal differences between the dif-
ferent MZs within the vineyard (p < 0.05) for all variables with a normal distribution, and a
multiple comparison test was done using the Tukey–Kramer HSD test. The non-parametric
Steel–Dwass test was applied to determine differences between MZs for variables that were
not normally distributed, namely gs, TSS and fruit must color. Statistical data analysis was
performed using JMP software (Pro 15, SAS Institute, Cary, NC, USA) and R software [47].

In order to avoid spatial autocorrelation of CWSI, canopy cover, trunk diameter and
yield variables, we selected 22 random points within a 6 m buffer in each MZ with a
minimal distance of the calculated range of the semivariogram [48]. Random points were
selected using the ‘Create Random Points’ Module, the semivariogram was calculated
using the geostatistical wizard of ArcMap 10.6. Wine scores were classified for the MZs



Remote Sens. 2021, 13, 1636 9 of 20

using Jenks natural breaks that minimizes each MZ’s average deviation from the MZ mean.
All the analyses, interpolations and classification were calculated using ArcMap 10.6.

3. Results
3.1. Climate Conditions

The Judaean Hills region, where the study site was located, is characterized by a
Mediterranean climate, with mean annual rainfall of 540 mm, typically concentrated
between October and May [49]. Accumulated annual precipitation recorded at a meteo-
rological station located 6 km from the vineyard was 369 and 452 mm/year for 2017 and
2018, respectively. The mean daily temperature ranged between 24.9 in August and 9.1 ◦C
in January. Precipitation during the spring of 2016–2017 (between 1 March and 15 May)
was low (17.2 mm) compared to the spring of 2018 (70.4 mm).

3.2. Geospatial Variables and Management Zones Delineation

TWI, which is affected mainly by the local slope (Equation 1), revealed a local wadi
(Figure 2b, in blue) extending from east to west with a graduated effect around it. ECa
and soil depth were characterized by a dispersed spatial pattern (Figure 2c,d). The relative
influence of TWI, ECa and soil depth on vine water deficit stress (Ψstem) was analyzed on
four phenological stages (Figure 4). On 23 May 2018 the relative influence of TWI on Ψstem
was highest (76%), and therefore it was selected as the basis for the vineyard’s delineation
into MZs (Figure 5).
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Figure 4. Relative contribution of soil and terrain variables to Ψstem at fruit set (23 May 2018), bunch
closure (20 June 2018), veraison (4 July 2018) and harvest (29 August 2018). RMSE ranged between
0.06 at early season and 0.18 at the end of season. TWI is topographical wetness index and ECa is
apparent electrical conductivity.
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Figure 5. Vineyard delineation into three management zones (MZs) based on topographical wetness
index: MZ1 (red), MZ2 (green) and MZ3 (blue). Management cells are represented by black squares
with different letters. Measurement vines are marked as blue dots.

3.3. Canopy Measurements
3.3.1. Ground Measurements

The seasonal trend of LAI showed higher canopy area in MZ3 on most of the measure-
ment days during both growing seasons (Figure 6). The ANOVA results found a significant
difference between MZ1 and MZ3 in 6 out of 9 days, and no differences between MZ2 and
MZ3 (Table A1).
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Figure 6. Seasonal course of leaf area index (LAI) of vines in the management zones (MZs) during
2017 and 2018. Each point is the mean of 44, 56 and 20 vines for MZ 1, 2 and 3, respectively ± SE.
Asterisks represent significant differences among MZs using ANOVA (α = 0.05).

The average trunk diameter of the vines in MZ1 was 39.4 mm, which was significantly
lower than the averaged trunk diameter in MZ2 (41.3 mm; Figure 7). MZ3 vine trunk
diameter was intermediate (40.7 mm) and did not differ from those of MZ1 and MZ2.
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Figure 7. Boxplots presenting the distribution of trunk diameter of vines in the three management
zones (MZs), as measured in January 2017. Different letters indicate significant differences as analyzed
by ANOVA (α = 0.05).

3.3.2. Remote Sensing

The trend of canopy cover was relatively stable along the seasons, except for canopy
trimming, which temporarily decreased canopy area for all MZ. On 8 out of 10 measurement
days during the season, canopy cover in MZ1 was lower than canopy cover in at least one
of the other 2 MZs (Figure 8).
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Figure 8. Seasonal course of canopy cover of the vines in the management zones (MZs) during 2017
and 2018. Measurement was conducted first by calculating NDVI in vine rows, then calculating
the canopy coverage of every MZ. Each point is the mean of 22 random points created to account
for spatial autocorrelation. The blue arrow indicates date of canopy trimming. Asterisks represent
significant differences among MZs using ANOVA (α = 0.05).

3.4. Vine Water Status
3.4.1. Ground Measurements

The trend of Ψstem (Figure 9) exhibited low water deficit stress at the beginning of
each season, gradually becoming higher towards harvest time. MZ1 had the greatest water
deficit stress (lower Ψstem values) compared to MZ2 and MZ3 in most cases. MZ3 and MZ2
had a similar trend of Ψstem for all stages in both years, in 9 out of 18 measurements. MZ3
exhibited intermediate values between MZ1 to MZ2 and did not statistically differ from
the other two MZs (Table 2). Stomatal conductance (gs) at the beginning of the 2017 season
(20 June) was high and similar in all 3 MZs. On the other two measurement days gs was
lower in MZ1 than in MZ2, with intermediate values for MZ3, suggesting a temporal
change of MZ3 water status within the season (Figure 10).
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Figure 9. Seasonal course of midday stem water potential (Ψstem) of vines in the management zones
(MZs) during 2017 and 2018. Each point is the mean of 44, 56 and 20 vines for MZ 1, 2 and 3,
respectively ± SE. Asterisks represent significant differences among MZs as determined by ANOVA
(α = 0.05).
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Figure 10. Stomatal conductance to water vapor (gs) on three days, representing different phenologi-
cal stages: 20 June 2017—bunch closure, 19 July 2017—veraison and 5 September 2017—harvest. Data
were measured in the western block (MCs A–J) around solar noon. Steel–Dwass test was performed
in 20 June 2017. In other cases, significant differences among MZs were evaluated by ANOVA
(α = 0.05). Different letters represent significant differences among MZs, means were separated using
the Tukey–Kramer HSD test (α = 0.05). n.s represents not significant.

3.4.2. Remote Sensing

Management zone (MZ) 1 demonstrated the highest water deficit stress, determined
by higher CWSI values compared to MZ2 and MZ3 in most cases (Figure 11). In 2017, MZ3
and MZ2 had a similar trend of CWSI, while 2018 results demonstrated larger differences.
At the beginning of the 2018 season (during stages I and II) MZ3 followed a similar trend
as MZ2, but for the last three measurements of the season, it had higher values of CWSI.

3.5. Yield Components, Fruit and Wine Quality

MZ1 had the lowest yield, cluster weight and cluster number in 2017, and the highest
TSS and fruit color (OD 420 + 520) in 2018. MZ2 and MZ3 exhibited similar responses
regarding yield and its components, TSS, fruit must color and wine quality (Figures 12–14).
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Figure 11. Seasonal course of crop water stress index (CWSI) of vines in the management zones
during 2017 and 2018. Each point is the mean of 2031, 2126 and 1364 vine polygons for MZ 1, 2 and 3,
respectively ± SE. The value of each replicate was the average of the lowest 33% of vine’s polygon.
Asterisks represent significant differences among MZs using ANOVA (α = 0.05).
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Figure 12. Boxplot of yield and fruit quality variables in the management zones (MZs) for 2017
(a,c,e) and 2018 (b,d,f): handpicked yield for 2017 (a) and 2018 (b); vine average cluster weight in
2017 (c) and 2018 (d) and vine average cluster number in 2017 (e) and 2018 (f). Data were collected
from 240 measurement vines within the vineyard; MZ1—88 vines, MZ2—112 vines and MZ3—40
vines. Significant differences among MZs were calculated using ANOVA (α = 0.05). Different letters
represent significant differences between MZs.
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differences between MZs.

4. Discussion

We defined and evaluated three MZs within a wine grape vineyard, based on a
single topographic variable (TWI). Differences between MZs were continuously evaluated
throughout two growing seasons by measuring vine vigor and water deficit stress. Data
was gathered using both common and accurate field measurements with a low sample
size (e.g., Ψstem, LAI and yield parameters) and by remote sensing with lower accuracy
and a higher sample size (e.g., canopy cover and CWSI). Within-season measurements
in each of the MZs allowed investigation of MZ vine vigor and water status dynamics
and its effects on yield and wine parameters. Management zones can be static, with no
change of their boundaries throughout the season [14,28] or dynamic, with a change of
size or class number [42,50,51]. Since our main objective in this study was to delineate
MZs for precision irrigation purposes, we calculated the relative influence of three soil and
topographic variables on the water status in the vineyard using extended measurements of
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Ψstem at four phenological stages (Figure 4). Results showed a clear, strong influence of
TWI on Ψstem measurements at the beginning of the season while, as the season progressed,
soil depth and ECa had higher or similar influence. Since none of the soil or topographic
variables showed a constant relative influence on vine water status, MZ delineation in
this vineyard appears to be not static. The dynamics of MZs with constant, pre-defined
boundaries were tested to promote understanding of irrigation requirements under varied
constraints and objectives regarding canopy size, water deficit stress and fruit quality.

Vine vigor measurements revealed season-to-season differences with relatively higher
LAI values during 2018 due to the greater spring precipitation (70.4 mm compared to
17.2 mm in 2017 between 1 March and 15 May each year), and differences between field
measurements and remote sensing variables. Canopy cover results (Figure 8; Table 3)
revealed differences between MZ1 and MZ2 and three in most cases while LAI results
indicated that MZ3 values were highest, with smaller differences between MZs. The
relations between LAI and canopy cover in the vineyard have rarely been studied. Though
a few examples of ground-measured LAI–NDVI relationships have been published [52],
none of them showed a strong correlation between the variables. It is assumed that LAI is
more sensitive to vine vigor and can serve well as a parameter for irrigation scheduling
in vineyards [53,54]. Moreover, LAI has been shown to be a particularly dominant factor
influencing vine evapotranspiration [55].

Trunk diameter represents the cumulated effect of vineyard variability on vine vigor.
Figure 7 shows an intermediate effect of TWI on MZ3 average trunk diameter. It is well
established that the most pronounced and rapid trunk growth occurs from flowering until
veraison, followed by a decrease in trunk diameter as fruit starts ripening. Intrigliolo and
Castel [56] suggested that the increase in trunk diameter is related to a strong connection
between water availability from flowering to veraison, and the decrease in trunk diameter
is related to carbohydrate demands of fruit and canopy from veraison onwards. This theory
can explain the accumulated, multiyear effect in MZ3, which experienced high soil water
availability leading to a high trunk diameter and a larger canopy at the beginning of the
season, followed by a decrease in trunk diameter at the end of season.

Vine vigor as revealed from LAI values indicated for high water availability in MZ3,
which correspond with the TWI division and its high wetness index. Accordingly, it could
be further expected that Ψstem values would be less negative than MZ2. Yet, in overall,
Ψstem values in MZ3 were very similar to MZ2. The Ψstem trend of MZ3 at the beginning
of each season indicates minimal water deficit stress, i.e., higher Ψstem, while at the end
of the season the water status of MZ3 was similar to or slightly less than that of MZ2
(Figure 9; Table 2). Relation between proximal field and remotely sensed water stress
measurements was more persistent than that of the vine vigor variables. The trend of
CWSI in MZ3 revealed even larger differences. At the beginning of the season, MZ3 was
at the lowest water deficit, i.e., lower CWSI, but at the end of the season its water status
indicated intermediate water deficit stress (Figure 11). These findings lead to two important
conclusions. First, that water status in MZ3 is a result of a complex interaction between
water availability and vine vigor development and thus follows a dynamic temporal
pattern. Such a dynamic trend may exist in other zones within vineyards as a function
of high wetness index. Second, that remote sensing offers strong and important tools for
water status measurements for precision irrigation purposes.

Previous studies have suggested that high soil and plant water availability can lead to
larger canopies and consequently to greater water consumption and water stress at the end
of the season [17,55]. Stomatal conductance results showed differences between MZ1 and
MZ2 at stages II and III while MZ3 did not differ from any of the other MZs (Figure 10).
These results are in agreement with remote sensing water status variable CWSI, showing
the same intermediate status of MZ3 at stages II and III (Figure 11).

The spatial variability in TWI reflected the variability of grapevine physiology at the
beginning of the season (stage I and partially stage II) but not at the end of season. Water
deficit stress was not consistently different along the season between MZs in contrast to
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the results of Yu et al. [57] who delineated a ‘Cabernet Sauvignon’ vineyard in Ca, USA
into 2 MZs based on Ψstem integrals. Differences between vineyards can be explained
by heterogenic soil texture, soil depth and seasonal evaporative demand. As above-
mentioned, while dynamic MZs have been studied in field crops [42,50,51], there is little
known regarding orchards or vineyards. The approach requires continuous usage of
reliable tools to assess spatiotemporal variation of plant vigor and vine water status. While
remote sensing tools to evaluate vine water status and stress have been the subject of many
studies [24,58–60], remote tools to sense vine vigor have been left behind. Assessment of
canopy size using satellite imagery [61] has been attempted using a 3D canopy surface
model [62] or image processing algorithms [63].

Results of yield and fruit quality show that vines under similar irrigation can respond
uniquely as a function of location and spatial conditions. MZ1, the most distant from the
wadi and steepest slope, was characterized by lower trunk diameter, LAI, and canopy cover
on most of the measurement days (p < 0.05). MZ1 also demonstrated the greatest water
deficit stress, eventually resulting in the lowest yield, highest TSS, fruit skin color and the
highest wine score (n.s in 2017). Although we measured some differences in vine vigor
between MZ3 and MZ2 during the 2017–2018 seasons, there were no significant differences
between them in terms of fruit quantity, fruit quality and wine score.

Inducing water deficit stress in vineyards during stage III is favorable for quality red
wine production, and has become a common practice in vineyards [21]. In an irrigation
study in Israel, it was proved that providing regulated deficit irrigation (RDI) combining
higher irrigation at stage I and lower irrigation at stage III has the potential to generate an
optimal balance between vegetative growth, yield and wine with enhanced color and aroma
compounds [16,17]. In this sense, zones within a vineyard with higher plant available
water should be treated with unique RDI strategies. On one hand, this could improve
water use in the vineyard, on the other, it could drive site-specific agrotechnical practices,
particularly regarding canopy management.

Certainly, the future of precision irrigation will include utilization of accurate and
feasible remote sensing tools. Additional studies should therefore consider MZ dynamics
within vineyards, based on within season, continuous remote sensing retrievals.

5. Conclusions

We provided evidence for the relations between geomorphological spatial attributes
of a vineyard and vine physiological response from early season vine vigor to wine quality.
We showed the existence of temporal-dynamic MZs in our study vineyard. Understanding
the relationships between soil water availability, vine vigor and water stress can improve
irrigation decisions. TWI was successful in determining MZs in the current study and
could serve as a cost effective, key factor for MZ delineation in other typical vineyards in
semiarid regions where topography is spatially varied and winter and spring precipitation
are important to vine growth and development and to irrigation management.
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Appendix A

Table A1. Leaf area index in each management zone (MZ) during 2017 and 2018. Each value is
the mean of 22, 28 and 10 replicates for MZ 1, 2 and 3, respectively. The value of each replicate
was the average of the measurements of two adjacent sample vines. Data were analyzed using
ANOVA. Different letters represent significant differences among MZs, means were separated using
the Tukey–Kramer HSD test (α = 0.05).

MZ 17/05 01/06 14/06 05/07 16/08

2017
1 0.82 B 0.61 A 0.63 B 0.66 B 0.73 B
2 0.96 A 0.59 A 0.69 AB 0.77 A 0.86 A
3 0.95 A 0.66 A 0.80 A 0.87 A 0.91 A

17/04 27/06 11/07 25/07

2018
1 0.41 A 1.12 AB 0.97 B 0.85 B
2 0.39 A 1.11 B 1.04 AB 0.97 AB
3 0.35 A 1.31 A 1.21 A 1.08 A

Table 2. Midday stem water potential in each management zone (MZ) during 2017 and 2018. Each value is the mean of 22,
28 and 10 replicates for MZ 1, 2 and 3, respectively. The value of each replicate was the average of the measurements of
two adjacent sample vines. Data were analyzed by ANOVA. Different letters represent significant differences among MZs,
means were separated using the Tukey–Kramer HSD test (α = 0.05).

MZ 10/05 24/05 07/06 28/06 12/07 19/07 26/07 09/08 05/09

2017
1 −1.00 A −0.67 B −0.93 B −0.81 B −1.10 A −1.14 B −1.48 B −1.37 A −1.53 B
2 −1.01 A −0.62 AB −0.80 A −0.66 A −1.05 A −0.96 A −1.32 A −1.23 A −1.24 A
3 −0.94 A −0.56 A −0.81 AB −0.69 AB −1.00 A −1.04 AB −1.32 AB −1.26 A −1.25 A

23/05 06/06 20/06 04/07 18/07 31/07 15/08 22/08 29/08

2018
1 −0.85 B −0.86 A −0.83 A −1.00 A −1.04 B −1.10 B −1.20 B −1.41 B −1.38 B
2 −0.75 A −0.83 A −0.81 A −0.90 A −0.94 A −0.91 A −1.05 A −1.27 A −1.14 A
3 −0.70 A −0.85 A −0.80 A −0.91 A −0.96 AB −0.97 AB −1.13 AB −1.24 AB −1.19 AB

Table 3. Canopy cover for each management zone (MZ) during 2017 and 2018. Measurement was done first by calculating
NDVI in vine rows, then calculating the canopy coverage of each MZ. Each value is the mean of 22 random points created
to account for spatial autocorrelation. Data were analyzed by ANOVA. Different letters represent significant differences
among MZs, means were separated using the Tukey–Kramer HSD test (α = 0.05).

MZ 09/08 05/09

2017
1 24.9 B 27.2 B
2 29.0 A 30.8 A
3 28.9 A 30.7 A

16/05 06/06 20/06 04/07 18/07 31/07 15/08 29/08 26/09

2018
1 29.09 A 26.03 B 29.32 A 18.24 B 23.20 B 27.38 B 25.74 B 26.31 B 24.11 B
2 30.41 A 27.88 AB 30.38 A 24.82 A 29.85 A 29.91 A 28.52 A 28.46 A 26.72 A
3 30.46 A 29.20 A 28.80 A 26.11 A 30.53 A 30.06 A 27.72 AB 28.02 AB 25.93 AB
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