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Abstract: Estimating plant nitrogen concentration (PNC) has been conducted using vegetation
indices (VIs) from UAV-based imagery, but color features have been rarely considered as additional
variables. In this study, the VIs and color moments (color feature) were calculated from UAV-based
RGB images, then partial least square regression (PLSR) and random forest regression (RF) models
were established to estimate PNC through fusing VIs and color moments. The results demonstrated
that the fusion of VIs and color moments as inputs yielded higher accuracies of PNC estimation
compared to VIs or color moments as input; the RF models based on the combination of VIs and
color moments (R2 ranging from 0.69 to 0.91 and NRMSE ranging from 0.07 to 0.13) showed similar
performances to the PLSR models (R2 ranging from 0.68 to 0.87 and NRMSE ranging from 0.10 to
0.29); Among the top five important variables in the RF models, there was at least one variable which
belonged to the color moments in different datasets, indicating the significant contribution of color
moments in improving PNC estimation accuracy. This revealed the great potential of combination of
RGB-VIs and color moments for the estimation of rice PNC.

Keywords: UAV; plant nitrogen concentration; RGB-VIs; color moments; PLSR; RF

1. Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world, feeding more
than half of the world’s population [1]. Nitrogen (N) is the essential nutrient for rice growth,
and is also an important limiting factor in soil productivity. Plant nitrogen concentration
(PNC) has been commonly used as a crop N status indicator [2]. Timely and accurate
assessment of PNC to detect N excess or deficiency is essential for farmers to improve
rice production and N use efficiency [3,4]. Laboratory analysis is one of the important
ways to obtain crop N nutrition status. However, it is time-consuming and laborious to
carry out field investigations and collect representative samples, and usually the obtained
results are delayed [5]. Compared with traditional laboratory analysis (e.g., micro Kjeldahl
method), the non-destructive and timely methods or tools to detect crop N status have
been significantly increased over recent decades [6–8]. Remote sensing with the advantages
of fast and non-destructive characterizations has been proved useful for acquiring related
information of crop nutrition status [9].

On regional or global scales, satellite remote sensing data was analyzed for retrieval N
status [9,10]. Spectral wavebands in green, red, and red edge regions were used to calculate
vegetation indices (VIs) to establish the relationship with crop N [7]. VIs and biophysical
variables derived from Sentinel-2 satellite images were examined for estimation of plant
N status [11]. Loozen et al. [12] used satellite-based VIs and environmental variables
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to map crop N in European forests. Yet today, the application of satellite-based VIs is
still challenged for crop N status assessment because of the limited spatial resolution,
the infrequency of satellite overpasses, and the risk of poor image data quality due to
atmospheric conditions [13].

Unmanned aerial vehicle (UAV) platforms with the advantages of low cost and high
spatio-temporal resolution of image data have become a promising approach in monitoring
crop growth status [14,15]. Particularly, the light-weight and cost-efficient consumer-grade
UAVs with RGB digital cameras can be simply and flexibly operated [16]. VIs from RGB
images can distinguish crops from background soil and other interferences [17]. Moreover,
color images contain a large amount of information about phenotypic traits such as biomass,
plant height, and leaf senescence [18–20]. Several studies have proved the potential of
VIs and color parameters derived from RGB images to obtain crop growth and nutrition
status [17,21]. Jiang et al. [22] confirmed that the applicability of a new proposed true color
vegetation index (TCVI) based on UAV-based RGB images could improve the accuracy of
leaf N concentration (LNC) estimation for winter wheat under different conditions. The
combination of UAV-based VIs and color parameters could yield reliable estimates of plant
N density in winter wheat [23]. Rorie et al. [24] found that there was a close relationship of
the dark green color index (DGCI) calculated from digital images with LNC in corn, which
suggested that color image analysis was an appropriate tool for crop N nutrition status
assessment at field scale. The application of VIs from RGB images to assess crop N status
has been considered a promising alternative to expensive sensors such as hyperspectral and
multispectral techniques; some studies have considered the fusion of texture and spectral
information from UAV-based RGB images for monitoring crop growth status [4,25,26].
Besides the texture and spectral information, color feature is one of the most important
features in RGB images. Among the color features, color moments are very simple and
effective color features proposed by Stricker and Orengo [27]. The mathematical basis of
this method is that any color distribution in the image can be represented by its moments.
However, the contribution of color features for crop N estimation remains unclear.

In this study, VIs and color moments were used to estimate rice PNC based on partial
least square regression (PLSR) and random forest (RF) regression algorithms [12,26,28], in
which the objectives are (i) to examine the performance of VIs and color moments from
UAV-based RGB images for PNC estimation in rice using algorithms of PLSR and RF; (ii) to
explore the potential of improving rice PNC estimation accuracy by fusing VIs and color
moments based on the above two methods.

2. Materials and Methods
2.1. Experiment Design

The field experiment (Figure 1) was carried out at the Tangquan experimental sta-
tion of the Nanjing institute of Soil Science, Chinese Academy of Sciences, Nanjing city,
Jiangsu province, China (32◦04′15′′N, 118◦28′21′′E). The experimental station belongs to
the subtropical monsoon climate zone. The average annual rainfall is 1102.2 mm. The aver-
age annual temperature is approximately 15.4 ◦C. The soil in the Tangquan experimental
station was paddy soil with 22.26 g/kg organic matter, 1.31 g/kg total N, 15.41 mg/kg
Olsen-P, and 146.4 mg/kg NH4OAc-K. In the experimental station, the rice cultivars were
Wuyunjing 23 and Nanjing 5055, respectively in 2018 and 2019. Treatments consisted of
five N fertilization rates with four replications in a total of 20 plots. All of the plots had
dimensions of 4 m× 10 m. In Table 1, N0 represents no fertilizer was applied; N1 represents
conventional fertilizer; N2, N3, and N4 represents N mixed by urea and coated urea with
30%, 40%, and 50% slow-release N respectively. In 2018, the rice plants were transplanted
on 12 June and harvested on 22 October. In 2019, the rice plants were transplanted on
12 June and harvested on 12 November.
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pled within the sampling region of each plot at each sampling time (Figure 1). All of the 
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Figure 1. Experiment site location (Nanjing city, Jiangsu Province, China) and investigated phenological stages in the
study area.

Table 1. Rice cultivars and fertilizer rates in the experiment.

Treatment Cultivar
Fertilizer Rate (kg/ha)

N P2O5 K2O

N0

Wuyunjing 23 (2018)
Nanjing 5055 (2019)

0 0 0
N1 240 60 120
N2 240 (30%) 1 60 120
N3 240 (40%) 2 60 120
N4 240 (50%) 3 60 120

1,2,3 The numbers inside the brackets represent the percentage of N from coated urea in total N rate (urea plus
coated urea). The release duration of coated urea was 3 months, which was provided by the Jiangsu ISSAS
fertilizer company (Yizhen, China).
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2.2. Data Collection
2.2.1. Determination of PNC

The ground destructive samplings were carried out at the tillering, jointing, and
flowering stages (Figure 1 and Table 2). One hill of rice was destructively and randomly
sampled within the sampling region of each plot at each sampling time (Figure 1). All of
the plant samples were oven-dried at 105 ◦C for 30 mins, followed by 80 ◦C until constant
weight and then ground for chemical analysis in the laboratory. PNC (%) was determined
by using the micro-Kjeldahl method [29].

Table 2. Sampling information of the experiment site.

Year UAV Flight Date Sampling Date Growth Stage

2018
19 July 19 July Tillering

11 August 11 August Jointing
9 September 9 September Flowering

2019
14 July 14 July Tillering

12 August 12 August Jointing
8 September 8 September Flowering

2.2.2. Image Acquisition

The acquisition of UAV-based images was implemented on the same dates as those of
rice plant sampling (Table 2). A consumer-grade camera mounted on a UAV (Phantom 4
Pro, SZ DJI Technology Co., Ltd., Shenzhen, China) was used in this study. The UAV had
flight duration of about 30 mins, depending on the actual working conditions. The digital
camera was equipped with a one-inch complementary metal-oxide semiconductor (CMOS)
sensor, which had a spatial resolution of approximate 20 mega pixels. The UAV was flown
over the rice fields at fight altitudes of 50 m above ground level (ground sampling distance:
1.36 cm). The flights were carried out in stable ambient light conditions between 11:00 am
and 13:00 pm by setting an auto-exposure time. The UAV aviated automatically based on
the preset flight waypoints, leading to approximately 80% forward overlap and 60% side
overlap controlled by the Pix4Dcapture application.

2.3. Image Data Processing
2.3.1. Image Mosaic

The orthophotos of the experimental site were generated by the Pix4Dmapper Version
1.1.38 (https://www.pix4d.com/, accessed on 10 September in 2019), which provides an
automated pipeline through steps of image alignment, matching, mosaicking, constructing
dense point cloud, and finally generating orthoimages with the Geo-TIF format.

2.3.2. Calculation of VIs

Before calculation of VIs from the orthophotos at multi stages, an empirical line
correction method was used to carry out radiometric calibration [30]. In addition, we used
the optimal index method, proposed by Qiu et al. [31], to remove the background effects.
Firstly, the VI which had the best correlation with PNC at each phenological stage was
selected as the optimal vegetation index (OVI). Then, we used ArcGIS 10.1 (ESRI, Redlands,
CA) to divide OVI into five levels based on the natural fault zone method. Finally, the three
middle levels were selected as the canopy area. After background removal, ArcGIS 10.1
was used to draw the region of interest (ROI) of each plot in the non-sampling area (Figure
1). In this study, most of the selected color indices were well-known and have been studied
in leaf chlorophyll content, biomass, and N status estimation [13,17,26,32]. The R, G, and
B channels from ortho-images were used for calculating twelve VIs (Table 3). Then, we
used the “Zonal Statistics As Table” function in ArcGIS 10.1 to extract the mean reflectance
value of ROI in each plot.

https://www.pix4d.com/
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Table 3. Summary of variables used in this study.

Data type Variables Equation/Description Reference

RGB-VIs

NRI R/(R+G+B) [33]
NGI G/(R+G+B) [33]
NBI B/(R+G+B) [33]
G/R G/R [34]
G/B G/B [34]
R/B R/B [34]
ExR (1.4R-G)/(G+R+B) [35]
ExG (2*G-R-B) /(G+R+B) [36]
GMR G-R [17]
INT (R+G+B)/3 [37]

VARI (G-R)/(G+R-B) [38]
NGRDI (G-R)/(G+R) [13]

Color moments

H The average of hue [27]
H_var The variance of hue [27]
H_ske The skewness of hue [27]

S The average of saturation [27]
S_var The variance of saturation [27]
S_ske The skewness of saturation [27]

V The average of value [27]
V_var The variance of value [27]
V_ske The skewness of value [27]

2.3.3. Calculation of Color Moments

Due to the information of color distribution being mainly concentrated in low order
moments, only the first, second, and third order moments of color could be used to express
the color distribution. Compared with color histograms which divide the color space
into several small intervals and calculate the number of pixels in each interval, another
advantage of this method was that it did not need color space quantization and had lower
dimensions of feature vector. Accordingly, 9 components (3 color components, 2 lower
order moments on each component) could cover the color moments of an image, which is
very concise compared with other color features. The color moments were calculated as
follows [39]:

µi =
1
N

N

∑
j=1

pi,j (1)

σi =

(
1
N

N

∑
j=1

(
pi,j − µi

)2
) 1

2

(2)

si =

(
1
N

N

∑
j=1

(
pi,j − µi

)3
) 1

3

(3)

where pi,j represents the probability of the pixels of the gray value with j in ith color channel.
N was the total number pixels in the ROI of each plot (Figure 1). The entries µi (1 ≤ i ≤ 3)
represent the average color in each color channel. The entries σi and si represent the
variance and skewness of each color channel, respectively. In this study, we used the HSV
color space, and then the nine color features which are expressed in Table 3.

2.4. Algorithms of Multivariate Regression Model
2.4.1. PLSR

PLSR is one of the most common multivariate regression algorithms applied to deal
with data with collinear variables. PLSR was inherent in the multiple linear regression
(MLR) and able to avoid multi-collinearity [40]. In this study, we used PLSR to examine



Remote Sens. 2021, 13, 1620 6 of 18

the relationships of RGB-VIs and color moments with the rice PNC. The number of latent
variables was a critical parameter in the PLSR algorithm, and was determined following
the method described by Fassio, Cozzolino et al. [41]. The criterion of the selected latent
variables was based on the minimum predicted residual sum of squares (PRESS) [42] with
10-fold cross validation in calibration datasets.

2.4.2. Random Forests

The algorithm of Random forests was developed by Breiman et al. [43] and shows a
promising capability to avoid overfitting by sampling the predictor space randomly. It can
construct non-linear relationships without the limitations of the assumptions of variable
distributions and dependency [12]. In addition, RF could effectively evaluate the impor-
tance of independent variables and partly deal with multicollinearity among variables
while having great tolerance to noises and outliers. In this study, we implemented the RF
in the python 3.6 environment using the “RandomForestRegressor” function in “sklearn”
package. Three tuning parameters (max_depth, min_samples_split, min_samples_leaf)
were implemented in RF by using “GridSearchCV” module with 10-fold cross validation
in calibration datasets. Other parameters were set to default values.

2.5. Statistical Analysis

In this study, we used the data in 2019 as the calibration set and the data in 2018 as the
validation set (Figure 2). Before establishment of estimation models, the correlations be-
tween VIs, color moments, and PNC were analyzed using Pearson’s correlation coefficient.

Paired t-tests was conducted to analyze the variations between the measured and
estimated PNC values in calibration and validation datasets by using “ttest_real” function
from “scipy” package in python 3.6 environment. The means were compared at the 5% level
of significance by the t-tests [44]. The fitness was assessed from a 1:1 line of the estimated
and measured PNC values. The performance of models to estimate PNC was evaluated
by comparing the differences in coefficient of determination (R2) in Equation (4) and
normalized root mean square error (NRMSE) in Equation (5). These statistical indicators
were expressed as follow:

R2 = 1−
n

∑
i=1

(Pi −Oi)
2/

n

∑
i=1

(
Pi −O

)2 (4)

NRMSE =
100
O
×
√

1
n
×

n

∑
i=1

(Pi −Oi)
2 (5)

where n was the number of observations, O denoted the average value of measured PNC,
Pi and Oi were the estimated and observed values of PNC, respectively. Generally, the
simulation was considered excellent when NRMSE was less than 10%, good if NRMSE was
greater than 10% and less than 20%, fair if NRMSE was greater than 20% and less than 30%,
and poor if NRMSE was greater than 30% [45].
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Figure 2. Flowchart of the experiment methodology. The acronyms “Cali” and “Vali” refer to
calibration and validation, respectively.

3. Results
3.1. Descriptive Analysis of Measured PNC Data

Across growth stages, years, and applied N rates, the PNC of rice ranged from
0.7% to 3.5% (Table 4). Because of the N “dilution effect” [46], the average values of the
observed PNC decreased from the tillering stage to the flowering stage in the calibration
and validation sets. In the calibration set, the average PNC values decreased from 2.3%
at the tillering stage and 1.7% at the jointing stage to 1.1% at the flowering stage. In the
validation set, the average PNC values were close to those in the calibration set at the same
growth stage which decreased from 2.5% at the tillering stage and 1.8% at the jointing stage
to 1.0% at the flowering stage.

Table 4. Descriptive statistics of PNC (%N) measurements.

Dataset Stages PNC (%N)

Min Max Mean SD

Calibration
(2019)

Tillering 1.4 3.5 2.3 0.6
Jointing 0.9 2.6 1.7 0.5

Flowering 0.7 1.4 1.1 0.2

Validation
(2018)

Tillering 2.0 3.1 2.5 0.3
Jointing 1.1 2.4 1.8 0.3

Flowering 0.8 1.2 1.0 0.1

3.2. Correlations between RGB-VIs, Color Moments and PNC

To evaluate the performance of the 12 RGB-VIs and 9 color moments obtained from the
UAV-based images, the Pearson correlation analysis between PNC and these variables was
implemented across the growth stages (Figure 3). At the tillering stage, high correlations
were found between RGB-VIs and rice PNC such as NRI (r = −0.77) and VARI (r = 0.77).
Except for S_var (p > 0.05), other color moments were significantly correlated with PNC
and the absolute values of r ranged from 0.58 to 0.83. At the jointing stage, very strong
correlations were found between RGB-VIs and PNC such as G/R (r = 0.89) and NGRDI
(r = 0.89). Color moments showed slightly lower correlations with PNC. The top three
color moments were V, S, H and the absolute values of r ranged from 0.67 to 0.88. At
the flowering stage, G/R revealed the highest correlation with PNC reaching 0.84 among
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all RGB-VIs. In addition, H had the highest correlation with PNC reaching 0.77 among
color moments.
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Figure 3. Correlation analysis between RGB-VIs, color moments and PNC across growth stages: (a–c) represent the
correlation between PNC and RGB-VIs, respectively at the tillering, jointing, and flowering stages; (d–f) represent the
correlation between PNC and color moments, respectively at the tillering, jointing, and flowering stages.

Among the VIs and color moments, some variables were constantly well correlated
with PNC across the growth stages such as G/R, NGRDI, INT, ExR, H, and V with r values
ranging from 0.74 to 0.89, 0.74 to 0.89, −0.7 to −0.87, −0.72 to −0.85, 0.67 to 0.77 and
−0.64 to −0.88, respectively. However, for some other variables, such as NRI, NGI, VARI
and H_ske (Figure 3), the correlations changed randomly even when they had a good
correlation with PNC at the three individual stages.

3.3. PLSR Analysis

Figure 4 demonstrates the change process of the mean PRESS values with the increase
of latent components by using the 10-fold cross-validation method in the calibration
datasets. When the number of PLSR components increased, the mean PRESS values
decreased first of all, then increased slowly, and remained relatively stable finally except
for the flowering stage. When using all the RGB-VIs as input variables, the PLSR models
achieved minimum mean PRESS values with 2, 2, 2, and 3 components, respectively at
the tillering, jointing, flowering, and combined stages. While using all the color moments
as inputs, the PLSR models attained the minimum mean PRESS values with 5, 4, 1, and
3 components, respectively at the tillering, jointing, flowering, and combined stages. When
combining all the RGB-VIs and color moments as inputs, the minimum mean PRESS values
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were achieved by the PLSR models with 6, 2, 6, and 6 components at the tillering, jointing,
flowering, and combined stages, respectively.
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Table 5 shows the results from the PLSR models. In the calibration datasets, the PLSR
models using color moments as inputs obtained slightly better results than those using
RGB-VIs as inputs, with R2 ranged from 0.72 to 0.89 and NRMSE ranged from 0.10 to
0.18 across the single stages and combined stages. Except for the jointing stage, the PLSR
using all variables performed best, with R2 values of 0.79, 0.80. and 0.83, respectively at
the tillering, flowering, and combined stages. In validation datasets, the models using
all variables showed higher accuracy and lower NRMSE values compared to the models
using either RGB-VIs variables or color moment variables. The values of R2 and NRMSE
ranged from 0.68 to 0.87 and 0.10 to 0.29, respectively at the single and combined stages. In
addition, the color moments only type of model showed lower R2 values (0.32 and 0.33)
compared to the model using only RGB-VIs variables (R2 = 0.63 and 0.60), respectively at
the tillering and flowering stages.

Table 5. Results of the PLSR models for rice PNC (%N) estimation including only RGB-VIs, only
color moments, and all variables in calibration and validation datasets.

Stages Dataset
Calibration Validation

R2 NRMSE R2 NRMSE

Tillering
RGB-VIs 0.62 0.16 0.63 0.11

Color moments 0.72 0.14 0.32 0.12
All variables 0.79 0.12 0.68 0.10

Jointing
RGB-VIs 0.80 0.13 0.81 0.29

Color moments 0.89 0.10 0.80 0.28
All variables 0.84 0.12 0.75 0.24

Flowering
RGB-VIs 0.71 0.11 0.60 0.36

Color moments 0.75 0.10 0.33 1.22
All variables 0.77 0.10 0.73 0.15

Combined stages
RGB-VIs 0.80 0.19 0.84 0.30

Color moments 0.81 0.18 0.50 0.41
All variables 0.83 0.17 0.87 0.29
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Scatterplots of estimated and measured values for PNC across single and combined
stages are presented in Figure 5. The black line is the 1:1 line used to observe the distribution
of scatters. At the flowering stage, the PLSR model showed over-estimated PNC values at
high level of the measured PNC values in the validation dataset when using either RGB-
VIs or color moment variables (Figure 5c,g). The paired t test analysis showed significant
difference (p < 0.05) between the estimated and measured PNC in the validation datasets at
flowering stages for models using RGB-VIs only or color moments only under no N stress
treatment. However, the overestimation of PNC values could be significantly eliminated
(p > 0.05) by the PLSR model when considering all variables (Figure 5k). Generally, the
distributions of scatters obtained from models using all variables as inputs were closer to
the 1:1 line compared to those of scatters obtained from models using RGB-VIs only or
color moments only as inputs.
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3.4. RF Analysis

Before estimating the PNC by RF models, we used the method of grid search with
10-fold cross validation to obtain the optimal model parameter sets in the calibration
datasets (Table 6). Then, the top five important variables for rice PNC estimation for all
RF models are presented in Table 7. For the RF models based on only RGB-VIs, the rank
of important variables was inconsistent across the growth stages. At the tillering stage,
the difference of the importance values was relatively small and the values of importance
ranged from 0.1 to 0.16. At the flowering and combined stages, the most important variables
were ExR and NRI, respectively. The values of importance (0.35 and 0.44) of these two
variables showed a great influence for PNC estimation. For the RF models based on only
color moments, the two most important variables had a dominant effect on the model
performance at the jointing, flowering and combined stages while the importance values
reached over 0.79. For the models including all variables as inputs, there was at least one
out of the five most important variables which belonged to the color moments at the single
and combined stages.

Table 6. Description of tuning parameters in the RF models with 10-fold cross validation in calibration datasets.

Parameter Description Range Stages
Model

RGB-VIs Only Color Moments Only All Variables

max_depth The maximum depth of the
tree

2−6

Tillering 2 3 6
Jointing 5 6 2

Flowering 6 2 2
All 6 6 4

min_samples_split
The minimum number of

samples required to split an
internal node

2−8

Tillering 2 4 2
Jointing 4 2 2

Flowering 4 4 4
All 2 2 2

min_samples_leaf
The minimum number of

samples required to be at a
leaf node

1−12

Tillering 4 8 4
Jointing 4 2 6

Flowering 4 2 8
All 6 4 2

Table 7. Top 5 important variables and corresponding values of PNC estimation for all RF models across single and
combined stages: RGB-VIs only, color moments only, and all variables (RGB-VIs + color moments).

Model
Tillering Jointing Flowering Combined Stages

Variable Importance Variable Importance Variable Importance Variable Importance

RGB-VIs
only

NRI 0.160 INT 0.209 ExR 0.353 NRI 0.439
GMR 0.127 ExR 0.177 NGRDI 0.182 VARI 0.146
R/B 0.126 NGI 0.145 G/R 0.113 G/R 0.104
INT 0.120 NRI 0.136 NGI 0.108 NGRDI 0.097

NGRDI 0.104 VARI 0.117 INT 0.092 G/B 0.067

Color
moments

only

H 0.269 V 0.632 H 0.706 V 0.562
V 0.192 S 0.183 H_var 0.086 H 0.315

H_ske 0.174 H 0.139 S_ske 0.081 S_var 0.025
H_var 0.113 S_ske 0.025 V 0.032 S_ske 0.022
S_ske 0.103 V_var 0.005 H_ske 0.032 H_var 0.019

All
variables

H 0.125 ExR 0.231 ExR 0.306 NRI 0.420
R/B 0.093 G/R 0.136 NGRDI 0.166 G/R 0.125

H_ske 0.088 NRI 0.126 G/R 0.160 VARI 0.095
NRI 0.085 VARI 0.099 H_var 0.101 NGRDI 0.066

H_var 0.080 V 0.088 NGI 0.091 V 0.062

Table 8 displays the calibration and validation statistic of estimated PNC from the RF
models. In calibration datasets, the RF models including only RGB-VIs performed well
with R2 ranging from 0.79 to 0.93 and NRMSE from 0.10 to 0.19. Only color moments as
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inputs could get similar results to those using only RGB-VIs as inputs, with R2 ranging
from 0.73 to 0.94 and NRMSE from 0.10 to 0.16 across the single and combined stages. The
models including RGB-VIs and color moments yielded superior performance compared
to the models using either RGB-VIs or color moments. The values of R2 and NRMSE
ranged from 0.83 to 0.95 and 0.08 to 0.15, respectively at the single and combined stages.
In the validation datasets, all the models obtained slightly lower R2 values compared to
those in the calibration datasets. In contrast, the NRMSE values were still low and ranged
from 0.07 to 0.11 across the single stages. In addition, the fusion of RGB-VIs and color
moments improved the accuracy of the PNC estimation with R2 ranging from 0.69 to
0.91 and NRMSE from 0.07 to 0.13 compared to those models using RGB-VIs only or color
moments only as inputs. This indicated the RF models could effectively predict PNC
in rice.

Table 8. RF models for rice PNC (%N) estimation including only RGB-VIs, only color moments, and
all variables in calibration and validation datasets.

Stages Dataset
Calibration Validation

R2 NRMSE R2 NRMSE

Tillering
RGB-VIs 0.86 0.11 0.62 0.08

Color moments 0.73 0.15 0.57 0.08
All variables 0.89 0.10 0.69 0.07

Jointing
RGB-VIs 0.88 0.10 0.82 0.09

Color moments 0.90 0.10 0.75 0.10
All variables 0.93 0.08 0.84 0.08

Flowering
RGB-VIs 0.79 0.10 0.63 0.09

Color moments 0.73 0.11 0.59 0.11
All variables 0.83 0.09 0.71 0.08

Combined stages
RGB-VIs 0.93 0.19 0.89 0.15

Color moments 0.94 0.16 0.54 1.46
All variables 0.95 0.15 0.91 0.13

Figure 6 displays the scatterplots of the estimated and measured values for PNC across
the single and combined stages. In the calibration datasets, the distributions of scatters are
close to the 1:1 line. However, a slight overestimation of PNC values occurred in the low
level of PNC as indicated by the deviation of the 1:1 line when using only color moments
as inputs at the flowering and combined stages in the validation datasets (Figure 6g,h).
There was significant difference (p < 0.05) between the estimated and measured PNC when
using color moments as inputs for the RF model in the validation dataset at the flowering
stage under different N conditions. When using all variables as inputs, the distributions
of scatters obtained from the RF models were close to the 1:1 line in the calibration and
validation datasets (Figure 6 i,j,k,l).
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4. Discussion
4.1. Comparisons of the PLSR and RF Models

In this study, the performance of the PLSR and RF models was tested to assess rice
PNC under varying N fertilizer application rates at different growth stages. These two
kinds of models were multivariate regression methods and good at dealing with a lot of
predicators which were cross-correlated [25,47]. Based on the results of Tables 5 and 8,
the RF regression models outperformed the PLSR regression models for PNC estimation
in the same validation dataset. In similar studies, Maimaitijiang et al. [48] compared the
performance of PLSR, RF, extreme learning regression (ELR), and support vector regression
(SVR) in estimating crop LNC, using satellite-based VIs and UAV-based canopy structure
information as inputs. Their results showed that the RF model performed best for N
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estimation. Osco et al. [49] evaluated the performance of nine machine learning models for
maize LNC predictions using UAV-based multispectral imagery. Their results indicated
that the RF model performed better than other models for LNC. Liang et al. [50] also
concluded that the RF model was preferred to predict LNC compared to the least square
support vector model (LS-SVR). Our results were consistent with the aforementioned
studies. Accordingly, the RF model based on decision tree algorithms is more robust and
appropriate to assess crop N status compared to other machine learning algorithms.

4.2. Fusion of RGB-VIs and Color Moments for PNC Estimation

Many previous studies proposed new VIs to improve crop N status estimation in their
publications [7,51]. However, some other studies also concluded that these VIs had poor
and unstable performance in N status estimation [4,52,53]. In recent years, texture indices
have been successfully used to monitor crop growth status for precision agriculture [4,25].
Compared with texture or shape information, it was found that it was easier to extract
color moments [39]. In addition, color moments based on color distribution features could
be matched more efficiently and robustly than color histograms [27]. In this study, the
color moments were for the first time investigated for crop N estimation. Generally, the
combination of color feature information (color moments) and RGB-VIs derived from UAV-
based imagery improved the performance of PLSR and RF models for PNC estimation at
the single and combined stages (Tables 5 and 8).

In the PLSR models, the number of latent components was the only tuning parameter.
The PLSR models which used VIs or color moments as inputs, tended to obtain minimum
Mean PRESS values when the numbers of components were between 2 and 5 (Figure 4a,b).
When combing VIs and color moments as inputs, the optimal number of components was
approximately six at the individual and combined stages (Figure 4c). This indicated that
when using multiple types of variables as inputs, more valuable components would be
screened out by the PLSR models to improve model accuracy compared to the model with
a single type of variables as inputs. From the rank of the top five feature importance values
in the RF models, there was at least one feature variable from color moments at the single
and combined stages (Table 7). Additionally, the first three moments of H demonstrated a
considerable contribution in improving model performance in RF models at the tillering
stages when using all variables as inputs (Table 7). Thus, the models when adding color
moments had the potential to improve the accuracy of crop N status estimation. Although,
the fusion of color moments and RGB-VIs reduced the NRMSE values to a certain extent,
the NRMSE values of RF and PLSR models still reached 0.15 to 0.17 and 0.13 to 0.29,
respectively at the combined stages in the calibration and validation datasets. This was
partly due to the changing variation of the morphological characteristics in bringing in
several variables (NRI, NGI, or VARI) which changed their correlation at the different
phenological stages though they were well correlated with PNC (Figure 3). When these
variables were included as inputs at the combined stages, the model resulted in larger
uncertainty compared to models based on the single stage.

4.3. Implications of UAV-Based RGB Imagery for Crop Monitoring

In recent decades, various sensors mounted on UAVs have been widely used to
monitor crop growth traits such as LiDAR [54], hyperspectral [55] and multispectral [26]
devices, NIR [56–58], and RGB cameras [59,60]. Compared to other sensors, the UAV-RGB
camera was cheaper and lighter which made it possible for a longer working time to apply
to larger areas in precision agriculture. With the advantage of ultrahigh-ground-resolution,
the UAV-RGB images could be used for precision classification of crops and estimation of
crop biochemical parameters. In addition, several previous studies demonstrated that the
Digital Surface Models (DSMs) derived from UAV-RGB imagery were efficient in extracting
a vegetation canopy structure [61–63]. Thus, the ultra-high resolution images from UAVs
make it more powerful for field-scale applications in precision agriculture. In this study,
we used the data fusion of color moments and VIs from UAV-RGB imagery to estimate rice
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PNC across cultivars and growth stages. The performance of the models was comparable
to previous studies [3,23].

Although the performances of RF models were better by fusion of color moments
and RGB-VIs than those of PLSR models, the other promising methods such as ensemble
models [64], Long Short-Term Memory (LSTM) [65,66], and convolutional neural network
(CNN) [67,68] need to be further explored to improve the accuracy of crop N estima-
tion. Furthermore, the imageries over multiple years in more locations with different soil
characteristics and climate conditions are essential for practical application.

5. Conclusions

The incorporation of color moments for both PLSR and RF models yielded more
accurate estimations of PNC in rice with NRMSE reducing by 9% to 58% compared to
results of models based on RGB-VIs across single and combined stages. The RF models
with VIs and color moments showed a similar performance to the PLSR models for PNC
estimation. The accuracies of RF models based on color moments only (R2 = 0.57–0.75 and
NRMSE = 0.08–0.11) were comparable to results of RF models using VIs only (R2 = 0.62–0.82
and NRMSE = 0.08–0.09) at single stages in validation datasets. The analysis of important
variables in RF models showed that color moments played an important role in PNC
estimation, which demonstrated that color moments significantly improved the estimation
of rice PNC. Future work should be undertaken to further improve the accuracy of the
model for monitoring crop growth status by combining the texture, color features, structure
from motion (sfM), and VIs. Meanwhile, these features are easily and readily extracted
from UAV-based images.
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