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Abstract: Increasing attention has been placed on the agroecological impact of applying exogenous
organic matter (EOM) amendments, such as green waste compost (GWC) and livestock manure, to
agricultural landscapes. However, monitoring the frequency and locality of this practice poses a major
challenge, as these events are typically unreported. The purpose of this study is to evaluate the utility
of Sentinel-2 imagery for the detection of EOM amendments. Specifically, we investigated the spectral
shift resulting from GWC and manure application at two spatial scales, satellite and proximal. At the
satellite scale, multispectral Sentinel-2 image pairs were analyzed before and after EOM application
to six cultivated fields in the Versailles Plain, France. At the proximal scale, multi-temporal spectral
field measurements were taken of experimental plots consisting of 14 total treatments: EOM variety,
amendment quantity (15, 30 and 60 t.ha−1) and tillage. The Sentinel-2 images showed significant
spectral differences before and after EOM application. Exogenous Organic Matter Indices (EOMI)
were developed and analyzed for separative performance. The best performing index was EOMI2,
using the B4 and B12 Sentinel-2 spectral bands. At the proximal scale, simulated Sentinel-2 reflectance
spectra, which were created using field measurements, successfully monitored all EOM treatments
for three days, except for the buried green waste compost at a rate of 15 t.ha−1.

Keywords: Sentinel-2; exogenous organic matter; tillage; reflectance; amendments; agroecology; soil
organic carbon

1. Introduction

The application of exogenous organic matter (EOM), such as compost and manure,
to agricultural fields is a widespread practice with the objective of increasing soil fertility.
Farmers use EOMs primarily to add macronutrients (nitrogen, phosphate and potassium)
to their fields for crop production (fertilizing EOMs) and also to increase organic carbon
content of their soils (amending EOMs) [1]. The increase of soil organic carbon (SOC) con-
tent favors soil biology and improves soil physical properties, such as aggregate stability [2].
In addition, soil organic carbon storage resulting from EOM application offers a source
of greenhouses gas mitigation [3]. Soil organic carbon storage has been identified as one
of the most prominent challenges of soil science in the 2020s [4] and the advancement of
agricultural practices that favor SOC storage, e.g., EOM application, have been of particular
focus, e.g., the 4‰ initiative [5,6].

In France, almost all EOMs which come from agriculture are spread [7], but only
14.5% of the household and similar waste and 35% of the industrial organic waste are
spread [8], thus representing large potential sources of organic matter for soils. However,
the practice of applying EOMs is largely undocumented, meaning little is known about
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the spatial allocation and frequency of amendment applications. This information is
necessary to improve the understanding of agronomic and ecological impacts, such as
yield estimation, soil carbon storage estimation [9] and pollution (e.g., nitrate leaching,
ammonia volatilization) [10] at the landscape scale. The current method of monitoring
EOM amendments is to survey farmers, which is time-consuming. In contrast, remote
sensing technology offers the potential to efficiently monitor agricultural landscapes. To
our knowledge, no preceding studies have addressed the detection of EOM from satellite
imagery or proximal field sensors. The few studies that have examined the spectral
behavior of EOMs were carried out in lab conditions, either on grape marc compost and
liquid cattle manure compost [11], or hog manure [12]. Despite this knowledge gap, the
spectral behavior of other organic soil compounds—crop residues and soil organic matter
(SOM)—are well-studied and provide a theoretical basis for our investigation.

EOMs contain organic compounds, such as plant-derived structural compounds,
humic acids and fatty acids, which can also be found in SOC and crop residues [13–16].
Moreover, SOC and EOM both produce low reflectance in the visible spectrum [17–19].
SOC content is a measurement of the organic compounds contained in the soil in a wide
range of chemical forms: carbohydrates, polysacharrides, protein and protein-derived
compounds, lipids, phenols, humic and fulvic acids, having spectral trends in the visible,
NIR and SWIR regions that can be explained by combination and vibration modes of
organic functional groups [17,20]. While SOC content can be predicted from bare soil
surface, notably from Sentinel-2 multispectral satellite images [21–27], the performance
of such prediction is degraded by the presence of crop residues [22,23], a form of organic
matter left in the field to decompose. Crop residues are composed of insoluble carbon
compound such as cellulose, hemicellulose and lignin. Some indices have been used to
detect crop residues using the broader wavelength bands of the Landsat Thematic Mapper,
such as “Normalized Difference Index 5” (NDI5) and “Normalized Difference Index 7”
(NDI7) [28], which utilize normalized differences between the SWIR and the near infrared
(NIR) spectral regions; Normalized Difference Senescent Vegetation Index (NDSVI) [29] and
Normalized Difference Residue Index (NDRI) [30], both utilizing normalized differences
between the SWIR and the red spectral regions; and, finally, the “Normalized Difference
Tillage index” (NDTI) [31], which utilizes normalized differences between the SWIR bands.
Renamed the “Normalized Burn ratio 2” (NBR2), the NDTI was adapted to Landsat8
bands [32], then used for Sentinel-2 [23,26] in order to characterize the presence of crop
residues on surface and assess its influence on soil organic carbon.

Due to the similarity in chemical composition between EOM, SOC and crop residues,
these spectral indices were evaluated for the detection of EOM application, in addition to
the development of new indices. The detection of EOM spreading events could also be
useful to determine their possible influence on the SOC prediction. However, this EOM
monitoring requires high revisit time because EOM are often buried after few days and
may decompose rapidly. In connection with the need to target very specific and one-shot
dates of amendment applications, this study will rely on the Sentinel-2 satellite time series
with a medium spatial resolution (10–20 m) and with revisit frequencies of less than five
days. The purpose of this study is to determine the potential of Sentinel-2 for the detection
of EOM application events and, specifically, to discern which spectral bands and indices are
the most effective for this purpose. Thus, this study was conducted at two different scales:
firstly, using Sentinel-2 satellites to test if EOM amending practices can be detected and
secondly, using field spectral measurements to understand the effect of variety, quantity,
tillage and time on the spectral behavior of EOM amendments.

2. Materials and Methods

The overall approach is described in Figure 1: for farm fields, pairs of Sentinel-2
images were chosen around the very dates of EOM spreading obtained from farmers’
surveys, while the changes of spectral behavior of EOM amendments over time, influence
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of type, rate and tillage, were studied from field reflectance measurements carried out in
an experiment over a 38 day period.
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Figure 1. Flowchart of the overall approach.

2.1. Satellite Image Reflectance Spectra

The Sentinel-2 series of the European Spatial Agency capture imagery in the visible,
NIR and SWIR spectral ranges with a Multispectral Instrument (MSI) sensor. Sentinel-2
imagery with acquisition dates in close temporal proximity to the fertilization dates were
downloaded from the Theia French land data center [33], which provides 10 spectral bands
with 10 or 20 m spatial resolution: images are ortho-rectified, topographically and atmo-
spherically corrected into surface reflectance through the MACCS-ATCOR Joint Algorithm
(MAJA) processor [34] and delivered together with mask of cloud and their shadows
(named “masque géophysique”, MG2 mask). The furthest acquisition dates considered were
5 days after EOM application (Table 1). In addition, rainfall on the day of image acquisition
was considered (weather station of INRAE, Thiverval-Grignon) and rainfall amounts were
null for all the images. In total, three images were selected and processed.

Table 1. Sentinel-2 satellite imagery details.

Acquisition Date Satellite % Cloud Cover Rainfall Day of
Acquisition (mm)

Cumulative
Rainfall 3 Days

before Acquisition
(mm)

Cumulative Rainfall
7 Days before

Acquisition (mm)

25 July 2018 S2A 1 0 0 1
2 August 2018 S2B 0 0 0 1.5
4 August 2018 S2A 13 0 0 0

The MG2 mask was applied to the imagery, a spatial subset of which was extracted
using the French land parcel register of 2018 [35]. Then, based on previous observation in
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the Versailles plain [26], only bare fields were retained, i.e., having a Normalized Difference
Vegetation Index value lower than 0.35.

2.2. Study Site Description

For testing Sentinel-2 images, six agricultural fields located in the Versailles plain, west
of Paris (North of France, 48◦46′–48◦56′N; 1◦50′–2◦07′E) and covering about 10–20 ha each,
were identified based on historical EOM amendment data. The most commonly cultivated
crops in the area are wheat, corn and rapeseed. The fields pertain to three different
soilscape units according to the 1/50,000 soil map of the region [26,36] characterized by
the following soil types according to the FAO classification (World Reference Base (WRB),
2014 [37]): (1) on the flanks of an upper 180 m siliceous clay plateau (so-called “millstone”,
with cavernous facies), podzolic arenosols and colluvic cambisols (three fields); (2) on a
lower 120 m-limestone plateau wrapped with loessic deposits, haplic or truncated luvisols
derived from loess (two fields including the control field); (3) on the flanks of this limestone
plateau, rendzic, calcaric, or colluvic cambisols (two fields including the field experiment).

For characterizing the EOM spectral behavior through proximal reflectance mea-
surements, a 60 m2—field experiment was performed in the AgroParisTech engineering
school campus in Thiverval-Grignon, on an historical experimental field named “l’essai
Dehérain” [38,39] (Figure 2). This field is characterized by a calcalric colluvic cambisol within
a gentle and lower slope [39], pertaining to landscape unit 3. For the sake of the spectral
measurements, sheep manure or green waste compost were applied in June–July 2020.
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Figure 2. Map of the experimental device Dehérain (Author Jean Marc Gilliot) in Thiverval-Grignon,
with the field n◦101 selected for this study (a), map of the experimental treatments (b) and Pic-
tures showing the soil surface condition for all treatments (c). Control Burying/Surf, control
field with/without tillage; Compost 15/30/60 Burying/Surf, green waste compost buried/without
tillage at a rate of 15, 30, 60 t.ha−1, respectively; Manure 15/30/60 Burying/Surf, sheep manure
buried/without tillage at a rate of 15, 30, 60 t.ha−1, respectively.

The farmers’ fields were amended with green waste compost or cattle manure, in
addition to the control field which has not received EOM amendments for more than
30 years (Table 2). The application dates and rates were obtained by farmer surveys for
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July and August 2018. The average reflectance value of each field’s pixels was calcu-
lated for each spectral band and then compared between images before and after organic
matter spreading.

Table 2. Exogeneous organic amendment (EOM) data. Application date is approximated ±2 days.

Field ID EOM Variety Application
Date

Application
Rate (t.ha−1)

Field
Area (ha)

Number
of Pixels

GWC_1 Green waste
compost 28 July 2018 30 9.5 945

GWC_2 Green waste
compost 28 July 2018 30 8.8 885

GWC_ 3 Green waste
compost 28 July 2018 30 4.5 445

GWC_4 Green waste
compost 28 July 2018 30 6.8 682

CM_1_Tilled Cattle manure 02 August 2018 20 18.1 1774
CM_2 Cattle manure 03 August 2018 20 13.7 1381

No_EOM / / / 25.3 2535

2.3. Spectral Indices for EOM Detection

In total, five indices were computed, from both image spectra and field reflectance
spectra simulated into Sentinel-2 spectral bands.

EOMI1 (Equation (1)) calculates the normalized difference of the B8A:B11 band ratio
of Sentinel-2, which is analogous to the 5:4 band ratio of Landsat TM shown by Frazier and
Cheng [40] to be strongly correlated (R2 = 0.98) to SOC. EOMI2 (Equation (2)) was adapted
from the NDRI proposed by Gelder et al. [30]. EOMI3 (Equation (3)) combines EOMI1
and EOMI2 and enables to use the spectral bands of Sentinel-2 most impacted by EOM.
EOMI4 (Equation (4)) is a normalized difference between the B11 and B4 bands. Finally,
the fifth index (Equation (5)) was the Normalized Burn Ratio 2 (NBR2) which calculates
the normalized difference of B11 and B12 bands and has previously been used to detect
crop residue by Castaldi et al., 2019 [23].

EOMI1 =
B11− B8A
B11 + B8A

(1)

EOMI2 =
B12− B4
B12 + B4

(2)

EOMI3 =
(B11− B8A) + (B12− B4)
(B11 + B8A + B12 + B4)

(3)

EOMI4 =
B11− B4
B11 + B4

(4)

NBR2 =
B11− B12
B11 + B12

(5)

For each field’s set of pixels, the histograms of indices values were compared before
and after EOM application, then a separability index based on the Euclidean distances
between these histograms was calculated. The index exhibiting the largest Euclidean
distance before and after EOM application was chosen amongst these five for further
investigation. In addition, a two-tailed Student’s t-test was applied to each index before
and after with the null hypothesis of no significant difference between the distributions.
The t-test was also applied for the control field.

2.4. Field Reflectance Experiment

To understand how EOM can impact soil reflectance, repeated spectral measurements
of EOM applications were carried out within one bare soil field in the Dehérain experiment
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from 23 June to 30 July 2020 (Figure 2). We considered 14 treatments, covering a 2 m × 2 m
square area each, according to three main criteria: (i) type of exogenous organic matter
(Table 3), sheep manure or green waste compost; (ii) quantity of EOM application, according
to three doses: 15, 30 and 60 tons of raw matter per hectare; (iii) cultural operation (tillage)
after EOM application, consisting of burying or not burying the EOM with a rototiller. Two
out of the 14 treatments were the control plots (no EOM spread), one with tillage and the
other without tillage.

Table 3. Main characteristics of green waste compost and sheep manure applied in the
field experiment.

EOM Characteristics Green Waste Compost Sheep Manure

DM (% RM) 67.8 38.0

Organic C (g C kg−1 DM) 307.5 395.6

Total N (g N kg−1 DM) 12.39 28.91

Organic C/N ratio 24.9 13.8

Phosphorus (g P2O5 kg−1 DM) 3.83 11.30

Potassium (g K2O kg−1 DM) 6.93 63.08

Iron (g Fe kg−1 DM) 6.34 2.00

The EOMs were sampled for characterization at the time of application (Table 3).
The sheep manure originated from a farm of Versailles plain (cattle manure was not
available) while the green waste compost was produced from a composting plant. The
quantities of EOM spread were chosen in accordance with the rate commonly applied in
the Versailles plain: green waste compost and sheep manure are usually applied at a rate
of 20–30 t.ha−1 [1]. Thus, 30 t.ha−1 represents our reference value. The rate of 15 t.ha−1

is seldom used, but in this study, it permits to observe a half dose. The rate of 60 t.ha−1

give the opposite information (double-dose). This rate is high but in Versailles plain, some
farmers may spread green waste compost up to 100 t.ha−1. As many farmers bury EOM
after spreading, the practice of tillage is intended to observe impact of burying. This is the
reason why we realized our experimentation over the course of 38 days, through several
(seven but only five were usable) successive reflectance measurements of all treatments.
Rainfall was null and sky was perfectly clear on the three first days of experiment, then
rainfall was close to null in the following days (Table 4). Due to erratic standard deviations,
reflectance measurements of day 10 and 15 (cloudy) were not included in our analysis.

Table 4. Rainfall data during the field experiment (INRAE weather station, Thiverval-Grignon).

Date 06/23 06/24 06/25 06/26 06/27 07/01 07/02 07/09 07/14 07/25 07/30

Day after EOM
spreading 0 1 2 3 4 8 9 16 21 32 37

Daily rainfall (mm) 0 0 0 0.2 1 2.2 0.2 0.2 0.2 7 0

Cumulative
rainfall (mm) 0 0 0 0.2 1.2 3.4 3.6 3.8 4 11 11

Reflectance measurements were carried out with FieldSpec®3 (Analytical spectral De-
vises Inc., Boulder, CO, USA) and RS 3500® (Ltd. Spectral Evolution, Haverhill, MA, USA)
portable spectroradiometers with 350–2500 nm spectral range for all treatments measure-
ments after EOM spreading and for all treatments measurements before EOM spreading.
The FieldSpec®3 spectral resolution is 3 nm in the 350–1000 nm region (sampling interval
1.4 nm) and 10 nm in the 1000–2500 nm region (sampling interval 2 nm). The RS 3500®

spectral resolution is also 3 nm in the 350–1000 nm, 8 nm in the 1000–1900 nm and 6 nm in
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the 1900–2500 nm region. In order to minimize variations in illumination conditions and
shadows effects related to soil roughness, the measurements were taken under conditions
of few cumulus clouds between ± 2 h around solar noon. Both spectroradiometers have a
25◦ field of view, so that each reflectance at a 0.8 m-height integrates a spot size of about
0.1 m2 at nadir. Each field measurement was repeated by moving the spectroradiometer in-
side each treatment square. The values used at each site was an average of 60 or 70 spectra
calibrated against a 30 cm × 30 cm and a 13 cm × 13 cm Spectralon® reflectance panel,
for the Fieldspec® 3 and the RS 3500®, respectively. The RS 3500® was only used the first
day of measurement before EOM spreading. Then, we used both pieces of equipment and
retained the FieldSpec®3 spectra because the beam fixing the spectroradiometer’s pistol
grip enabled a better distribution of spectral measurements for each treatment.

2.5. Analysis of Field Reflectance Spectra and of Temporal Indices Profiles

Field reflectance spectra of all treatments were acquired both before and after EOM
spreading. For each measurement day, the spectra of all treatments were compared, in
order to understand the spectral response according to the EOM and the quantity applied.
The before-spectra aimed to characterize the spatial variations of bare soil across the field
and verify its homogeneity. The after-spectra were taken the day of spreading and the 1st,
2nd and 3rd day and then until the 37th day after EOM spreading (Table 4). Because spectra
of five treatments were inoperable for the 37th day, a total of 79 spectra were analyzed.

Field reflectance spectra were simulated into the MSI spectral bands of Sentinel-2,
using a “read.asd” tool coded in Visual Basic for Application that enables to open field
spectrum files in “.asd” format and to automate the pre-processing of spectra under the
Excel® software. The “read.asd” tool averages spectra into 1 nm-intervals resulting in spec-
tra with 2151 bands [41]. A recent update of the tool also permits to automatically weight
average reflectance values using spectral sensitivities functions available for Sentinel-2
sensor. The five indices already used for image spectra were calculated from the simulated
Sentinel-2 spectra.

To test the effect of EOM application, both ANOVA test and Tukey tests were applied
between all treatments before and after EOM spreading.

Moreover, in order to discriminate between treatments, several multivariate ap-
proaches relied on calculating Ascending Hierarchical Clustering (AHC), with the Ward
method [42], on either the simulated Sentinel-2 spectra, or on the spectral indices: (i) on
the 14 observations of treatments before or after spreading for a given day, characterized
by the 10 simulated spectral bands of Sentinel-2; (ii) for the same EOM spread rate over
time, on the 20 observations and 10 variables; (iii) on all indices and 65 observations, which
represented all treatments during the experimentation, for the purpose of observing their
evolution over time.

3. Results
3.1. Analysis from Sentinel-2 Images the Days before and after

The application of green waste compost that occurred on four study fields around
28 July 2018 (Table 2) was traced by the acquisitions of 25 July and 2 August 2018 in perfect
sky conditions. A strong reflectance decrease occurred in the visible and NIR regions after
compost application (Figure 3). The largest decrease in image reflectance occurred in bands
8 and 8A, while the smallest appeared in band 12. The control field was unchanged in the
visible bands, while displaying a slight reflectance decrease from B5 to B12 but within the
range of values of non-amended soils.
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The application of cattle manure that occurred on two fields around 2 August 2018
(Table 2) was traced by the acquisitions of 2 and 4 August 2018 in perfect sky conditions.
The spectral change observed between the two images suggests that fertilization did occur,
either on 2 after satellite pass or on 3 August. The two Sentinel-2 images differ by a decrease
in reflectance in the visible and NIR regions after EOM application (Figure 4). The reason
for the different spectral profiles between the two amended fields might be due to the
fact that one of the fields was tilled after fertilization (CM_1_Tilled). For the tilled field,
the largest decrease in reflectance occurred in bands 8 and 8A, while the largest increase
in reflectance occurred in band 12. The spectral difference of the non-tilled field (CM_2)
shows the largest decrease in reflectance in bands 5, 6, 7, 8 and 8A and the largest increase
in reflectance occurred in bands 11 and 12.
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The results of the Euclidean distance calculations between the before and after indices
values distributions show that EOMI2 yields the largest statistical distance or separability
for each EOM spreading event (Table 5). Even though the Euclidean distances between
control fields were around 1.4, the EOMI1, EOMI3 and EOMI4 indices also yielded higher
statistical distances than control, except EOMI4 for the CM_1_Tilled field. For both amend-
ments, EOMI2 yielded the highest distance values before and after EOM spreading. Thus,
the focus of the remaining analysis will be on EOMI2. EOMI2 values overall increased
following both amendments, substantially for compost (Figure 5). Pixels for all three
dates in the control field had a mean EOMI2 value of 0.10. Figure 4 displays the boxplots
of EOMI2 before and after application. According to the two-tailed student’s t-test, the
null hypothesis of no significant difference between distribution pairs shall be rejected,
indicating statistically significant differences at α = 0.01. Null hypothesis was also rejected
between the t-test of each “after EOM” and control (No_EOM) distribution, indicating
statistically significant differences at α = 0.01. The CM_1_Tilled, which received cattle
manure, showed the least difference between before and after EOM amendment, which
might be due to tillage that was performed the same day of the EOM amendment.

Table 5. Euclidean distances between before and after pixels distribution values of spectral indices
for each studied field.

Field ID EOMI1 EOMI2 EOMI3 EOMI4 NBR2

GWC_1 7.73 10.34 8.70 7.87 1.45

GWC_2 4.48 6.04 5.06 4.58 0.85

GWC_3 2.85 3.60 3.12 2.40 0.85

GWC_4 5.39 6.96 5.99 5.43 1.02

CM_1_Tilled 1.21 3.85 2.31 0.78 3.67

CM_2 3.36 4.75 3.81 4.62 0.74

Control_field
(between 25 July and 2 August) 0.45 1.40 0.50 1.24 0.30

Control_field
(between 2 August and 4

August)
0.54 1.44 0.69 1.42 0.33

3.2. Analysis of Field Spectra before and after EOM Spreading over the First Three Days
of Experiment

During the first day of the field experiment, before applying EOM, soil reflectance
measurements acquired on bare soil suggest the spectral homogeneity of bare soil amongst
the treatments (Figure 6). This spectral homogeneity was confirmed by the ANOVA test:
indeed, all treatments were compared and no significant difference at α = 0.05 was shown
by analysis of variance.
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According to the results of the Tukey tests, simulated Sentinel-2 spectra show, for both
green waste compost and sheep manure on the surface, a significant decrease of reflectance
in the visible spectral bands (B2–B4) and a significant increase in the B11 SWIR band
compared to bare soil (Figure 6b). Compared to bare soil, green waste compost spectra also
show a significant decrease in the spectral bands B6, B7 and in the NIR spectral band B8,
whereas reflectance of sheep manure either does not show a significant decrease or remains
similar to bare soil for these bands. The difference between bare soil reflectance and EOM
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treatments is higher when the EOM quantity increases. However, reflectance spectra do
not differ for EOM rates of 30 t.ha−1 and 60 t.ha−1 without tillage.

3.3. Analysis of Spectral Changes in the Field Experiment over the 38 Days Period

The multi-temporal observations show the change in reflectance over time for each
treatment. Over the span of the spectral field experiment, the best index to monitor EOM
was EOMI4. SWIR measurements analogous to spectral band B12 of Sentinel-2 were
sometimes unusable because of disturbance and saturation, resulting in some inconsistent
data for EOMI2 and EOMI3. Although EOMI4 was not the best performing index for
monitoring EOM application in Sentinel-2 images, the results of the field experiment show
this index to be sufficient to monitor EOM over time.

EOMI4 separates almost all applications of EOM from the control (Figure 7). According
to the Tukey tests, only the buried green waste compost applied at a rate of 15 t.ha−1 does
not show a statistical difference with the control treatments for D0 to D3. In addition, the
index values reflect the quantity of EOM spread and the tillage. Specifically, the EOMI4
values are higher when the EOM is untilled and are positively correlated to the quantity of
EOM applied.
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3.4. Multi-Indices Grouping of the EOMs According to Type, Rate, Tillage

The AHC results obtained from the five indices (EOMI1, 2, 3, 4 and NBR2) for all
spectral samples in the field experiment create four classes, successfully discerning between
levels of EOM application (Figure 8). The first class regroups all control fields, all green
waste compost burying at a rate of 15 t.ha−1 and sheep manure burying at a rate of 15
and 30 t.ha−1 for the day 37. The second and third classes contain the rest of the buried
samples, mostly on the days shortly after EOM application and the sheep manure at a
rate of 15 t.ha−1 in surface for the days 1 to 3. The last class collects all treatments with
EOM in surface at a rate of 30 and 60 t.ha−1, as well as the manure in surface with a rate of
15 t.ha−1 for the day 0. The clustering of these samples into intuitive classes demonstrates
the separative potential of these indices for detecting EOM amendments.
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4. Discussion

This research pioneers the mapping of EOM amendment practices from optical remote
sensing and especially from multispectral satellite images. The knowledge about such
agricultural practices relies upon fastidious surveys of farmers; the bottleneck being the
difficulty to retrieve the precise dates and hours of spreading, which are not always
recorded. Previous research that is relevant and complementary to this topic dealt either
with dry vegetation or crop residues (e.g., [31]), topsoil SOC (e.g., [22,23,25,43]), or tillage
operations (e.g., [41]). Indeed, EOM amendments are left on soil surface in a similar way as
dry vegetation or crop residues and they may be tilled just after spreading, thus, resembling
tillage operations. However, conversely to dry vegetation or crop residues which can be left
on surface over some weeks [31] and conversely to ploughing, that can be detected some
months after [44], spreading events are time-limited, all the more when tillage is carried
out for EOM burying. In addition, though the EOM incorporated into topsoil horizon
contributes to increase topsoil SOC content, EOM detection may not be confused with SOC
content detection: EOMs are spread as a thin additional layer on topsoils of different initial
SOC contents, which are background material in the context of EOM detection.

4.1. A Promising Tool to Monitor EOM Amendment Practices

Exogenous organic matter amendments, such as green waste compost and cattle
manure amendments, can be detected by Sentinel-2 images (Figure 9), particularly with
the EOMI2 index. Other indices also yielded significant results, even though they were less
performing than EOMI2. Our field spectral measurements confirmed significant results
with simulated Sentinel-2 reflectance spectra. However, in this experiment the EOMI4
performed the best, perhaps due to noise component over the B12 spectral band which
impacted the EOMI2 and EOMI3 index. Our field experimentation also exhibited that
EOM amendments can still be detected until three days after spreading. Because the field
measurements were carried out over areas too small to allow satellite observations, further
study will consist of carrying out in situ measurements at the scale of agricultural plots.
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Field measurements revealed that both green waste compost and sheep manure had
distinct spectral response. Thus, a combination of several indices, rather one single index,
could contribute to better identify the variety of EOM and even assess the quantity applied.
However, as only two solid EOMs have been considered here, further research should
include an evaluation of the performance of our indices for both other solid EOMs, such as
other composts, manures and liquid EOMs, such as slurries or digestates.

In addition, the feasibility of an Earth observation monitoring from Sentinel-2 times
series should be consolidated over larger periods encompassing crop rotations that is more
than 4 years.

4.2. Remaining Issues for Tracking the Application of Exogenous Organic Matter

Organic amendments are applied only occasionally. Thus, the acquisition of Sentinel-2
images must be done shortly after organic matter application to avoid a shift in soil surface
characteristics, which is not due to the EOM spreading. Indeed, vegetation growth, tillage
operations and rainfall events occurring after EOM amendments may influence soil surface
characteristics. The accurate identification of amendment application events depends on
the availability of good quality images at key periods. Our field measurements showed
that spectral indices were less effective 37 days after EOM application. Moreover, rainfall
could explain the decrease of index values after three days, since it rained 1, 2.2 and 7 mm,
respectively, on the 4th, 8th and 32th day after EOM spreading (Table 4) and this rainfall
could have impacted soil moisture. Therefore, spectral changes occurring after three days
still need further observations.

The field measurements were carried out in summer. Recent study has shown that the
prediction performance of soil organic carbon was impacted by the acquisition date [25],
notably due to soil roughness generated by ploughing, as well as soil moisture. Thus,
the prediction performance of EOM amendments should also be tested in the spring and
autumn in order to assess the influence of either soil roughness or soil moisture.

Lastly, we wish to emphasize that, except for the field experiment, the six fields
under study through Sentinel-2 imagery were not experimental fields, but farmers’ fields,
surveyed for their EOM spreading data information. For the purpose of mapping the
spread fields, a more comprehensive survey of farmers would be needed, retrieving the
precise dates and hours of spreading. According to the SOC map of the Versailles Plain
realized by Zaouche and al., in 2017 [45], the “control” fields for no amendment spreading
have a lower SOC content than organic amended fields, respectively less than 13 g.kg−1

and more than 17 g.kg−1. Thus, this study set out the capability of Sentinel-2 to follow
two different EOMs and the spectral difference which can be detected with indices within
the same field at the farm scale. However, further studies will have to be led with more
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field data in order to account for the possible background influence of soil type and topsoil
SOC content.

5. Conclusions

This research is aimed to further facilitate the monitoring of amendment practices,
which relies upon fastidious surveys of farmers; the bottleneck being the difficulty to
retrieve the precise dates and hours of spreading, which are not always recorded. In
this study, Sentinel-2 imagery showed strong potential for the detection of exogenous
organic matter amendments at the farm scale. Image analysis before and after amendment
application revealed the spectral changes in the visible, NIR and SWIR wavelengths. From
this analysis, we identified five indices for analysis, of which EOMI2 created the most
separation in each pair of images. Moreover, field reflectance measurements confirmed
that green waste compost and sheep manure amendments could be detected at a minimum
rate of 15 t.ha−1 on surface or buried for sheep manure and a minimum rate of 30 t.ha−1

for buried green waste compost. Field reflectance measurements also showed that green
waste compost and sheep manure do not influence the same spectral bands of Sentinel-2.
Over the timespan of the field experiment, the best index to monitor EOM was EOMI4.
Thus, the use of one single simple index may not be adequate for the detection variation in
EOM variety and quantity. Further study is necessary to improve the understanding of the
spectral behavior of other EOM varieties in the field. Another further challenge will consist
of gathering a more comprehensive survey of farmers in order to upscale such detection at
a regional scale, while accounting for the possible background influence of soil type and
topsoil SOC content.
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