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Abstract: Shallow-water depth estimates from airborne lidar data might be improved by using
sounding attribute data (SAD) and ocean geomorphometry derived from lidar soundings. Moreover,
an accurate derivation of geomorphometry would be beneficial to other applications. The SAD
examined here included routinely collected variables such as sounding intensity and fore/aft scan
direction. Ocean-floor geomorphometry was described by slope, orientation, and pulse orthogonality
that were derived from the depth estimates of bathymetry soundings using spatial extrapolation
and interpolation. Four data case studies (CSs) located near Key West, Florida (United States)
were the testbed for this study. To identify bathymetry soundings in lidar point clouds, extreme
gradient boosting (XGB) models were fitted for all seven possible combinations of three variable
suites—SAD, derived geomorphometry, and sounding depth. R2 values for the best models were
between 0.6 and 0.99, and global accuracy values were between 85% and 95%. Lidar depth alone
had the strongest relationship to bathymetry for all but the shallowest CS, but the SAD provided
demonstrable model improvements for all CSs. The derived geomorphometry variables contained
little bathymetric information. Whereas the SAD showed promise for improving the extraction of
bathymetry from lidar point clouds, the derived geomorphometry variables do not appear to describe
geomorphometry well.

Keywords: lidar point attribute data; spatial extrapolation; extreme gradient boosting; bathymetry;
Florida Keys

1. Introduction

As airborne lidar (‘light detection and ranging’) data become increasingly used for
shallow-water bathymetric mapping (less than about 17 m depth), the need for efficient
and accurate methods to separate bathymetric signals from noise in lidar data remains a
challenge. A number of conceptual approaches for waveform lidar data were described
in [1]: (1) mathematical approximation, (2) heuristic methods, (3) statistical approaches,
and (4) deconvolution methods. Furthermore, some research has suggested that MBES
(employed abbreviations are defined initially in the text and are also presented in at the
end of this article) sonar and bathymetric lidar data can produce comparable average point
accuracies under certain conditions (e.g., [2]). The high data volumes of waveform lidar
data, however, result in slower processing than is possible with lidar point data. However,
well-researched methods of extracting ocean bathymetry operationally from lidar point
data have not been established.

The overarching context of the present research is therefore the operational extraction
of bathymetry from lidar point clouds for shallow water. This paper specifically focuses on
extracting bathymetry from currently unexploited information recorded for, or derivable
from, ‘discrete’ or ‘point’ lidar data, i.e., not waveform data. The analytical framework is
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the improvement of a heuristic algorithm developed for MBES sonar data adapted to lidar
pulse returns—or ‘soundings’ in ocean mapping parlance.

The subject algorithm is density-based and known as CHRT (CUBE with hierarchi-
cal resolution techniques [3,4]; another density-based algorithm that employs a random
consensus filter [5] was described in [6,7]). CHRT establishes a grid of ‘estimation nodes’
(ENs) over an area of interest and, conceptually, uses the distance-defined ‘neighboring’
soundings around each EN to produce a depth frequency histogram that is conceptually
equivalent to a waveform for a single lidar pulse. Individual histograms are usually multi-
modal with each mode defining a depth ‘hypothesis.’ Figure 1 shows a fictitious example
for a single EN for three different depths. In the shallow and mid-depth areas (Figure 1a,b),
the hypotheses indicating the ocean floor contain the largest number of soundings, but
for the shallow EN, there is considerable overlap between the bathymetry hypothesis
and the non-bathymetry hypotheses. The depth of the deep area (Figure 1c) approaches
the limit of lidar penetration; this results in the non-bathymetry hypotheses having the
greatest number of soundings and being widely separate from the bathymetry hypotheses.
Embedded in CHRT are disambiguation rules that determine which of an EN’s hypotheses
is the most likely depth.
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Figure 1. Representative sounding frequency distributions for hypotheses for individual estimation nodes (ENs) represent-
ing three depths. (a–c) depict representative hypotheses for, respectively, shallow, mid-depth, and deep areas. The blue
hypotheses represent the ocean surface, and the black hypotheses are the (correct) ocean floor hypotheses.

Density-based algorithms such as CHRT employ only the depth and uncertainty
estimate reported for each lidar sounding/pulse return. This is clearly sensible since depth
is likely to strongly indicate if a sounding is bathymetry or not, i.e., Bathy or NotBathy.
Additionally associated with each sounding, however, are metadata such as the intensity of
a sounding. These ‘sounding attribute data’ (SAD) are either collected during acquisition or
can be derived post-acquisition. If such SAD relate to the bathymetric information content
of soundings, they might be used to improve the disambiguation rules in CHRT, thereby
producing more accurate bathymetric charts.

Another type of SAD that, in principle, can be derived is the geomorphometric charac-
teristics of the ocean floor. It has been established that ocean bottom characteristics have
important impacts on lidar reflectance [8] and passive optical data [9] for depth detection,
as well as a number of other applications (e.g., [10,11]). Hence, there is considerable interest
in geomorphometry beyond bathymetric mapping [12], e.g., ocean currents [13], ocean



Remote Sens. 2021, 13, 1604 3 of 19

mixing [14], and biotic species distributions [15]. Using lidar data, the authors of [16,17]
were able to characterize the rugosity of ocean bottoms in shallow waters using full wave-
form lidar. And using simulated lidar waveform data, the authors of [18] demonstrated
that bottom reflectance and incident scan angle impact the accuracy of depth estimates
from full waveform lidar, with bottom characteristics being the more important of the two
factors. Exploring whether comparable results could be achieved using the discrete lidar
data is the subject of the present research.

A major challenge in using point lidar data to extract ocean geomorphometry is the
sparsity of Bathy soundings as one approaches the depth limit of lidar penetration (i.e.,
about 17 m). This was noted in the introduction to a special issue of Geosciences on
geomorphometry [19], which also presented a summary of methods examined to address
this with a focus on sonar data. As the number of Bathy soundings decrease and the
distance between them increases, the ability to reliably characterize geomorphometry
decreases. However, given that airborne lidar is the only current sensing technology
that provides high resolution data for shallow water, the need for methods that provide
geographically complete geomorphometric coverage from lidar point clouds has been
recognized since at least 2012 [20].

The challenge of meaningfully describing geomorphometry in areas nearing the limits
of lidar penetration is considerable. Lidar pulse returns with a high certainty of truly
representing bathymetry can be sparse or non-existent resulting in large gaps in spatial
coverage. Hence to overcome these limits, one must employ both spatial interpolation to
fill in gaps between known points of bathymetry and extrapolation to artificially extend the
limits of data. Both methods rely on explicit and implicit assumptions about bathymetry
between known points and beyond.

The study reported here has a strategic goal of facilitating the production of maps of
shallow water ocean floor geomorphometry from lidar point data to produce more accurate
bathymetric maps. The developed approach applies extrapolation and spatial interpolation
to lidar soundings classified as Bathy (by the data provider NOAA—the United States
National Oceanic and Atmospheric Administration).

The signal strength present in various types and combinations of SAD metadata
was evaluated by first fitting a classificatory model to the Bathy or NotBathy NOAA
classification of each lidar sounding by using depth alone as a predictor. This provided a
‘null model’ against which the standalone and marginal contributions of pulse-return SAD
and geomorphometric SAD could be compared using model goodness-of-fit and a variety
of classification accuracy statistics. If either type of SAD alone produced a better model
than the null model or if either/both improved the null model, classification models could
be incorporated into operational workflows that enhance the existing disambiguation rules
employed in density-based algorithms such as CHRT. Furthermore, a demonstration that
derived geomorphometric SAD contribute to improved depth estimates implies that the
developed methods produce ocean bottom descriptors that are able to describe actual
geomorphometry. Thus, this article evaluated the absolute and marginal strengths of
the bathymetric signal in different types and combinations of SAD metadata, including
geomorphometry derived using spatial interpolation and extrapolation.

2. Materials and Methods

Figure 2 provides a schematic of the data and process flow of this study; details
are discussed in subsequent sections. This research design required data extraction for
both types of SAD, the fitting of an ML model, and the evaluation of the utility of the
different types of SAD to determine the relative contributions of the non-geomorphometric
SAD (NGSAD), the geomorphometric SAD (GSAD), and the ocean depth for each lidar
point return.
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Figure 2. Schematic flow of data preparation and model development and evaluation. (GSAD:
geomorphometric sounding attribute data; NGSAD: Non-geomorphometric sounding attribute data);
SBET: smoothed best estimate trajectory).

2.1. Study Area and Instrumentation

The test bed for this work comprised discrete lidar data for four 500-by-500-m CSs
located in the Florida Keys (United States) in an area centered roughly on 24◦35′ N latitude
and 81◦45′ W longitude; these were provided to the authors by NOAA. The CSs described
in Table 1 and shown in Figure 3 were selected because their variability in depth, bottom
surface characteristics, and data characteristics provided a representative range of condi-
tions typically encountered operationally. For convenience, their relative depths—Shallow,
Deep, Deeper, and Deepest—are used as identifiers.

Table 1. Description of case studies (CSs) employed in this study.

Identifier/Rel. Depth Shallow Deep Deeper Deepest

Latitude/Longitude 24◦35′08”/81◦42′31” 24◦28′39”/81◦41′18” 24◦40′00”/81◦47′00” 24◦40′00”/81◦47′00”

Description
Shallow—only the
southwest is below

mean sea level (MSL)

Gradual slope with a
few ‘dimples’

approximately 1 m tall
throughout.

Gradually sloped and
cut by relatively

shallow channels with
bathymetry sparse in

the northwest

Long fairly flat
trapezoid with small
lower depth “mound’

in northeast.
Bathymetry extremely
sparse and clustered.

Area covered (m2) 30,000 250,000 250,000 75,000

Approx. depth range
below MSL (m) From −2 to 0 From −6 to −3 From −11 to −8 From −16 to −13

Total Returns (million) 0.6 7.6 3.7 1.0

Return density
(pts/m2) 27.6 30.4 14.8 13.3

% Bathymetry 78 76 21 0.4

Number of flight paths 5 7 7 2

Discrete lidar data for the examined CSs were acquired between 22 April and 25 April
2016, and they were provided to the authors as ‘.las’ files using the LAS data standard
Version 1.4-R13 (Point Data Record Format 6) [21]. Data were acquired using a Riegel™ VQ-
880-G lidar instrument that has a counter-clockwise circular scan pattern and an incidence
angle of 20◦. Data were acquired using an overlapping boustrophedonic (‘lawn mower’)
flight pattern from an airplane flown at a nominal speed of 220 km per hour and a nominal
altitude of 400 m above mean sea level (MSL); a single pass over a CS area required about
15 s.

Lidar soundings did not necessarily cover the entirety of each case study. Specifically,
for the Deepest CS (Figure 3d), only two flight paths were available on the western edge.
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For the Shallow CS (Figure 3a), lidar data were acquired for the entire area. However,
much of this CS is covered by mangrove swamps, and approximately 90% was determined
by NOAA to be ‘Ground,’ i.e., above sea level. For such CSs, NOAA masks out ‘Ground’
areas and only classifies the remaining area as Bathy/NotBathy. For consistency, only the
data for the area not masked out by NOAA were analyzed here.
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Figure 3. Map of ocean depth for the four CS areas; mean depth is presented for 1 m pixels of Bathy
soundings. (a–d) show CSs used for methodology development ordered from shallowest (a) to
deepest (d). Only gray and colored areas have usable data; white areas either have no soundings due
to flight path or soundings judged to be above MSL. Gray areas contain only NotBathy soundings.

2.2. Data
2.2.1. Predicted/Dependent Variable: Sounding Classification

The NOAA provided a Bathy/NotBathy classification of each sounding. This was
produced using a combination of semi-automated procedures and human intervention.
This was considered to be the most authoritative reference classification available and, in
this study, was the independent variable on which ML models were fitted.

2.2.2. Predictor/Independent Variables

For analytical and discussion purposes, the predictor data were categorized as being
one of three types: depth, NGSAD, or GSAD (Table 2). Each is referred to as a vari-
able ‘suite.’
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Table 2. Data type and nature for depth and non-geomorphometric sounding attribute data (NGSAD) employed in this
study. Variable names are italicized. (SBET: Smoothed best estiate trajectory.)

Type Nature Variable (Name)

Depth Depth

• Depth in m as provided via conventional lidar post-processing
(depth). Depth is negative representing distance below the ellipsoid.
In the study area, mean sea level (MSL) has an approximate depth
of −21.5.

NGSAD: Sounding-based Sounding-specific

• Intensity of pulse return (intensity; 16-bits, i.e., maximum value is
65,536)

• Number of returns (numreturns)
• Return number (return_no)
• First of many (first_of_many; 0 or 1)
• Last of many (last_of_many; 0 or 1)
• Last (last; 0 or 1)
• Scan direction (scan_direct; −1 (backwards) or +1 (forward))
• Azimuth from airplane to pulse (azim2plse; 0◦ to 360◦ in decimal

degrees)
• Incident scan angle corrected for yaw, pitch, and roll (inciangle;

recorded in decimal degrees)
• Difference between pulse direction and airplane heading

(plse_frm_hdng; 0◦ to 90◦ decimal degrees)

NGSAD: Airplane stability

SBET

• Aircraft positional—sum of standard deviations of x, y, and z
(stdXYZ)

• Aircraft platform—sum of standard deviations of yaw, pitch, and
roll (stdYwPtRl)

Edge-based
• Absolute value of orthogonal deviations of edge-points from

straight flight path (absdevia)

Depth

For analysis, depth was treated as its own variable ‘suite’—hence the use of ‘depth’ as
data type and data nature in Table 2. Depth is expressed in meters, is negative, and is the
distance from the ellipsoid height. That is, in the test bed area, MSL was approximately
−21.5 m, which is the approximate distance between the ellipsoid and the geoid in the
study area.

Non-Geomorphometric Sounding Attribute Data (NGSAD)

For clarity and interpretation, the variables in the NGSAD suite were further catego-
rized by ‘type’ and ‘nature.’ The ‘sounding-specific’ NGSAD addressed the nature of each
sounding. Many, e.g., intensity, scan_direct, and azim2plse, were recorded at the moment
that each sounding was recorded. Others, e.g., last_of_many, were derived through NOAA
post-processing. Still others, e.g., inciangle and plse_frm_hdng, were derived by the au-
thors after a literature review suggested that additional NGSAD might contain bathymetric
signal. For example, inciangle (the sensor angle of 20◦ corrected for yaw, pitch, and roll)
was employed in lidar data processing for bathymetry in [22]. The bathymetric content of
such variables has subsequently been confirmed in [23].

The ‘airplane stability’ type of NGSAD variables reflects an implicit description of
instantaneous flight conditions that might relate to the bathymetric information content
of soundings and be a proxy for local weather and thus turbidity conditions affecting the
ocean surface and light reflectance, e.g., ocean swell direction, ocean swell height, and lidar
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scattering. Initially, available local weather records were explored, but it was determined
that the available information lacked sufficient temporal and geographical specificity to be
of use. SBET (‘Smoothed Best Estimate of Trajectory’) data are produced by the Applanix
Corporation using a proprietary method based on a tightly coupled extended Kalman
filter. SBET data describe the x, y, and z location of the plane and its yaw, pitch, and roll
at 1/200th second intervals. SBET data also include a standard deviation for each SBET
variable. These describe the certainty and temporal consistency of each SBET variable and
are extracted from the Kalman filter’s post-observation covariance matrix. The standard
deviations of the SBET variables were surmised to be surrogate measures of wind or ocean
surface conditions (that might also impact shallow water turbidity) at the moment of
pulse return acquisition. SBET uncertainties were associated with individual soundings by
matching acquisition times.

Additionally addressing flight path stability are derived ‘edge-based’ NGSAD. For
each flight path on a CS, the ‘edge’ lidar soundings were identified (Figure 4a). The
equation of the straight line from the ‘top corner’ to the ‘bottom corner’ of these edge
soundings was derived (Figure 4b). The orthogonal deviation of each edge sounding from
this straight line was then calculated (Figure 4c). These deviations were associated with
individual soundings by matching acquisition times.
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sounding cloud.

Geomorphometric Sounding Attribute Data (GSAD)

Geomorphometry can be derived from airborne lidar data for a range of spatial
resolutions [24]. Indeed, airborne lidar is also an established technology for mapping
terrestrial landforms (see, e.g., [25,26]). However, in a review article in a special issue
devoted to the subject, the authors of [12] observed in 2016 that, despite growing interest,
research on marine geomorphometry is less advanced. More recently, the authors [27]
noted the difficulties associated with using lidar data alone to produce seamless land–sea
digital elevation models (DEMs) for inter-tidal zones.

In this study, the depth (distance below the ellipsoid in m) associated with the sound-
ings identified as Bathy by NOAA was used to derive geomorphometric characteristics
over the entirety of each CS. Two types of geomorphometric information were developed:
‘Base Geomorphometry’ and ‘Orthographic Geomorphometry.’

Base Geomorphometry

The base geomorphometry variables were slope in percent and azimuthal orientation
expressed in degrees. Their derivation is described by the following steps.

Step 1: Interpolate depth for the NOAA Bathy soundings on a grid within the convex
hull defined by the geographic limits of the NOAA Bathy soundings.
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Figure 5a shows the convex hull defined by the geographic limits of the NOAA
Bathy soundings for the Deeper CS. The displayed convex hull was in fact 5 m inside the
geographic limits of the NOAA Bathy soundings; this 5 m buffer is required for a number
of operations such as ensuring that slope maps do not treat data edges as being areas of
abrupt depth changes. TIN (triangular irregular network)-based linear interpolation was
applied to the depth associated with the NOAA Bathy soundings to interpolate depth to
a grid within the convex hull (Figure 5b,c). This interpolation provided a depth estimate
for every point within the convex hull. It made the implicit assumption that the slope
between any two points was a plane. Though reasonable over short distances, it became
less reasonable as the length of sides of individual triangles comprising the TIN increased
and triangles became less equilateral. Once produced, the TIN was converted to separate
spatially regular 1 and 5 m grids, which were both employed to enable the consideration of
fine-scale and coarser-scale geomorphometry.

Step 2: Extrapolate depths to points beyond geographical limits of known Bathy
soundings.

A set of ‘exterior points’ was established around the edges of the entire CS at a
15 m spacing (Figure 6a)—a spacing that was subjectively evaluated as being broadly
suitable. Conceptually, the bathymetry-bounding grid points developed in Step 1 were
used to extrapolate depth along a plane to each of the exterior points; grid points depths
considered to be anomalous or highly uncertain were removed. The validity of doing this
relied on the implicit assumption that the geomorphometry at the limits of known data
was indicative of the geomorphometry beyond, e.g., slope, aspect, and rugosity were all
similar on both sides of the convex hull. Operationally, for each of the exterior points, a
4 m-wide polygon (Figure 6b) from the geometric center of the convex hull was established,
and the grid points (Figure 5c) within 10 meters of the convex hull that were closest to each
of the exterior points were extracted (Figure 6c); 4 and 10 m were subjectively judged to
provide a sufficient but not excessive number of points for extrapolation for a range of
spatial configurations.
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Figure 6. Extrapolation to points beyond the CS edge. ((a) left) The NOAA Bathy soundings and regularly spaced ‘exterior
points’ beyond the CS limits. ((b) center) A 4 m-wide polygon (red) from the sounding-density-weighted center of the
convex hull of Bathy points to one of the exterior extrapolation points. ((c) right) The Bathy grid points with an interpolated
depth from (c) (green) in a 4 m-wide polygon, interior to the convex hull, and within 10 m of the edge of the convex hull;
these grid points were used to extrapolate the depth of the exterior point.

For each exterior point, a linear regression was fitted to the grid points extracted by
the 4 m-wide polygon. Its form is:

Z = a + bX + cY (1)

where Z is the depth in meters; X and Y are Universal Transverse Mercator (UTM) co-
ordinates; and a, b, and c are regression coefficients. The X–Y coordinates of the subject
exterior point were used in the regression equation to estimate its depth. Exterior points
were eliminated from further analysis if their regression line had a root-mean-square-error
(RMSE) greater than 1 cm, there were fewer than 15 points available for model fitting, or
the R2 of the regression line was less than 0.75. The Deeper CS used for illustration in
Figures 5 and 6 was representative of the varying certainty of the extrapolated depth of
exterior points related to the spatial distribution of known bathymetry soundings. That
is, where NOAA Bathy soundings extended to the edge of the CS (the south and east in
Figure 6a), the distance over which depth was extrapolated was small and certainty likely
to be higher than for exterior points for which the extrapolation distance was large (e.g.,
the northwest of Figure 6a).

Step 3: Interpolate depths on a whole-of-CS point grid using the known Bathy sound-
ings and the extrapolated depths of the exterior points. Convert point grid to a raster.
Determine slope and orientation.

A grid of points of user-specified spacing—1 and 5 m in this study—was established
across the CS limits to the exterior extrapolated points. The depth of each grid point was
determined via distance-weighted linear interpolation using the depths of the NOAA
Bathy soundings and the exterior points whose depths were extrapolated. This depth grid
was then converted to a raster of the same resolution as the grid, and the slope in percent
and azimuthal orientation were obtained using a 3-by-3 raster window around each raster
cell (Figure 7). Slope and orientation rasters were then clipped to the geographic limits
of the CS. Note that extrapolated depth was solely employed to produce the slope and
orientation surfaces; in the subsequently fitted ML models, it was the depth associated
with each sounding that was employed.

The impact of this ‘plane fitting extrapolation method’ for slope and orientation using
sparse or absent Bathy data is readily apparent in Figure 7. For the Deeper CS, the slope and
orientation maps were understandably more regular in the highly extrapolated northwest
than the southeast, where Bathy data were abundant. Though the GSAD in the northwest
were cartographically and analytically most uncertain, such data represented the best
geomorphometric information that could be produced using the employed method.
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Figure 7. Rasters resulting from interpolation showing depth (left), slope in percent (middle), and orientation in degrees
(right). The outline of the convex hull is provided for reference. Depth (left) is the depth below the ellipsoid in metres.

After applying this method to all four CSs, the slope and orientation for each lidar
sounding were extracted using spatial overlay. Because the developed method was applied
using 1 and 5 m grids, base geomorphic variables were subsequently referred to using
slopepct_ or orient_ as prefixes denoting interpolated slope or orientation, and 1 or 5 m
were added as suffixes to denote grid resolution, e.g., orient_1 m refers to the orientation
derived from the use of a 1 m grid.

Orthographic Geomorphometry

Orthographic geomorphometry—a second type of GSAD—relates the orientation and
slope to the incident scan angle (inciangle) and azimuthal direction of the pulse (azim2plse)
that generated the sounding. The employed approach was conceptually comparable to
Lambertian reflectance [28]. Separate orthogonality indices were calculated for orientation
and slope. The calculation of each could best be illustrated using an example: a pulse
generated due east (i.e., azim2plse of 90◦) with an inciangle of 20◦.

Orientation orthogonality, Ψ⊥, 0 ≤ Ψ⊥ ≤ 100, is calculated:

Ψ⊥ = 100
1
2

(1-cos|ф− θ|) (2)

where фis azim2plse and θ is orientation.
Slope orthogonality, Θ⊥, is dependent on whether slope orientation is towards or

away from the origin of the lidar pulse (the airplane). Moreover, maximum reflectance (and
orthogonality) results from a pulse that strikes the ocean floor where the slope is equal to
the inciangle and has an orientation exactly opposed to the azim2plse. Thus, for soundings
whose orientation is towards the plane, i.e., azim2plse is not within 90◦ of the orientation,
Θ is calculated:

Q ˆ = 100 cos2(|Φ + ϕ|) (3)

where фis inciangle and ϕ is slope. For soundings whose slope ϕ is oriented away from
the airplane, i.e., azim2plse is within 90◦ of the orientation, slope orthogonality Θ⊥ is
calculated:

Q ˆ = 100 cos2(|Φ − ϕ|) (4)

Though theoretically, 0 ≤ Θ⊥ ≤ 100, the observed range was 40 ≤ Θ⊥ ≤ 100.
Orthogonal geomorphic variables are subsequently referred to using ori_orthog_ or

slp_orthog_ as prefixes denoting orientation or slope orthogonality and 1 or 5 m as a suffix
denoting grid resolution, e.g., ori_orthog_1 m.
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2.3. Modelling and Analysis
2.3.1. Model Fitting

Models to predict/classify the binary NOAA Bathy/NotBathy classification were
fitted using extreme gradient boosting (XGB) [29] with lasso (‘11′) regularization applied.
Additionally and initially examined for this binary classificatory modelling were regu-
larized logistic regression and multilayer perceptrons—a form of neural network; XGB
outperformed both techniques in accuracy and speed, and it was retained for use. XGB
is based on the principles of gradient boosting [30], but XGB is less prone to over-fitting
because of its inherently more regularized model structure. XGB is a tree-based machine
learning (ML) technique that ‘grows’ a series of shallow classification trees. Each successive
tree is produced by focusing classification improvement on the soundings with the largest
prediction errors. The final model was produced using a majority-weighted ‘vote.’ Lasso
regularization added a penalty to the XGB cost-function that resulted in the impact of
‘unimportant’ variables being driven to zero (0).

For each CS, XGB models were fitted for each of the three variable suites—depth,
NGSAD, and GSAD—individually, the three two-way combinations, and the single three-
way combination. Models were fitted after normalizing all independent variables between
0 and 100 using CS-specific maximums and minimums. The model containing depth
alone was considered the ‘null’ or ‘base’ model because of depth’s clear relationship with
bathymetry. Comparing its goodness-of-fit statistics with those of the other six models
provided a means to compare the bathymetric signal in depth against the NGSAD of GSAD
alone, and to evaluate the marginal contribution or signal strength of NGSAD and GSAD
in models containing depth.

The XGB models estimated the probability that each sounding was bathymetry, i.e.,
p(Bathy). To conventionally evaluate model accuracy, model-based probabilities were
classified using a probability decision threshold (PDT) of 0.50. That is, any sounding for
which p(Bathy) was 0.50 or greater was classified as Bathy; all others were classified as
NotBathy. However, because ML models globally optimize cost functions, cost functions of
classification models can maximize global accuracy. This could result in the accuracy of the
majority class being improved at the expense of the accuracy of the minority class. This
was observed to varying degrees in all CSs in this study: Bathy was a strong majority for
the Shallow CS (78% of total soundings) and Deep CS (76%) and strong minority for the
Deeper CS (21%) and the Deepest CS (0.4%) (Row 8, Table 1). The impact of not adjusting
for globally optimized models was most apparent for the Deepest CS. Applying a PDT of
0.50 to probabilities from a globally optimized model where only 0.4% (3902 of one million
observations) were Bathy produced a very high yet meaningless global accuracy of 99.6%.
That is, even without a model, classifying 100% of soundings as the heavily dominant
NotBathy class produced a classification that was 99.6% globally accurate, but that had
little value for bathymetric mapping.

To mitigate the impact of ‘imbalanced’ dependent variables, weighting, re-sampling,
and an alternative PDT were examined. Inverse proportional weighting entailed weighting
the prediction error on each Bathy sounding by the inverse proportion of Bathy pulse
returns in the data. Re-sampling imputed a sufficient number of additional minority class
‘pseudo-soundings’ to overcome the class imbalance prior to model fitting. Two types of
re-sampling were evaluated: SMOTE (Synthetic Minority Oversampling Technique) [31]
and ADASYN (Adaptive Synthetic Sampling Approach) [32]. The third alternative—the
use of a PDT different from 0.50—performed the best and was subsequently employed.
Hence, further explanation is provided.

2.3.2. Model Evaluation (Depth, NGSAD, and GSAD Assessment)

Models fitted on CSs like the Deepest where bathymetry was ‘rare’ resulted in the
p(Bathy) of relatively few soundings exceeding 0.50. Thus the use of the conventional PDT
of 0.50 caused a relatively low true positive (Bathy) rate (TPR) compared to a much higher
true negative (NotBathy) rate (TNR). This is apparent in Figure 8b and also demonstrated
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in Figure 8a where the TPR (blue line) is much lower than the TNR (red line) when the
PDT was 0.50. The point at which the TPR and TNR intersected—0.31 in Figure 8a—is
termed the “Optimal Decision Threshold” (ODT) here. Though its application to p(Bathy)
decreased global accuracy from 83% to 80% (Figure 8b,c), the ODT increased the TPR from
41% to 80%. Of particular interest was that the use of the ODT caused the number of false
negatives (FNs, i.e., undetected Bathy), which are potentially the most serious errors for
bathymetric chart users, to decrease by about two-thirds (from 466,700 to 158,300), thus
resulting in a decrease in FNR from 59% to 20%.

1 
 

 
7 

 

8 Figure 8. Impact of different probability decision thresholds (PDTs) on accuracy and error rates. In (a), the PDTs associated
with the confusion matrices in (b,c) are indicated by the vertical dotted lines.

The ODT was used in all subsequent model evaluations. For each model, soundings
were assigned to Bathy or NotBathy based on their p(Bathy) values estimated by an XGB
model. The soundings were then cross-tabulated by their NOAA and XGB Bathy/NotBathy
classifications, and the following summary statistics were calculated: global accuracy, TNR,
FNR, TPR, and FPR. Note that in a practical sense, it is the FN errors that are most critical
to marine safety and navigation.

2.3.3. Individual Variable Evaluation

As a final step, the ‘importance’ of individual variables containing depth and the
NGSAD variable suite was examined; models that included the GSAD variable suite were
not examined because of its weak predictive ability, as will be shown, indicating low bathy-
metric signal strength. The XGB model-fitting provided a measure of the ‘importance’—but
not statistical significance—of each variable. Importance is the percent of the multiple
shallow trees/models in which a variable appears, normalized over all variables so that
the sum of importance over all variables equals 100. For each CS, the five most important
variables for the ‘depth and NGSAD’ model were identified, their cumulative importance
was calculated, the number of variables whose importance was greater than 0.0 was noted,
and the variables whose importance was zero were identified.
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3. Results
3.1. Model Evaluation (Depth, NGSAD, and GSAD Assessment

(Pseudo) R2 values (McFadden’s pseudo R2 for classification [33], which cannot be
tested for statistical significance) (Figure 9) confirmed that depth was highly related to
bathymetry. Less expected was that models fitted on the NGSAD variable suite alone
produced comparable R2 values. Even for the Deeper CS, for which models performed
the most poorly, R2 values were approximately 0.35 for models containing the NGSAD
variable suite alone. Given that a conventional R2 value of 0.35 for >100,000 observations
was statistically significant, these results suggested that a strong bathymetric signal was
present in the NGSAD variable suite alone.
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Figure 9. Pseudo R2 values for extreme gradient boosting (XGB) models fitted for different CSs and various combinations
of variable suites.

Except for the Deep CS, the pseudo R2 values indicated that the best models were
comprised of depth and the NGSAD variable suite. The Deep CS had a relatively simple
geomorphometry and depths that were optimal for airborne lidar; in such conditions,
depth alone appeared to be sufficient to accurately classify Bathy/NotBathy soundings.
For the Shallow CS, a large percentage (72%) of soundings were classified by NOAA as
Bathy, but depth alone did not produce the model with the highest pseudo R2. In shallow
areas such as the Shallow CS, the vertical noise in the lidar point cloud could be larger than
the ocean depth and depth alone were not sufficient for accurate sounding classification.
NGSAD variables enhanced bathymetry extraction in shallow areas, as well as in areas
near the limit of lidar penetration (the Deeper and Deepest CSs).

The model classification accuracy/error rates (Figures 10 and 11) reinforced the con-
clusions of the pseudo R2 values about model strength and the importance of different
variable suites:

• The GSAD variable suite had the lowest predictive ability for bathymetry on its own
(‘GSAD only’ models) and provided little or no additional marginal benefit when
incorporated into models with depth and/or the NGSAD variable suite.

• Depth was consistently the strongest stand-alone indicator of bathymetry. However,
in shallow areas, the bathymetric signal strength in the NGSAD variable suite alone
was comparable to the signal strength in depth alone. Nonetheless, in shallow areas,



Remote Sens. 2021, 13, 1604 14 of 19

it was the combination of depth and the NGSAD variable suite that provided the best
bathymetry extraction.

• The models with the greatest bathymetry predictive power and that were most effi-
cient, i.e., fewest variables for a given accuracy, were the models that employed depth
and the NGSAD variable suite. 
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Figure 10. Global accuracy, which is also equal to true positive rate and true negative rate due to the use of the optimal
decision threshold (ODT) (see explanation in text).
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Figure 11. False positive rate, which is also equal to the false negative rate due to the use of the optimal decision threshold
(see explanation in text).
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3.2. Individual Variable Evaluation

It was determined that the GSAD variables did not contribute to model improvement
as well as depth alone, NGSAD variables alone, or the combination of depth and NGSAD
variables. Unsurprisingly, therefore, no GSAD variable of either spatial resolution (1 or 5 m)
was among the five most important variables for any model that consistently represented
at least 80% of variable importance (Table 3). Because of the very minor contribution of
GSAD variables, their individual importance was not further considered.

While depth was consistently the most important variable in each model (Column 4,
Table 3), the NGSAD suite enhanced the classification accuracy of XGB models for all CSs:

• At least 10 variables were important in all models (Column 2, Table 3)
• NGSAD were—along with depth—consistently among the five most important vari-

ables (Column 4, Table 3), which had a combined importance of at least 0.80 (or 80%
of the total; Column 5, Table 3).

The following are notable points about the presence of specific variables in a given
model are notable (Column 4, Table 3):

• Last was the second most important variable in the Shallow, Deeper, and Deepest CSs;
further analyses indicated that not being the first (sounding) return from a lidar pulse
increased p(Bathy).

• SBET variables (particularly stdXYZ) describing airplane/platform stability—and
therefore presumably local wind and surface reflectance characteristics—were among
the five most important variables in all models.

• The presence of azim2pls in models for two CSs (Deep and Deepest) may also have
captured a bathymetric signal related to momentary surface or ocean conditions since
there was no instrumental or other reason that a particular azimuth would be better
or worse for identifying bathymetry.

• Inciangle (the 20◦ instrument angle corrected for yaw, pitch, and roll) was important
for all CSs except the Deepest CS; this may also relate to how the dynamics of light
reflection and/or penetration relate to bathymetry in lidar data.

• Surprisingly, intensity was only among the five most important variables for two CSs,
suggesting that other NGSAD related more to the bathymetric signal of soundings.

Regarding GSAD variables not improving XGB models nor being among the five most
important variables for any case study, it was notable that two spatial resolutions—1 and
5 m—were considered. Hence, even the consideration of multiple spatial resolutions did
not provide geomorphometric information that is useful for identifying bathymetry.

Table 3. Description of importance of variables included in the “depth and NGSAD” models for each CS.

CS Number of Variables
with Importance > 0.00 1 Variables with Importance = 0.0

Five Most Important
Contributing
Variables 2

Cumulative
Importance of 5 Most

Important

Shallow 12 Num_returns, first_of_many (2) Depth, intensity, last,
stdXYZ, inciangle 0.83

Deep 11 Return_no, first_of_many,
last_of_many (3)

Depth, intensity,
stdXYZ, inciangle,

azim2pls
0.97

Deeper 11 Return_no, first_of_many,
scandirect (3)

Depth, last, stdYwPtRl,
stdXYZ, inciangle 0.80

Deepest 10 Num_returns, first_of_many,
last_of_many, inciangle (4)

Depth, last, stdXYZ,
pls_frm_hdng,

azim2pls
0.89

1 The total number of variables available for model fitting was 14. 2 Variables are presented in order of decreasing importance.
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4. Discussion

It is well-established that the energy return from active sensors is impacted by ocean
bottom characteristics in ocean mapping (e.g., [8–11,34]). Hence, the failure of geomor-
phometry/GSAD variables to improve XGB models containing depth and NGSAD vari-
ables demonstrated that procedures used herein to derive GSAD variables were ineffective
at two spatial resolutions—1 and 5 m—for the purposes of improving extraction of bathy-
metric soundings from lidar point clouds under the studied conditions. This was most
understandable for the Deeper and Deepest CSs (Figure 3c,d) that were subject to extensive
extrapolation due to lack of lidar penetration and Bathy soundings across the entire CS.
However, it was also true of the Shallow and Deep CSs (Figure 3a,b), where interpolation
rather than extrapolation was the dominant process due to the availability of Bathy sound-
ings across the entire CS. The further study of the error structure might indicate a minimum
density of Bathy soundings required to extract useful GSAD. Nonetheless, the inability to
produce useful geomorphometry variables even for the CSs—Shallow and Deep—with
spatially complete Bathy coverage suggested that methods other than those employed here
would need to be developed.

A potentially important factor to consider in any future work is the directionality of
geomorphometry relative to the flightpath direction. In this study, the variables scan_direct
(forward or backward scan) and azim2pls (azimuth of a pulse) may have been able to implic-
itly characterize this relationship. Indeed, azim2pls, being one of the five most important
variables for the Deep and Deepest CSs, may reflect this. However, the overlap between
adjacent north-to-south and south-to-north flight paths would likely have obscured any
such relationship that might have been present. Explicitly examining this relationship may
improve the ability to separate Bathy soundings from NotBathy soundings.

Regardless of how future work in this area might be approached, spatial scale is
a consideration in two major ways. The first is the footprint of laser pulses when they
strike the ocean floor. When a lidar pulse strikes the ocean surface, it increasingly expands
in diameter with increasing ocean depth. Thus, it is possible that the scale at which
geomorphometry would need to be characterized would change with depth. Further, the
reality that a large-footprint lidar pulse would reflect differently than a small-footprint lidar
pulse adds considerable complexity to the problem. The second is that the suitability of any
geomorphometry-inclusive analysis for identifying bathymetry is highly dependent on the
targeted application. In this study, the intended application was the production of highly
accurate and precise nautical charts—an output requiring very high-quality information.
For other applications, however, data requirements might not be as rigorous. One can
imagine that in mapping, e.g., a benthic habitat, kelp beds, or aquatic species that are
not threatened or endangered, one would be able to relax data standards. Perhaps useful
methods of extracting geomorphometry from lidar point clouds that would be sufficiently
accurate for such purposes could be developed. Similarly, application domains that are
heavily impacted by shallow water geomorphometry but for which there is currently a
near-complete lack of geomorphometry information may find that the described methods
provide a characterization of geomorphometry that, though clearly inexact, represents an
improvement on existing knowledge that has application-specific utility.

A key underlying assumption of spatial interpolation and extrapolation is that the
characteristics of geomorphometry as one approaches spatial data limits continue and
are indicative of geomorphometry beyond the spatial data limits. The inability of the
methods examined here to describe geomorphometry in a way that is useful for extracting
bathymetry from lidar point clouds where data are sparse or non-existent suggests this
was not true that in the examined area and ocean conditions. One solution to overcoming
this may be a judicious use of optical imagery. For example, the authors of [35] used World
View 2 imagery to address gaps in bathymetry obtained using sonar data up to a depth of
35 m, i.e., beyond the limits of lidar penetration. Such a data integration approach might
prove useful for lidar-based shallow water bathymetry and geomorphometry.
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The successful development of such a “data fusion” approach would be a worthwhile
pursuit for the remote sensing research community. In bathymetric mapping, shallow areas
are generally of the greatest interest because of their proximity to human activities but also
present the greatest challenges. Establishing remote sensing-based methods that merge
lidar data covering depths from 0 to approximately 20 m with optical data that address
depths to 35 m or so would address a considerable gap in hydrographic mapping.

5. Conclusions

A strong bathymetric signal can be extracted from airborne lidar soundings for shallow
water (<17 m) by using a sounding’s depth and non-geomorphometric sounding attribute
data. The explanatory power of individual variables is dispersed over factors that describe
individual sounding characteristics and factors associated with the stability of the airborne
platform at the instant of return acquisition. Geomorphometric data that were derived
using spatial extrapolation and interpolation only had a weak relationship with bathymetric
signal regardless of water depth. Notably, geomorphometric variables had been considered
at two spatial scales (1 and 5 m), but neither improved the identification of soundings that
were bathymetry. That the relationship between geomorphometry and light reflectance
is well-established was noted in the introduction. Hence the inability to employ this
relationship to improve bathymetric extraction demonstrates the difficulty of obtaining
meaningful spatially complete geomorphometric descriptors in areas where bathymetric
data are locally sparse or non-existent. This may also be related to the size of a lidar pulse
footprint when it strikes the ocean floor, which varies with depth. It may also be due to
directionality of the geomorphometry relative to the flight path that was not considered in
this study.
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Abbreviations

Acronym Definition
ADASYN Adaptive Synthetic Sampling Approach
CHRT CUBE with Hierarchical Resolution Techniques
CS Case Study
EN Estimation Node
FNR/FPR False Negative/Positive Rate
GSAD Geomorphometric Sounding Attribute Data
LAS Not an acronym; a file containing lidar data
MBES Multi-Beam Echo Sounder
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Acronym Definition
ML Machine Learning
MSL Mean Sea Level
NOAA National Oceanic and Atmospheric Administration (United States)
NGSAD Non-Geomorphometric Sounding Attribute Data
ODT Optimal Decision Threshold
P(Bathy) Probability of an individual sounding being Bathy
PDT Probability Decision Threshold
RMSE Root mean square error
SAD Sounding Attribute Data
SMOTE Synthetic Minority Oversampling Technique
TIN Triangulated Irregular Network
TNR/TPR True Negative/Positive Rate
UTM Universal Transverse Mercator
XGB Extreme Gradient Boosting
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