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Abstract: Erlong Lake is considered one of the largest lakes in midwest Jilin, China, and one of the
drinking water resources in neighboring cities. The present study aims to explore the usage of Landsat
TM5, ETM7, and OLI8 images to assess water quality (V-phenol, dissolved oxygen (DO), NH4-N,
NO3-N) in Erlong Lake, Jilin province, northeast China. Thirteen multispectral images were used in
this study for May, July, August, and September in 2000, 2001, 2002, and October 2020. Radiometric
and atmospheric corrections were applied to all images. All in situ water quality parameters
were strongly correlated to each other, except DO. The in situ measurements (V-phenol, dissolved
oxygen, NH4-N, NO3-N) were statistically correlated with various spectral band combinations (blue,
green, red, and NIR) derived from Landsat imagery. Regression analysis reported that there are
strong relationships between the estimated and retrieved water quality from the Landsat images.
Moreover, in calibrations, the highest value of the coefficient of determination (R2) was ≥0.85 with
(RMSE) = 0.038; the lowest value of R2 was >0.30 with RMSE= 0.752. All generated models were
validated in different statistical indices; R2 was up to 0.95 for most cases, with RMSE ranging from
1.390 to 0.050. Finally, the empirical algorithms were successfully assessed (V-phenol, dissolved
oxygen, NH4-N, NO3-N) in Erlong Lake, using Landsat images with very good accuracy. Both in situ
and model retrieved results showed the same trends with non-significant differences. September of
2000, 2001, and 2002 and October of 2020 were selected to assess the spatial distributions of V-phenol,
DO, NH4-N, and NO3-N in the lake. V-phenol, NH4-N, and NO3-N were reported low in shallow
water but high in deep water, while DO was high in shallow water but low in deep water of the
lake. Domestic sewage, agricultural, and urban industrial pollution are the most common sources of
pollution in the Erlong Lake.

Keywords: remote sensing; Landsat images; modeling; water quality; Erlong Lake

1. Introduction

Surface water quality is a sensitive global environmental issue, as it is important
for long-term economic development and environmental sustainability [1–3]. However,
water quality monitoring is the systematic collection and evaluation of data related to the
chemical, physical, and biological quality of water bodies. Likewise, how external changes,
whether natural or human, affect that quality of water is of great concern [4]. Furthermore,
surface freshwater is an important requirement for the terrestrial environment and the
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main drinking water resource on the earth. Over the past three decades, industrialization
and urbanization have had an adverse effect on water quality; mutating marine species,
such as fish; polluting drinking water; and altering the aquatic ecosystem food chain
on the globe [5]. Contaminated water supplies raise the cost of water treatment and
minimize water oxygenation by limiting sunlight transfer [6]. On the other hand, human
activities, such as gushing releases, agrarian concoctions, and misusing water supplies,
have a significant impact on surface water quality. Moreover, numerous waterways are
highly contaminated due to anthropogenic activities in the world [7].

Laboratory analysis is used to measure and analyze water quality parameters, which
is a conventional, time-consuming, and expensive approach as compared to remote sensing
(RS) methods, especially in large areas [8]. With the advancement and growing role of
technology, new techniques and methods for assessing water quality are being developed.
Such methods are remote sensing (RS) and geographic information systems (GIS) using
satellite data to monitor water quality in order to reduce time and cost as well as increase
accuracy [9]. In general, several parameters (physiochemical, organic, and microbiological)
have been considered using a remote sensing technique [9]. This considers that optical
properties of water bodies can be altered with the concentration of parameters related
to its quality [10]. Such changes could be monitored and detected by spectral bands
of RS [11]. Furthermore, RS techniques have witnessed significant development in the
environmental field. Notably, it has been applied in monitoring and estimating water
quality, such as chlorophyll concentration and turbidity [12–15], by developing professional
algorithms through the analysis of multispectral and hyperspectral images [16–18]. Satellite
images have already been widely used in assessing several substances in water bodies [19].
Dissolved oxygen (DO), total nitrogen, and nutrients (e.g., NH4-N, NO3-N) related to
water pollution are considered non-optically active because they cannot be sensed from
the water surface due to its poor visual properties [20]. In addition, they are closely
related to optical variables, such as chlorophyll-a and total suspended solids [21–24]. There
is a strong relationship between water quality parameters and radiance or reflectance,
which is affected by changing one or more of these parameters [8]. Meanwhile, empirical
relationships between spectral properties and water quality parameters were recognized
as early as the 1970s [25].

Erlong Lake is an important source of water supply in Siping City, which is one of the
50 major cities suffering from water shortage in the country. The water quality of Erlong
Lake directly affects the drinking water health of more than 600,000 people in Siping City.
However, human economic activities are the root cause of the unreasonable use of water
resources in the lake. As a source of drinking water in Siping City, Erlong Lake has multiple
negative effects, such as low water volume, deteriorating water quality, silt accumulation
in the reservoir, and sediment pollution. It poses a serious threat to drinking water safety
and exacerbates regional water shortages in lakes. The present study proposes empirical
algorithms to retrieve water quality parameters (V-phenol, DO, NH4-N, NO3-N) based on
Landsat TM5, ETM7, and OLI8 images (2000, 2001, 2002, and 2020) of Erlong Lake, Jilin,
northeast China. Additionally, water quality parameters are mapped and assessed using
the established models.

2. Materials and Methods
2.1. Study Area

The Erlong Lake (43.08–43.33 N, 124.76–124.96 E) (Figure 1) is located in the east of
Siping City of the Jilin province, China. It is located in the transitional zone of a humid
climate and semi-humid climate, with an average air temperature of 5.8 ◦C and annual
precipitation of 650 mm [26]. The primary supply and pollution source of Erlong Lake is
east of the Liaohe River. The lake area above the dam site is 170 km2, and it is located in
the middle and upper reaches of the east Liaohe River basin. The water surface of Erlong
Lake spans two provinces and five counties. Residents of Siping City rely on three cities for
their water, as well as irrigation, for approximately 6700 hectares of cultivated land. The
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total storage capacity is 1.762 billion m3, and the average flow rate of the designed flow is
10,100 m3/s.
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Figure 1. Study area map and locations of the water samples.

2.2. Data Collection
2.2.1. Field Data

The field data used in this study (Figure 1) were provided by the School of Environ-
ment, Northeast Normal University (NENU). To analyze the change of water quality from
late spring to autumn, two sample points located in Erlong Lake were considered (Table 1),
and the samples were mainly collected in May, July, August, and September of each year
(2000, 2001, and 2002), while seven samples were taken in October of 2020.
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Table 1. Landsat images selected, based on measured field data.

Water Quality
Sampling Date Samples NO Spectral Bands

Selected Sensor Name Date of Images Difference Days

15 May 2000 Two (B-G-R-NIR) TM 5 28 May 2000 13
17 July 2000 Two (B-G-R-NIR) TM 5 8 July 2000 9

15 August 2000 Two (B-G-R-NIR) ETM 7 17 August 2000 2
18 September 2000 Two (B-G-R-NIR) TM 5 26 September 2000 8

15 May 2001 Two (B-G-R-NIR) ETM 7 16 May 2001 1
16 July 2001 Two (B-G-R-NIR) TM 5 18 July 2001 2

16 August 2001 Two (B-G-R-NIR) TM 5 12 August 2001 4
16 September 2001 Two (B-G-R-NIR) TM 5 13 September 2001 3

15 May 2002 Two (B-G-R-NIR) TM 5 18 May 2002 3
14 July 2002 Two (B-G-R-NIR) TM 5 28 June 2002 16

15 August 2002 Two (B-G-R-NIR) TM 5 31 August 2002 16
15 September 2002 Two (B-G-R-NIR) TM 5 16 September 2002 1

19 October 2020 Seven (B-G-R-NIR) OLI 8 19 October 2020 0

The distribution of sampling points is shown in Figure 1. The water samples were
held by clean plastic bottles with a size of 500 mL and then transferred quickly to the School
of Environment lab in NENU for analysis. DO was determined in the field, and the NH4N,
NO3-N, and V-phenol were measured using a fluorescence spectrophotometer (6G-2000).

2.2.2. Landsat Image Acquisition and Processing

Thirteen multispectral Landsat images (Table 1) were collected and used in this study,
including TM5, ETM, and OLI 8 images. These images were freely downloaded from
http://glovis.usgs.gov/ (accessed on 23 October 2020). The study area is included in one
scene; path 118 and raw 030.

In this study, two technical processes were used to calibrate the images: radiometric
and atmospheric corrections. The radiometric correction was first used to convert the digital
numbers or pixel values to radiance or reflectance. Then, we applied the atmospheric
correction to remove atmospheric factors that affect the movement of surface reflections
and transform the radiometric values into radiation or surface reflectance. After that,
the natural materials on the surface were estimated and smoothly compared in time and
space, such as water quality parameters. The dark object subtraction method was used
in atmospheric correction [27], which had reflectance values close to zero. However, due
to dispersion and atmospheric absorption, values of reflectance different from zero were
recorded in the pixels where such objects were located. These values should be subtracted
from the various spectral bands of the image [28]. In the present study, we only selected
blue, green, red, and near-infrared bands that were available in whole Landsat images.
Exelis Visual Information Solutions (ENVI, version 5.3) software was used to process all of
the images.

2.3. Changes in the Amount of Water in the Lake

The changes in the amount of water in Erlong Lake are among the most serious issues.
Consequently, this causes a rise in sediments, plants, and algae, resulting in a deterioration
of water quality; on the other hand, it has an effect on fishes, due to the decrease in water
volume. In this study, Landsat images were used to monitor changes in the water column
in Erlong Lake. September of 2000, 2001, and 2002 and October 2020 were chosen to display
the changes in the amount of water in the lake, as well as to show the spatial distribution
of water quality parameters. Firstly, the mask was conducted for Erlong Lake, where the
region of interest (ROI) tool was applied to locate the observation scope. The near-infrared
band, which is highly sensitive to water bodies, was selected. Then, the value of 0.145 µw
was chosen for all of the selected images. The pixels containing water that were identical to
the water’s surface were taken, and non-conformer pixels were considered zero.

http://glovis.usgs.gov/
http://glovis.usgs.gov/
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Moreover, based on the maximum likelihood classification in ArcGIS version 10.3, we
classified all of the selected images. After that, reclassified images were transferred from
raster to polygon to easily calculate the water body for the selected years. Masking was
performed after radiometric and atmospheric corrections using ENVI v. 5.3 software.

2.4. Statistical Analysis

In the field of water quality, a correlation analysis method is useful and reliable [29].
In this section, we performed two steps of statistical analysis: (I) Test of the correlation
coefficient for field data (V-phenol, DO, NH4-N, NO3-N) with each other in each month
and all years, according to the time sequence. This step was an initial essential step of
the analysis to ascertain whether there is a relationship between the water parameters.
(II) Test of the correlation coefficient between water quality parameter data and reflectance
of remote sensing data. We used multiplication, addition, division, and subtraction of
(visible and near-infrared) bands of TM, ETM, and OLI8 imagery, and then examined
them with water quality (V-phenol, DO, NH4-N, and NO3-N). This step was carried out to
find the best reflectance highly correlated with water quality in Erlong Lake. Correlation
analysis was performed using the Pearson correlation coefficient, which can have values
ranging from −1 to +1, passing through zero. As the values close to −1 indicate a strong
inverse relationship between the variables, the values close to +1 indicate a strong positive
between the variables. In contrast, the values close to zero indicate no relationship between
the variables [30].

2.5. Empirical Model Development for Water Quality
2.5.1. Calibration

In our study, we followed empirical method [29–31], which started with a correlation
between the field data and the corresponding remote sensing data. Then, after creating
equations for water quality parameters using remote sensing data, we applied a regression
technique. In this section, we ensured that band combinations of blue, green, red, and
near-infrared of Landsat images had a clear correlation with field data, based on “r “and
p-value (Table 2). Thus, we chose them to create/or develop the algorithms for V-phenol,
DO, NH4-N, and NO3-N. After that, we used simple linear regression analysis to determine
relationships between water quality and the results from algorithms derived via band
combinations. According to these studies [32–35], various algorithms have been used to
investigate relationships between water quality and remote sensing data. In this step,
75% of samples (24 samples) were chosen from the total data for building equations as
calibration for water quality (V-phenol, DO, NH4-N, NO3-N) in Erlong Lake.

Table 2. Correlation matrix for in situ data and surface reflectance of visible and near-infrared of Landsat TM5, ETM+7, and
OLI8 bands.

Water
Quality V-PHEN NH4-N DO NO3-N (R + NIR) +

(B/NIR)
(G/NIR)/(B +

G) ∗ (G)
(NIR − R) ∗

(NIR/G)

V-PHEN
(mg/L) 1

NH4-N
(mg/L) 0.849 ** 1

DO (mg/L) −0.181 −0.054 1
NO3-N
(mg/L) 0.823 ** 0.915 ** −0.032 1

(R + NIR) +
(B/NIR) 0.918 ** 0.901 ** −0.13 0.864 ** 1

(G/NIR)/(B
+ G) ∗ (G) 0.909 ** 0.859 ** −0.258 0.838 ** 0.966 ** 1

(NIR − R) ∗
(NIR/G) −0.351 −0.28 0.639 ** −0.284 −0.355 −0.542 ** 1

** Correlation is significant at the 0.01 level (2-tailed), where B, G, R, and NIR means blue, green, red, and near-infrared, respectively.
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2.5.2. Validation

The model’s training samples (75%) were used to build the equations for checking
the water quality, but it was unable to validate the model’s performance. Hence, 25%
of datasets were used to reveal the accuracy of calculating water quality. All statistical
analyses were established by IBM SPSS statistics (v. 26) and Microsoft Excel software (v.
2016). Furthermore, the final results of calibration and validation were evaluated based on
RMSE (Equation (1)).

RMSE =

√
∑n

i=1(xi − yi)
2

n
(1)

where xi is the in situ water quality parameter values, yi is the estimation from the models,
and n is the number of observations.

3. Results
3.1. Changes in the Amount of Water in the Lake

Previous studies proved that the storage capacity of the Erlong Lake tank witnessed a
remarkable deterioration, especially in the period from 2000 to 2003. The storage capacity
was about 2 × 108 m3, less than the normal limit for storage (2.36 × 108 m3). This is due to
the dams that blocked the incoming water into the lake, leaving only the Dongliao River
from Liaoyuan City and Dongliao County. In addition, it carries industrial wastewater and
domestic sewage to the lake. In 2020, the average capacity was 223.42 million cubic meters.
In this study, Landsat images were used to confirm the changes in water level in the lake
and found that the lowest area of the water column was in 2002 (2835.220331 ha) (Figure
2), and the highest value of the water column was in 2020 (10,620.82961 ha). This can be
explained as being due to the excess amount of rainfall in 2020.
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3.2. Relationship Between Water Quality and Spectral Bands

Based on “r” and p-value, the water quality parameters show significant positive
correlations with each other (Table 3), where p-value was less than 0.001 and “r” was
reported as being up to 0.81 for V-phenol, NH4-N, and NO3-N concentrations. However,
DO was not correlated with other parameters due to the abundance of plants in the water
in 2000, 2001, and 2002. In this case, the nitrogen decreased and the DO increased, which
led to weakening the relationship with DO.

Table 3. Models generated from Landsat images (TM, ETM, and OLI8) to estimate water quality.

Water Quality
Parameters

Equations Calibration Validation

R2 RMSE Sig R2 RMSE

V-PHENOL
(mg/L) = ((R + NIR) +

(
B

NIR

)
)× (0.004257) 0.805 0.038 0.000 0.979 0.050

NH4-N (mg/L) = 0.8× ((R + NIR) +
(

B
NIR

)
× (B + NIR) +

(
B

NIR

)
)× 0.099 0.862 0.645 0.000 0.954 0.525

NO3-N (mg/L) = (R + NIR) + e(
B

NIR )×(0.029) + e
G

NIR
B+G ×(G)×(0.5) 0.878 8.495 0.000 0.992 1.048

DO (mg/L) =
(

NIR − R)×
((

NIR
G

)
× 80

)
+ 8.3 0.304 0.752 0.000 0.619 1.390

Table 2 shows the correlation coefficient for in situ data and the band combinations
that were used for developing the empirical models. It was found that the correlation
of V-PHEN was more than 0.90 with (R + NIR) + (B/NIR), and (G/NIR)/(B + G) ∗ (G).
Further, correlation of NH4-N was more than 0.90 with (R + NIR) + (B/NIR), and more
than 0.80 with (G/NIR)/(B + G) ∗ (G). In addition, NO3-N was higher than 0.80 with
(R + NIR) + (B/NIR) and (G/NIR)/(B + G) ∗ (G). However, dissolved oxygen was only
correlated up to 0.60 with (NIR − R) ∗ (NIR/G).

3.3. Model Development for Water Quality Estimation
3.3.1. Calibration

All variables (in situ data and reflectance data of Landsat) were tested to reveal the
best reflectance to be used in the regression analysis to estimate selected water quality
parameters from Landsat images [36].

The developed relational equations of the Landsat reflectance value and the water
quality parameters were determined mathematically using regression analysis. Table 3
shows the results of regression analysis for calibration and validation. In calibration
(Table 3 and Figure 3), the V-phenol, NH4-N, NO3-N, and DO indicated significant positive
correlations (R2 = 0.805, 0.862, 0.878, and 0.304, respectively) with mathematical equations
obtained from Landsat selected data. Meanwhile, RMSE values were 0.038, 0.645, 8.495,
and 0.752, where p-value was less than 0.001.
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3.3.2. Validation

In validation, the V-phenol, NH4-N, NO3-N, and DO were highly correlated with
models established from Landsat reflectance, as shown in Table 3, where R2 was 0.979,
0.954, 0.992, and 0.619 respectively, with very low RMSE (0.050, 0.525, 0.992, and 1.390).

3.4. In Situ and Model Trends

This section aims to show how the accuracy of results from the models and in situ data
was ensured. The monthly mean values (May, July, August, and September) were selected
from 2000, 2001, and 2002 and October of 2020. Table 4 and Figure 4 show the mean values
of the lab analysis and the model results retrieved from Landsat images of Erlong Lake.
According to the results, the in situ and model data estimated for V-phenol have the same
behavior and show only slight differences. On 19 October 2020 (Table 4 and Figure 4a),
the highest mean concentration of V-phenol was on 18 September (0.0161 mg/L), with
the average being comparable to that of the model average (0.0116 mg/L). In 2001, the
V-phenol concentration average was high on 16 August (0.0068 mg/L), along with the
average resulting from the model (0.0095 mg/L). Further, in 2002, V-phenol was high on 15
May (0.0075 mg/L). In regard to the model average (0.0096 mg/L), V-phenol showed the
highest average concentration on 19 October 2020, where it was 0.0761 mg/L compared to
the average obtained from the model (0.0186 mg/L).
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Table 4. Mean values of water quality from in situ measurements and mean values generated from the models along Erlong
Lake.

Date In Situ Water Quality Parameters Estimated Water Quality from the Models

Years Months Statistics
V-PHEN
In Situ
(mg/L)

NH4-N
In Situ
(mg/L)

DO In
Situ

(mg/L)

NO3-N
In Situ
(mg/L)

V-PHEN
Esti-

mated
(mg/L)

NH4-N
Esti-

mated
(mg/L)

DO Esti-
mated
(mg/L)

NO3-N
Esti-

mated
(mg/L)

2000

May Mean 0.0062 0.2130 7.4850 0.6605 0.0088 0.3275 7.4090 0.5278
July Mean 0.0170 0.0120 6.2900 0.5450 0.0105 0.4796 6.7724 0.8457

August Mean 0.0071 0.1450 7.0750 0.7625 0.0091 0.3553 6.2370 0.6604
September Mean 0.0161 0.0120 6.0750 0.9400 0.0116 0.5858 5.2937 1.1680

2001

May Mean 0.0036 0.3575 5.9000 1.2350 0.0092 0.3648 5.3168 0.6144
July Mean 0.0034 0.0460 5.0750 1.3150 0.0065 0.1876 5.3478 0.6613

August Mean 0.0068 0.0120 4.9850 1.1675 0.0095 0.3890 4.0562 0.9469
September Mean 0.0037 0.0120 6.1450 0.5375 0.0105 0.4831 6.3393 0.9028

2002

May Mean 0.0075 0.5675 7.3200 1.3950 0.0096 0.4013 7.7208 0.6611
July Mean 0.0015 0.0010 5.6850 1.8325 0.0088 0.3356 6.7631 0.6509

August Mean 0.0001 0.0010 6.5250 1.3750 0.0090 0.3569 7.5772 0.6356
September Mean 0.0001 0.0010 7.9100 2.7100 0.0098 0.4212 7.5570 0.6944

2020 October Mean 0.0761 1.8000 6.1000 9.5714 0.0186 1.5055 5.2707 4.8026
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The highest average concentration of nitrate nitrogen (NO3-N) in 2000 was on
18 September (0.9400 mg/L) (Table 4 and Figure 4b), offset by an increase in the aver-
age from the model (1.1680 mg/L). In 2001, the concentration average of (NO3-N) was
high in July (1.3150 mg/L) compared with the average from the model (0.6613), while the
highest rate in 2002 was on 15 September (2.7100 mg/L), followed by an increase in the
average generated by the model (0.6944 mg/L). On 19 October 2020, the average of NO3-N
concentration increased to 9.5714 mg/L, which corresponds to the average obtained from
the model (4.8026 mg/L).

The average concentration of ammonium nitrogen (NH4-N) was high on 15 May 2000
(0.2130 mg/L) (Table 4 and Figure 4c), followed by the average result from the model
(0.3275 mg/L). It also shows the highest average concentration in 2001, which was on
15 May (0.3575 mg/L), compared to the average from the model (0.3648 mg/L). For 2002,
the highest in situ average of the ammonium nitrogen was on 15 May (0.5675 mg/L),
followed by the average of the model (0.4013 mg/L). Furthermore, on 19 October 2020, the
average concentration of ammonium nitrogen was 1.8000 mg/L, and the average retrieved
from the model was 1.5055 mg/L.

For DO (Table 4 and Figure 4d), the highest average concentration on 15 May 2000 was
7.4850 mg/L, and from the model, it was 7.4090 mg/L. In 2001, DO showed the highest in
situ average on 15 September (6.1450 mg/L) compared with that of the model in the same
month (6.3393 mg/L). In 2002, the highest average DO on 15 September was 7.9100 mg/L,
compared with the average from the model (7.5570 mg/L), as well as on 19 October 2020,
where the average concentration of DO was 6.1000 mg/L, compared with the average from
the model (5.2707 mg/L).

3.5. Water Quality Mapping

Synoptic mapping was conducted to show spatial distribution of water quality (V-
phenol, NH4-N, DO, and NO3-N) changes in 2000, 2001, 2002, and 2020 by applying the
developed models (Table 3) derived from the satellite images (TM, ETM, and OLI8). To as-
sess this, we selected data from 18 September 2000, 16 September 2001, 15 September 2002,
and 19 October 2020 in Erlong Lake.

3.5.1. Volatile Phenol

Volatile phenol is considered a toxic alcohol, especially when it is present to a high
degree in water bodies, such as lakes or rivers, leading to death and reducing the produc-
tivity of aquatic organisms, such as fish. Phenol is transported to lakes and rivers through
water flow from its sources of use, such as industrial sources. It includes oil refinery waste,
municipal treatment plant discharges, agricultural chemicals, animal waste, and waste
from other human activities that lead to an increase in volatile phenol in water bodies.
The highest concentrations of volatile phenol on 18 September 2000 was found closest to
the middle of the lake (>0.012 mg/L) (Figure 5a), followed by that on 16 September 2001
(Figure 5b).

The same value was distributed in the middle and north regions of the lake. On
15 September 2002 (Figure 5c), volatile phenol was low, where the highest value was
0.0095 mg/L and concentrated in abundance in the middle part and the southeast side,
which is closed settlement land near the lake. Furthermore, on 19 October 2020 (Figure 5d),
the volatile phenol was more than 0.021 mg/L. It spread in the northern regions to the
southeastern parts of the lake. It was found that the change in the amount of volatile phenol
during the periods 2000, 2001, and 2002 may indicate that the sources were due to the
decomposition of organic matter as well as waste water and industrial waste water across
the Liaoyuan River from the southeast of the lake resulting from urban land. Furthermore,
2020 showed increases in volatile phenol, which might due to the fast growth of urban
land around the lake.



Remote Sens. 2021, 13, 1603 11 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

 

volatile phenol was more than 0.021 mg/L. It spread in the northern regions to the south-
eastern parts of the lake. It was found that the change in the amount of volatile phenol 
during the periods 2000, 2001, and 2002 may indicate that the sources were due to the 
decomposition of organic matter as well as waste water and industrial waste water across 
the Liaoyuan River from the southeast of the lake resulting from urban land. Furthermore, 
2020 showed increases in volatile phenol, which might due to the fast growth of urban 
land around the lake. 

 
Figure 5. Spatial distributions of V-phenol ((a) spatial distributions of V-phenol on 18 September 
2000, (b) spatial distributions of V-phenol on 16 September 2001, (c) spatial distributions of V-phe-
nol on 15 September 2002, (d) spatial distribution of V-phenol on 19 October 2020), estimated via 
models generated from Landsat (TM, ETM, and OLI8) in Erlong Lake. 

3.5.2. Nitrate and Ammonium 
NO3-N and NH4-N are primary indicators of water quality. Both of their concentra-

tions are highly variable during seasonal lake cycles, where for deep stratified lakes, ni-
trate is higher during mixing events and usually decreases in late summer–fall [37]. For 
the trophogenic zone of shallow lakes, both concentrations are lower during periods of 
water column stability, and they increase during vertical mixing events. NH4-N is 

Figure 5. Spatial distributions of V-phenol ((a) spatial distributions of V-phenol on 18 September 2000, (b) spatial distribu-
tions of V-phenol on 16 September 2001, (c) spatial distributions of V-phenol on 15 September 2002, (d) spatial distribution
of V-phenol on 19 October 2020), estimated via models generated from Landsat (TM, ETM, and OLI8) in Erlong Lake.

3.5.2. Nitrate and Ammonium

NO3-N and NH4-N are primary indicators of water quality. Both of their concentra-
tions are highly variable during seasonal lake cycles, where for deep stratified lakes, nitrate
is higher during mixing events and usually decreases in late summer–fall [37]. For the
trophogenic zone of shallow lakes, both concentrations are lower during periods of water
column stability, and they increase during vertical mixing events. NH4-N is generated by
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heterotrophic bacteria as the primary nitrogenous end product of the decomposition of
organic matter and is readily assimilated by plants in the trophogenic zone [38].

NH4-N concentrations are usually low in oxygenated waters of oligotrophic to mesotrophic
deep lakes because of its utilization by plants in the photic zone and nitrification to N
oxidized forms. At relatively low dissolved oxygen, nitrification of ammonia ceases, the
absorptive capacity is reduced, and a marked increase in the release of NH4-N from the
sediments then occurs [37].

In this study, the spatial distribution of NH4-N witnessed a change during the selected
time, where on 18 September 2000, NH4-N had special distribution mostly in the middle
with its highest value (>0.56 mg/L) (Figure 6a). The highest value was reported on
16 September 2001 and also with a slight spread at the northeast and middle of the lake
(Figure 6b). On 15 September 2002 (Figure. 6c), the value of NH4-N decreased to <0.4 mg/L,
encompassing the middle of the lake to the southeast, near the mouth of a Liaoyuan River.
On 19 October 2020 (Figure 6d), a remarkable increase in the value of ammonia was
witnessed in the lake, as it reached >1.8 mg/L. This distributed from the southeast to the
center and then to the northeast of the lake, confirming the decrease in the sediment’s
absorption of NH4-N and the low percentage of dissolved oxygen.

Nitrate (NO3-N) is one of the most important nutritional factors in any water body,
as it indicates the rate of eutrophication in the system. NO3-N is incorporated in water
bodies from natural sources, such as sewage, household runoff, and runoff from agricul-
tural fields [39]. Fish and aquatic insects can be affected indirectly by increased nitrate
concentrations in the water.

On 18 September 2000 (Figure 7a), the highest level of NO3-N was more than 1.4 mg/L,
distributed in the middle of the lake. On 16 September 2001 (Figure 7b), NO3-N was higher
than 1.3mg/L in the middle and southeast of the lake. Furthermore, on 15 September 2002
(Figure 7c), the NO3-N in the lake decreased, where the highest level was greater than
0.73 mg/L. On 19 October 2020 (Figure 7d), the NO3-N level increased to >6.6 mg/L. It
was concentrated in a vast area of the lake, from the southeast side to the center of the lake
until reaching the northern regions.

The explanation for the decrease in nitrates in the periods 2000, 2001, and 2002 is the
decrease in the water level due to the many dams around the lake, especially in 2002. This
led to the creation of an environment for the growth of plants and algae that consume
nitrates. The source of pollution was mainly sewage water from a Liaoyuan River in the
southeast of the lake. On 19 October 2020, the sources of NO3-N increased from agricultural
lands at different sectors of the lake, especially in the southwest part. In addition to sewage
and household water from urban land, the east Liaohe River is considered the primary
supply source and pollution source of the Erlong Lake.

3.5.3. Dissolved Oxygen

Previous studies have proven that dissolved oxygen is one of the most important
environmental variables that affect the biology of living organisms in water, such as fish.
The fish community structure and its composition can be affected by lethal and non-lethal
oxygen concentrations [40,41]. Furthermore, the high levels of dissolved oxygen usually
result from the photosynthesis of a large number of plants. Remarkable uncontrolled plant
growth, especially algal blooms, is often the result of fertilizer runoff. This phenomenon is
called cultural eutrophication.
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Figure 8 presents the spatial distribution of dissolved oxygen. On 18 September 2000
(Figure 8a), DO was high in the northern and southeastern parts of the lake, exceeding
17 mg/L. However, the high values of dissolved oxygen (>15 mg/L) (Figure 8b) were
concentrated in the southeast region and slightly on the northeastern edges of the lake on
16 September 2001 (Figure 8c). On 15 September 2002, high values of DO (>13 mg/L) were
noted to be distributed in the southeast of the lake. The same high concentration of DO
witnessed in the lake on 19 October 2020 (>13 mg/L) (Figure 8d) contributed to the edge of
the southeastern region. Simultaneously, there was a severe decrease (<7.1 mg/L) in the
other areas of the lake. It was found that the increase in the amount of DO (Figure 8) in
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the lake during the periods of 2000, 2001, and 2002 indicated that the water was shallow,
which led to an abundance of algae, plankton, and nutrients in the lake, especially in 2002.
On 19 October 2020, the lake saw a drop in dissolved oxygen concentration, possibly due
to the fish and organisms consuming most of the oxygen in it [42–45].
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4. Discussion

The use of remote sensing technology, particularly with large-scale data, is an ap-
propriate approach for monitoring phenomena on an evolutionary time scale. Besides,
limnology can take advantage of this technology, which allows for near-real-time data
collection at scale, thus, achieving a more robust understanding of ecosystem response [46].
Multispectral sensors of Landsat images (e.g., TM, ETM, and OLI8) are more widely used
in research than hyperspectral sensors [47] in the monitoring of water quality changes,
even with limited field sampling [20,48]. This is widely accepted, and thus, it was among
the primary motivations to consider this for the present study.

Most previous studies focused on monitoring the concentrations of substances with
optical properties in the water, such as chlorophyll [49–53] and turbidity [54–56]. Few
studies focused on components that lack optical properties in the water, e.g., NH4-N, NO3-
N), and DO [20]. Likewise, [57] used band combinations (B2, B3, and B4) of HJ-1, but there
was a low association with their estimation models, where NO3-N was 0.7 and NH4-N was
negligible < 0.5. Furthermore, [58] used blue, green, red, and NIR of TM Landsat images to
monitor total nitrogen, but this was unsuccessful (R2 = 0.24). Furthermore, [46] created a
model for NH4 using B1, B3, B4 of Landsat OLI8, with R2 = 0.26. On the other hand, there
were no studies that used Landsat images to estimate V-phenol.

According to the present study, water quality parameters (V-phenol, NH4-N, NO3-N,
but not DO) show that there are generally perfect correlations with band combinations
(blue, green, red, and NIR) of Landsat images (TM, ETM, and OLI8). The results, through
calibration and validation, suggest that the empirical algorithms (Table 3) are powerful
enough to be used to retrieve and predict water quality in Erlong Lake for the same param-
eters in many months and years to come, which is considered a significant contribution
of this study. Moreover, the results suggest that water quality can be successfully derived
through remote sensing data [59].

It was found that the lab analysis results and models created from Landsat images
for V-phenol, NH4-N, NO3-N, and DO in Erlong Lake were reported with the same trends
(Table 2 and Figure 3). However, there were simple differences, especially in July and
August 2002, which can only be attributed to the difference in the time (Table 1) between in
situ data collection and the satellite image acquisition date [54]. This difference affects the
results, especially with V-phenol, NO3-N, and NH4-N (Table 4 and Figure 4). Furthermore,
there was a brief difference between in situ and model averages in 2020, especially with
NO3-N and V-phenol (Table 4 and Figure 4). This may be due to the difference in sample
locations (Figure 1). On the other hand, by comparing the averages of V-phenol, NH4-N,
and NO3-N in 2000, 2001, 2002, and 2020, we found that 2020 had the highest concentration
(V-phenol, NH4-N, and NO3-N). We also conclude that NH4-N concentrations change
seasonally [37], and V-phenol and NO3-N concentrations increase in deep and mixed lakes,
while V-phenol, NH4-N, and NO3-N concentrations decrease in shallow water. Unlike DO,
which showed high concentrations in shallow water and low concentrations in deep and
stable water in lakes.

The spatial distributions of water quality parameters (V-phenol, NH4-N, NO3-N, and
DO) in Erlong Lake were verified by applying algorithms created via models from the
selected satellite images. Remote sensing images can provide high-accuracy interpolation
and create explicit spatial distribution for water quality maps more efficiently [20,48].
Therefore, the spatial distribution of V-phenol, NH4-N, and NO3-N (Figures 5–7) showed
an increase with time. The results show that the highest spatial distribution was in 2020
compared to 2000, 2001, and 2002 due to an increasing population and extensive land use.
Moreover, it was observed that water quality is strongly related to land uses [60], such as
agriculture, sewage, industrial and household water, and animal waste. Moreover, due to
the changes in water level as the environmental factor, which has a significant influence
on water quality in the lake [61]. The spatial distribution of DO (Figure 8) was high in the
years 2000, 2001, and 2002, which indicates the shallowness of the water compared to the
spread of plants and algae during those years, as well as compared to the year 2020. The
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concentration of DO decreased, perhaps due to a large number of marine organisms, such
as fish and other aquatic animals. [42–45].

In general, the results of this study show that monitoring water quality through
remote sensing data is crucial, especially the concentration of non-interacting objects with
reflections, such as nitrates and ammonium. There have been a few attempts by several
researchers, such as [46], but they have not succeeded, as the studies were conducted
within a few months. Present results prove that it is possible to monitor and estimate water
quality from Landsat images for several months and several years, as it was accurate in
performance. Moreover, it can predict with broad spatial homogeneity. Seasonal water
quality changes (V-phenol, NH4-N, and NO3-N, and DO) during 2000, 2001, 2002, and 2020
in the Erlong Lake were not considered, which represents the limitations of the current
study. In terms of performance, it is possible to use algorithms for continuous monitoring in
the lake, especially for V-phenol, NH4-N, and NO3-N. Models can also be used to monitor
and control other lakes for the same selected parameters. In addition to the regression
model, the neural network model can be used in future research to monitor and estimate
the water quality in the Erlong Lake, which may help, spread knowledge, and protect the
lake’s ecosystem of water quality.

5. Conclusions

Through the results, this study explains the relationship between the water quality
parameters (V-phenol, NH4-N, DO, and NO3-N) and the reflectance data of the Landsat
images (TM5, ETM7, OLI8). For all of the selected months across the years, we found a
strong relationship according to the use of equations as general equations that we could use
to monitor and estimate the amount of pollution in the lake, except for dissolved oxygen.

This study also clarified the correlation between the Landsat data and the measured
data. It was found that blue, green, red, and NIR showed the best correlations, except for
dissolved oxygen. This study also illustrates the direction of the V-phenol, NH4-N, DO,
and NO3-N results from the lab and the results created from the model, where we found
that both have the same trends.

The current study presents the spatial distribution of water parameters in the lake,
which showed that the V-phenol, NH4-N, and NO3-N in shallow water were low, while in
deep water they were high. Unlike DO, which showed high value in shallow water and
low value in deep water.
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