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Abstract: Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important moni-
toring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This
technology develops precision farming and agricultural informatization. However, hyperspectral
data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a
resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2)
near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested:
the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-
order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the
optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost
(XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid
regions. The results demonstrated that FOD technology could effectively mine information (with
an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best
estimates out of the methods tested (R2

val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The
model derived from the order of 0.4 within strategy IV worked relatively well among the different
derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the
optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC
estimation. This research provided a promising data mining approach for UAV-based hyperspectral
imaging data.

Keywords: fractional-order derivatives; ensemble learning; hyperspectral data; precision agriculture

1. Introduction

The soil moisture content (SMC) dominates hydrothermal energy exchange, climate
change, and land carbon uptake [1,2]. The limitation of SMC is the connection between at-
mospheric drying and hydrological responses [3]. With population increases, water scarcity
will increase in arid regions. The SMC distinctly influences global food production, which
is related to the achievement of the United Nations Sustainable Development Goals [4,5].
In general, SMC acts as a regulator that maintains the water and energy exchange balance
between the vegetation growth and underground hydrosphere [6]. Its variability impacts
crop development and alters both the canopy structure and biochemistry [7,8]. Therefore,
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the SMC ought to be monitored regularly in agricultural regions. However, it is difficult
to accurately and regularly monitor soil moisture in farmland. In particular, the SMC is
one of the highly variable parameters in regional precision farming, green ecology, and
water resource management because the SMC is vulnerable to evapotranspiration [9–11].
Therefore, a measurement method that can accurately observe and quantify the SMC is
urgently needed.

Precision agriculture requires an appropriate agricultural management program ac-
cording to the specific circumstances. Its prerequisite is fast and accurate monitoring of
explicit spatial information [12]. With the development of remote sensing technology, inten-
sive spatiotemporal data inputs have replaced intensive labor in the capture of crop growth
information. The tools of remote sensing include red–green–blue (RGB) sensors [13], multi-
spectral sensors [14], hyperspectral sensors [15], and thermal sensors [16] for developed
vegetation indices, sensitive bands, and imaging information. Bhatti et al. first used pre-
cision farming techniques through remote sensing technology to estimate soil nutrients
and crop yields [17]. In the subsequent decades, the application of remote sensing has
spread to various aspects of precision agriculture, for example in the detection of environ-
mental stress [18], crop disease [13], and physiological crop structure during the growing
season [19]. Satellite data have higher spatial resolution and shorter temporal resolution,
allowing more efficient monitoring [19]. Furthermore, with the advent of unmanned aerial
vehicles (UAVs), remote sensing has developed rapidly, allowing monitoring in real-time
and with high precision.

The common measurement methods used for the agricultural SMC are summarized
in Table 1. The oven drying technique that is commonly used to measure SMC is both
time-consuming and labor-intensive [20]. For estimated SMC values, many researchers
apply visible and near-infrared (Vis-NIR) spectroscopy techniques, which provide a large
scientific reference for soil property characterization [21–23]. Due to the special geographi-
cal environment in arid regions, the SMC spatial heterogeneity is very strong. Although
Vis-NIR technology can rapidly and nondestructively monitor soil information, it cannot
achieve refined spatial expression. By providing spatial-scale information, remote sensing
technology optimizes agricultural production processes. However, there has always been a
restrictive relation in remote sensing technology regarding spatial, spectral, and temporal
resolutions. The UAV-based technology provides finer spatial and spectral resolutions than
space-borne remote sensing technology. UAV monitoring may contribute to improving
the accuracy of spatiotemporal irrigation [24–26]. Particularly, UAV systems can overcome
limitations of spectral and spatial resolutions when equipped with hyperspectral sensors.
Additionally, studies reporting on thermal remote sensing have estimated effectively SMC
values [18,27,28]. Thermography reflects moisture conditions in both soil and vegetation
through the triangle method and crop water stress index [29]. However, the limitation of
thermal remote sensing is the low spatial resolution [30].

Table 1. Summary of the soil moisture content estimation.

Method Advantage Disadvantage References

Oven drying technique
Regular and accurate

measurement of the soil water
content

Labor-intensive, destructive and
time-consuming [31]

In situ sensors Real-time monitoring, measuring
the soil profile moisture Needs multiple sensors [32]

Soil–water balance approach Good indicator of the amount of
irrigation water and easy to apply

Inaccurate, vulnerable to
meteorological conditions [33]

Plant-based approaches
Indirect estimation of plant

statuses to understand the effects
of drought stress on vegetation

Labor-intensive, destructive, time
consuming, requires complex

instrumentation
[34]
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Table 1. Cont.

Method Advantage Disadvantage References

Near-grounded photoelectric
technology

Timely, nondestructive, and high
spectral resolution

Independent point data lack a
spatial scale [35]

Space-borne photoelectric technology Large scale, nondestructive
Vulnerable to clouds and rain,
contradiction among spatial,

temporal and spectral resolutions
[36]

UAV-based photoelectric technology

Nondestructive, highly
maneuverable, centimeter

resolution, and rich photoelectric
information

Requisite image analysis is still a
challenging task, reduced

precision
[22]

Thermography
Effectively identified SMC and

water stress from plant
temperature

Lower image resolution [18]

Hyperspectral technology combines the advantages of spectroscopy and digital imag-
ing [37]. The band range (visible-near infrared spectrum) of hyperspectral imaging has
been adapted to the monitoring of crop cover areas in agricultural regions (Table 2). Pre-
vious studies have shown that the wavelength of this region can be used indirectly to
estimate the water statuses of plants based on the effects of dehydration on leaf pigment
characteristics [38–40]. Consequently, the SMC is assessed accurately through the canopy
spectrum with the help of the UAV platform.

Table 2. Key wavebands for vegetation detection in the visible-near infrared range (400–1000 nm).

Spectral Range (nm) Band Function

400–420 Violet-Blue Strong absorption of chlorophyll

420–440
Blue

Strong absorption of chlorophyll a and carotenoids
440–460 Strong absorption of chlorophyll
460–500 Strong absorption of carotenoids

520–540 Green Strong reflection of chlorophyll and phycoerythrin absorption peak

540–640 Green and Red Phycoerythrin absorption peak

640–660
Red

Strong absorption of chlorophyll and phycoerythrin absorption peak
660–680 Strong absorption of chlorophyll, absorption trough of most vegetation, red edge

680–750
NIR

Red edge region
820–860 High Reflection of vegetation and the top of red edge region
880–900 Reflection peak of vegetation

Preprocessing for hyperspectral data are still a challenging task [41,42]. Hundreds of
bands are measured, which increases the complexity. In practice, spectral derivative technol-
ogy for pretreatment is a beneficial spectral processing approach [43] to effectively reduce
redundant information and enhance prominent and sensitive spectral features [44,45].
However, conventional spectral derivative technology, such as first-order derivatives and
second-order derivatives (integer-order derivative), cannot mine the spectral information
in detail because the integer order of the derivative varies too much. Moreover, the degra-
dation of the signal due to high-frequency noise is enhanced by high-order derivatives [46].
The fractional-order derivative (FOD) algorithm was proposed as a concept before the
integer-order derivative [47]. FOD uses the interpolation ideas to insert a finer order
between the original spectrum, the first-order derivative spectrum, and the second-order
derivative spectrum [48]. Thus, FOD technology ensures that more features are captured.
Lao et al. [49] evaluated FOD technology for mining of spectral information related to soil
salt ions. Hong et al. [50] reported that the 0.75-order reflectance was superior to first or
second derivative reflectance for predicting soil organic carbon. Wang et al. [51] proposed
a new approach (FOD technology) to highlight “hidden” information from Landsat data.
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Therefore, the utility of using FOD will be evaluated to preprocess hyperspectral imagery,
focusing on the estimation of soil moisture based on the canopy spectrum.

Canopy spectral indices are more sensitive to changes in soil moisture because
plants can physiologically control transpiration resistance according to the soil moisture
stress [52,53]. The SMC at the root of the crop easily affects the photosynthetic pigments in
the canopy, while the canopy spectral indices can capture the changes caused by the photo-
synthetic pigment [54,55]. In this case, the spectral bands selected by the canopy spectral
indices are usually the sensitive bands for SMC. Thus, using canopy spectral indices to
monitor soil moisture is useful for vegetation-covered agricultural regions. Studies have
shown that the use of the three-band index (R1429−R416−R1865)

(R1429+R416+R1865)
may yield good results [56].

Importantly, the method may utilize the bands of photosynthetic pigments in the visible
region and the absorption bands of the O-H bonds in the canopy water [57,58].

Many researchers have considered the associations between soil properties and spec-
tral information [59,60]. The nonlinear regression method (machine learning strategy)
is currently used to boost the prediction of soil properties [61,62]. The artificial neural
network was shown to be an appropriate algorithm to quantify SMC through multispec-
tral images [63]. Jin et al. [64] also reported that an artificial neural network model had
potential high precision for estimating soil properties. However, artificial neural networks
need abundant samples to drive the model. Wang et al. [65] attempted a bootstrapped
framework linked to a BP neural network model and the results indicated that this method
improved the performance of the soil salinity model. For limited samples, it is possible
to obtain high-precision results by fully mining the data. Ensemble learning algorithms
effectively reduce the prediction error by weighting and superimposing each weak learner
to form a strong learner. They yield excellent results in many machine learning algo-
rithms [66,67]. Random forest algorithms, which are representative of ensemble learning
algorithms, have been shown to perform better than other algorithms in solving complex
nonlinear problems [68]. However, the random forest method is prone to overfitting [69].
In recent years, the extreme gradient boosting (XGBoost) algorithm has been gradually
developed and has become a potential algorithm [66,70]. XGBoost has been used to achieve
good outcomes in soil digital mapping of arid regions [71]. Moreover, it has been evaluated
as a better model with efficiency and robustness for estimating soil parameters from actual
soil information and environmental variables [72]. In general, the XGBoost algorithm
reduces variance and prevents overfitting.

Therefore, the purposes of this study are: (1) to assess the effects of FOD technology
on UAV-based hyperspectral data; (2) to analyze the capacity of MI for important spectral
information; and (3) to estimate the SMC using optimal XGBoost models.

2. Materials and Methods
2.1. Study Area and Data Collection
2.1.1. Study Area

The study area was in Fukang City, Xinjiang Uygur Autonomous Region (Xinjiang)
(87◦51′15′′E, 44◦21′14′′N). The study area is in the oasis transition zone, the northern part of
which is the Gurbantunggut Desert. This area is characterized by a temperate continental
desert climate with an average annual precipitation of 220 mm, a frost-free period of 176 d
throughout the year, an average annual temperature of 7.1 ◦C, an extreme maximum
temperature of 41.5 ◦C, and an extreme minimum temperature of −37 ◦C. In particular,
the precipitation is unevenly distributed. The annual average precipitation is 323 mm in
the southern mountains, 186 mm in the central plain, and 145 mm in the northern desert.
Nevertheless, Fukang City is an important base for the production of grains, premium
vegetables, and special crops. It provides many agricultural and sideline products for
Urumqi, which is the provincial capital city. The main crop planted in the study area
is winter wheat, and the harvesting frequency is one harvest per year. The soil types
according to the Food and Agriculture Organization (FAO) are calcisol and solonchak [73].
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2.1.2. Soil Moisture Content Measurement

For the field scale, grid sampling was adopted as the main strategy according to
the previous studies [74]. In April 2018, 70 points were selected through sampling cells
(0.5 m × 0.5 m) for uniform data collection, in which the surveys were executed simulta-
neously via UAVs. The plant residue and gravel were removed from the top layer, after
which the topsoil (top 10 cm) could be sampled. To make each sample representative, four
soil subsamples were collected from four corners of 0.5 m × 0.5 m plant-centered quadrats
and thoroughly commixed. Then, a small soil sampler was used to collect a portion of
topsoil from each sample. The soil samples were rapidly sealed in aluminum boxes. Every
sampling position was recorded using GPS (LT500T, CHC Navigation Technology Co. Ltd.
Shanghai, China). The accuracy of GPS is approximately 1 m. The SMC was measured
through the thermogravimetric technique (oven drying). This technique is the standard
method for measuring SMC. With this technique, the weights of wet soil samples were
measured first, then the wet soil samples were dried in the oven (105 ◦C, 48 h) and weighed.
The differences between the two weights were calculated as the SMC.

2.1.3. Hyperspectral Imaging Measurement

The UAV field overflights were conducted before the soil sampling (Figure 1). The
UAV platform was a DJI Matrice 600 Pro (Shenzhen Dajiang Innovation Technology Co.,
Ltd., Shenzhen, China) and the airborne hyperspectral imaging spectrometer was a Head-
wall Nano-Hyperspec hyperspectral sensor (Headwall Photonics Inc., Bolton, MA, USA)
(Table 3). The hyperspectral imaging spectrometer has the following specifications: a band
range of 400–1000 nm, a spectral resolution of 6 nm, a resampling interval of 2.2 nm, and
271 spectral bands [22]. When the flight altitude was 100 m, the spatial resolution of the
obtained image was 4 cm. In the experiment, the study area had not been affected by
rainfall for the past week. The day of the field operation was 17 April 2018. During this
period, the area was in the “green-up” time for winter wheat, which is a period during
which the crop is highly affected by soil moisture. The average plant height for winter
wheat was approximately 20 cm, while the vegetation coverage was dense. The hyperspec-
tral data were obtained over the field at 15:00 (UTC/GMT+ 08:00) in a sunny, windless,
obstruction-free environment. Operationally, the dark current correction and whiteboard
calibration strategy was utilized [22]. The purpose of dark current is to reduce the residual
current, which flows through a photo-sensible device when the sensor is not receiving
incident radiation [75]. The purpose of this strategy is to convert the signal to the target’s
reflectivity and reduce the noise. To calibrate a drone image, the five control points were
laid in the four corners and center of the drone captured area and recorded geographic in-
formation. Furthermore, the hyperspectral data postprocessing and orthorectification were
conducted through Hyperspec® III (version 3.1) and SpectralView® (version 3.1) software.
The Savitzky–Golay filter (S-G; second-order polynomial smoothing and five-band window
width) smoothed, processed image was used as the base image (order = 0, original image).
The S-G procedures in this study were all performed in MATLAB R2016b (MathWorks,
Natick, MA, USA).
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Figure 1. Overview of the study area and sampling: (a) application of the UAV; (b) four-point method of sampling; (c)
sample point distribution; (d) UAV platform and airborne hyperspectral imaging sensor; (e) hyperspectral imaging sensor;
(f) Xinjiang’s position in China; (g) geographical location of Fukang City.

Table 3. The technical specifications of the UAV.

Details Items Specifications

Drone

Version DJI MATRICE 600 PRO

Weight 10 kg

Dimensions
1668 mm × 1518 mm × 727 mm with

propellers, frame arms and GPS mount
unfolded (including landing gear)

Max speed 65 km/h

Flight control system A3 Pro

Hyperspectral camera

Camera Headwall Nano-Hyperspec
hyperspectral sensor

Dispersion/Pixel 2.2 nm/pixel

Wavelength range 400–1000 nm

FWHM Slit Image 6 nm

Spectral bands 271

Spatial bands 640

Max Frame Rate 300 Hz

GIMBAL

Version DJI RONIN-MX

Controlled Rotation Range
Pan axis control: 360◦

Tilt axis control: +45◦ to −135◦

Roll axis control: ±25◦

Angular Vibration Range ±0.02◦

Operating environment −15 ◦C–50 ◦C

Remote Control
Operating Frequency 2.400–2.483 GHz

Max Operating Distance 5 km

Battery Supported Battery Configurations TB48S
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2.2. FOD Strategy

In the past few decades, the theory of FOD has been widely used in mathematical
analysis. In general, integer-order derivatives (IODs) (such as first-order derivatives
and second-order derivatives) in Euclidean space have been extended to FODs, which
can calculate discretional-order derivatives (noninteger). Fractional derivative theory in
Euclidean space is regarded as an effective method in signal processing and dispersion
processing [76]. The FOD generally has three definitions, including the Caputo, Riemann–
Liouville, and Grünwald–Letnikov (G-L) definitions. Of these, the G-L definition is the
most appropriate method for image processing because it avoids the complicated Cauchy
equation, which the other definitions use. Many researchers have used the G-L-based
fractional theory to work with the fractal question because of the geometric and physical
meaning of the FOD method [77,78]. The geometric meaning of FOD is a generic slope
for a function curve. The physical meaning is fractional flow and generalized amplitude-
and-phase modulation [76]. Generally, the spectrum of an object is regarded as a physical
photoelectric signal. FODs enable continuous interpolation among IODs to improve model
accuracy and performance in the field of linear spectroscopy [79]. Moreover, in previous
research, the G-L-based FOD was considered to be the most effective among three definition
algorithms in the one-dimensional spectrum [46,51]. Related research also supports the
use of this method [80,81]. A definition of the G-L-based FOD is:

G
a Dvs(x)

b , lim
h→0

h−v(−1)m
n−1

∑
m=0

Γ(v + 1)
Γ(m + 1)Γ(v−m + 1)

s(b−mh) (1)

where the interval of s(b) is [a,b]; h is the step length and h = (b− a)/(n); and the Gamma
function is Γ(τ) = (τ − 1)!. Here, v = 0.0 indicates the original signal, v = 1.0 indicates
first-order derivatives, and v = 2.0 indicates second-order derivatives. The FOD method
has boundedness, which is

∣∣∣Dvs(x)
∣∣∣ =

∣∣∣s(v)(x)
∣∣∣ < ∞. It also has continuity, which is

logv1→v0
Dv1s(x) = Dv2s(x), v1, v2 ∈ R.

In this case, the spectral resolution of hyperspectral data are 2.22 nm and h is set to 1.
Based on the above description, Equation (1) was converted to:

dv f (x)
dxv ≈ f (x) + (−v) f (x− 1) + (−v)(−v+1)

2 f (x− 2)
+ · · · Γ(−v+1)

Γ(m+1)Γ(−v−m+1) f (x−m)
(2)

The FOD of hyperspectral data was calculated based on Equation (2) in MATLAB
R2016b. The step length was set as 0.1 from the order of 0.0 to 2.0.

Hyperspectral imaging data have spectral representation and image representation.
It is important to jointly consider the image and spectral information contained in the
hyperspectral data. In this study, the image quality and the relationship between the
spectrum and SMC were considered to evaluate the effects of hyperspectral data pre-
processed by FOD technology. Three image quality metrics—the peak signal-to-noise
ratio (PSNR) [82], structural similarity index (SSIM) [83], and naturalness image quality
evaluator (NIQE) [84]—evaluated the image quality after FOD processing.

(1) The PSNR is usually used to measure image quality. It is the ratio of maximum
possible power to the power of corrupting noise on an image and is defined as [82]:

MSE =
1

N ×M

N

∑
i=1

M

∑
j=1

[P(i, j)−O(i, j)]2 (3)

PSNR = 10 log10

(
max2

MSE

)
(4)
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where N × M indicates the image size; P(i, j) and O(i, j) refer to the pixel value of pre-
processed image and original image, respectively; and max is the maximum possible
pixel value.

(2) The SSIM is consistent with human visual perception when extracting structural
information in a scene. The SSIM mainly evaluates image quality through luminance,
contrast, and structure. The SSIM is calculated by Equation (5):

SSIM(x, y) =

(
2αxαy + C1

)(
2βxy + C2

)
(αx2 + αy2 + C1)(βx2 + βy2 + C2)

(5)

where αx and αy denote the mean intensities of the original image and preprocessed image,
respectively; and βx and βy are their standard deviations. Here, βxy is the covariance
between them and C1 and C2 are constants.

(3) The NIQE calculates the quality of a preprocessed image by comparing the distance
between the multivariate Gaussian model of the original natural image and the multivariate
Gaussian model of the preprocessed image. More details are given in [84].

Generally, the PSNR and SSIM are considered as full-reference quality metrics, while
the NIQE is a no-reference quality metric [84]. Higher image quality results in lower NIQE
values but higher PSNR and SSIM values. The three image quality metrics were conducted
in MATLAB R2016b.

Moreover, the theory of gray relational analyses (GRA) was adopted to appraise
the effect of the FOD on the spectrum [51]. GRA is a systematic analysis method for
determining the nonlinear relationship between object and system parameters [64]. Another
advantage of GRA is the degree of freedom on data, which are unrestricted by the sample
type and statistical characteristics [51,85]. This algorithm was conducted as follows:

ξij =
mini

∣∣y0j − yij
∣∣+ ρmaxj

∣∣y0j − yij
∣∣∣∣y0j − yij

∣∣+ ρmaximaxj
∣∣y0j − yij

∣∣ (6)

where ξij is the gray relational coefficient and
∣∣y0j − yij

∣∣ refers to the absolute difference
between the sequence of the SMC and the sequence of spectral reflectance. Here, ρ is the
distinguishing coefficient; usually the ρ value is 0.5. The gray relational grade (GR) is
calculated as follows:

GRi =
1
N

N

∑
i=1

ωiξij (7)

where N is the number of the sequences of spectral reflectance and ωi represents the weight
factor. The GR was calculated in MATLAB R2016b.

In this study, the original image, first- and second-order derivatives, and FOD technol-
ogy were compared to mine the appropriate preprocessing method.

2.3. MI Strategy

The Pearson correlation coefficient was used to reflect the correlation between the
SMC and the spectrum [79]. In general, the correlation coefficient between a single band
and the SMC is one-dimensional information [21]. The spectral index composed of two
spectral bands is a better representation than a single band and includes the difference
index (DI), ratio index (RI), and the normalized difference index (NDI). The calculation is
usually based on Equations (8)–(10):

DI(Rλ1, Rλ2) = Rλ1 − Rλ2 (8)

RI(Rλ1, Rλ2) = Rλ1/Rλ2 (9)

NDI(Rλ1, Rλ2) = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) (10)

where Rλ1 and Rλ2 are the spectral reflectance of λ1 and λ2, respectively, which were
arbitrarily acquired within the operating range of the hyperspectral sensor (400–1000 nm).
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Referring to the conceptual framework published by [86], a third band (λ3) was added to
construct the three band indices based on Equations (8), (9), and (10), because multiple
independent bands increase the potential for high precision. The multiple-band synthesis
information is presented by a multidimensional map of the correlation coefficients between
the spectral index and SMC. MI formulas (11)–(20) calculated each band within a range
of 400–1000 nm. These formulas are derived from published articles [87,88]. From the
results, we could select the most sensitive band combination through the maxima of the
correlation coefficient between the indices and the SMC. From the spectral parameters, we
could maximize the sensitivity of the soil attributes.

MI1 = Rλ1/(Rλ2 × Rλ3) (11)

MI2 = Rλ1/(Rλ2 + Rλ3) (12)

MI3 = (Rλ1 − Rλ2)/(Rλ2 + Rλ3) (13)

MI4 = (Rλ1 − Rλ2)/(Rλ2 − Rλ3) (14)

MI5 = (Rλ2 + Rλ3)/Rλ1 (15)

MI6 = (Rλ1 − Rλ2)/[(Rλ1 − Rλ2)− (Rλ1 − Rλ3)] (16)

MI7 = (Rλ1 − Rλ2)− (Rλ2 − Rλ3) (17)

MI8 = (Rλ2 × Rλ3)/Rλ1 (18)

MI9 = Rλ1
2 + Rλ2

2 + Rλ3
2 (19)

MI10 =
√

Rλ1 + Rλ2 + Rλ3 (20)

The values in the slice contour map were the correlations between the MIs and SMC,
and the program was applied in MATLAB R2016b.

2.4. XGBoost

XGBoost is a gradually rising ensemble learning method that is considered to be a
gradient boosting library with scalability and flexibility [89]. Similar to gradient boosting
machines, each tree (weak learner) of XGBoost gradually participates in the previous weak
learner model [66]. XGBoost implements the second-order Taylor expansion on the loss
function to find the optimal solution. Moreover, XGBoost has unique advantages. For
instance, a regularization technique borrowing from the RF algorithm reduces overfitting
and shortens the calculation costs [71]. It possesses customizable objective functions and
more effective tree pruning mechanisms. Variable importance is vital feedback for XGBoost.
Variable importance is generally used for characterizing datasets by uncovering the interplays
among predictive variables. As a filter, it identifies prominent predictors and removes
irrelevant predictors. The detailed introduction of XGBoost in [90] provides more information.
The xgboost package in R software was selected for the XGBoost model in this study.

2.5. Model Evaluation and Strategies

The sample partitioning used a joint x–y distance (SPXY) algorithm [91] to conduct
partitioning, which included 50 samples and a validation set containing 20 samples. In this
study, four strategies were compared to verify the optimal strategy (Table 4). Strategy I:
All bands of the original image (order = 0) participated in the XGBoost model to estimate
the SMC. Strategy II: The variables involved in the estimation model were all bands
of the images processed by the first- and second-order derivatives (order = 1 and 2).
Strategy III: The model variables were composed of all bands of the image processed by
FOD (order = 0.1–0.9 and 1.1–1.9). Strategy IV: Under the optimal pretreatment scheme
combined with the MI scheme, the variables introduced were the optimal spectral indices
obtained under the best pretreatment scheme. The full spectral bands were used as
independent variables for strategy I, strategy II, and strategy III. All MIs were considered
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independent variables for strategy IV. Among modeling strategies, the SMC value was the
response variable. The model was constructed using the calibration set and the validation
set was verified independently. The three indicators evaluated the performance of the
models, specifically: (1) the coefficient of determination (R2); (2) the root mean square errors
(RMSE); and (3) the ratio of the performance to the deviation (RPD). The related formulas
are elaborated in [92,93]. In this study, according to relevant researchers [93–96], the RPD
divided results into three classes: category I (RPD > 2.0), with excellent predictability;
category II (1.4 < RPD < 2.0), with moderate predictability; and category III (RPD < 1.4),
with poor predictability. Models with higher R2 and RPD values and smaller RMSE values
are better. Furthermore, this study introduces scatter points and the Taylor diagram [97].
Notably, these methods efficiently portray the performance of the model and its statistical
characteristics.

Table 4. Modeling strategy and description.

Modeling Strategies Method

Strategy I The original image (order = 0)
Strategy II The first- and second-order derivatives (order = 1 and 2)
Strategy III The FOD (order = 0.1–0.9 and 1.1–1.9)
Strategy IV The optimal pretreatment scheme combined with the MI scheme

3. Results
3.1. Descriptive Statistics

To identify the rationality of the sample division, the statistical distributions of the
dataset for the entire set, calibration set, and validation set were assessed and illustrated
in Figure 2. Overall, the sampling resulted in a mean of 24.45% and a standard deviation
(SD) of 5.37%. The environment of the area in which crops were planted near the desert
was a major influence, resulting in a relatively high SD value. The mean SMC values
for the calibration and validation sets were 24.87% and 23.39%, respectively. The SD is
usually understood as the degree of dispersion of the sample and the SD of the entire set
was high, which may have been caused by the uneven spatial distribution of the SMC.
Additionally, all datasets were normal distributions with similar statistical characteristics.
The partitioning of the SPXY algorithm yields an analogous statistical distribution. In
confirming valuable samples, potentially biased estimates were reduced as far as possible.
Consequently, the two subsets were representative of the data as a whole.
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3.2. The Evaluation of the FOD Strategy
3.2.1. Varying Features of Spectra and Images Based on the FOD

The FOD was divided into two parts, the low-frequency FOD (order <1) and the high-
frequency FOD (order > 1), as the results produced after FOD processing were different
(Figures 3 and 4, Supplementary Figures S1 and S2).
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The FOD-processed images are presented using RGB images (Figure 3 and Supple-
mentary Figure S1). The high-frequency FOD-processed image contained considerable
noise and lost its visual clarity (Figure 4 and Supplementary Figure S2). Although the
low-frequency FOD was clear overall, the sharpness was also lost as the order increased.
In addition to the analysis of image visualization, a comparative analysis was exerted on
the spectrum. A peak near the red edge was a typical feature of the vegetation spectrum,
and the FOD technique highlighted the absorption peak (Figure 4). By comparison, it
was found that the spectral reflectance gradually decreased from 0.1 to 2.0 orders. The
vegetation curve morphology remained relatively stable from 0.1 to 0.3 orders, and the
absorption peaks from 0.4 to 1.1 orders were well defined. For the high-frequency FOD, the
spectral form of the vegetation gradually disappeared and amplified the noise (930–1000 nm).

3.2.2. Effects of the Spectra and Images Based on FOD

In addition to the above, PSNR, SSIM, and NIQE were also used to assess the effects
of the images based on FOD (Figure 5). Upon comparing the IOD and FOD evaluation
indicators, the image quality of the IOD was poorer than that of the low-frequency FOD.
The values of the PSNR and SSIM increased gradually from the orders of 0.1 to 0.4, while
the value of the NIQE decreased. However, their trends appeared to reverse the orders
of 0.4 to 2. When the order was 0.4, the values of PSNR and SSIM were the smallest and
the value of NQIE was the largest. These results indicated that the image quality of the
0.4-order approach was the best. Thus, the effect of low-frequency FOD technology on
image quality was more obvious than that of high-frequency FOD technology.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 4. Results based on different FOD-preprocessed spectral curves. The red areas represent the SDs of the spectra: (a–
e) the processing results from the orders of 0, 0.5, 1, 1.5, and 2. 

3.2.2. Effects of the Spectra and Images Based on FOD 
In addition to the above, PSNR, SSIM, and NIQE were also used to assess the effects 

of the images based on FOD (Figure 5). Upon comparing the IOD and FOD evaluation 
indicators, the image quality of the IOD was poorer than that of the low-frequency FOD. 
The values of the PSNR and SSIM increased gradually from the orders of 0.1 to 0.4, while 
the value of the NIQE decreased. However, their trends appeared to reverse the orders of 
0.4 to 2. When the order was 0.4, the values of PSNR and SSIM were the smallest and the 
value of NQIE was the largest. These results indicated that the image quality of the 0.4-
order approach was the best. Thus, the effect of low-frequency FOD technology on image 
quality was more obvious than that of high-frequency FOD technology. 

 
Figure 5. Three indicators used to evaluate the RGB image quality for 21 derivative orders (0 to 2, with an increment of 0.1 
per step). 

To evaluate the effects of FOD technology on the spectrum, the absolute value of the 
maximum correlation (max |r|) between the SMC and spectral reflectance and the 
maximum gray correlation (max GR) between the SMC and the spectral reflectance for 
different orders were compared, respectively (Figure 6). Compared with the FOD, the 

Figure 5. Three indicators used to evaluate the RGB image quality for 21 derivative orders (0 to 2, with an increment of 0.1
per step).

To evaluate the effects of FOD technology on the spectrum, the absolute value of
the maximum correlation (max |r|) between the SMC and spectral reflectance and the
maximum gray correlation (max GR) between the SMC and the spectral reflectance for
different orders were compared, respectively (Figure 6). Compared with the FOD, the
values of max |r| and max GR for the second-order derivative were the lowest in the
derivative processing. For the low-frequency FOD, the max |r| of the 0.4-order approach
was the peak value (max |r| = 0.768). Likewise, the max GR increased from the order of 0
to 0.4 as the order increased, peaking with the order of 0.4 (max GR = 0.953), then decreased
slightly thereafter. For the high-frequency FOD, the maximum value of max |r| appeared
with the order of 1.8 (max |r| = 0.623) and the max GR had the same performance as did
the max |r|. The maximum of the max GR was 0.953. In general, max |r| can express
correlation in linear terms, while max GR also reflects nonlinear relationships. The orders
of 0.4 and 1.8 had the highest max |r| and max GR values, indicating that the orders of
0.4 and 1.8 were optimal in this study. Moreover, a comparison between the linear and
nonlinear relationships revealed that the FOD could perform data mining on imaging
hyperspectral data.
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When analyzing hyperspectral images, FOD processing was more effective than
using the IOD technique. The FOD could be regarded as providing additional detailed
spectral variation information. FOD pretreatment produced more accurate relationships
between the SMC and hyperspectral data compared with the original image (order = 0).
Compared to different FOD pretreatments, the low-frequency FOD produced superior
spectral imaging data to the high-frequency FOD. The order of 0.4 was an appropriate
order of FOD according to the effects on imaging hyperspectral data.

3.3. MI Strategy

To detect the capacity of MI for the highlighted important spectral information, the
correlation coefficient maps between the SMC and MI1–MI10 for the appropriate order
(0.4) were analyzed (Figure 7, Supplementary Figure S3 and Table 5). The optimal result
was provided by MI8 (max |r| = 0.818). The correlation coefficient was improved by 0.215
compared to the result of the original reflectance. Compared with the value of the 0.4 order,
this MI enhanced the correlation between the spectral parameters and the SMC by 0.05.
Furthermore, the value of max |r| ranged from 0.770 to 0.818, and even the minimum was
slightly better than the value of the 0.4 order. These results were sufficient to demonstrate
that MIs could provide additional detailed spectral parameters associated with the SMC.
On balance, the bands selected by the MIs were concentrated at 446, 512, 650, and 960 nm.
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MIs. The intersections of the three slices are the absolute maxima of the correlation coefficients: (a)
MI1; (b) MI8.

Table 5. The max |r| of MI and its selected bands.

MI Max |r| Bands of MI MI Max |r| Bands of MI

MI1 0.812 R644, R648, R513 MI6 0.770 R710, R753, R524
MI2 0.797 R446, R959, R559 MI7 0.776 R959, R446, R893
MI3 0.799 R446, R959, R651 MI8 0.818 R635, R651, R446
MI4 0.783 R710, R753, R524 MI9 0.770 R651, R648V, R531
MI5 0.803 R959, R651, R446 MI10 0.781 R651, R448, R446

3.4. Construction and Evaluation of the Estimation Model

To determine the effects of FOD on the performance of the model, the XGBoost
model was used for estimation of the SMC based on the spectral information of the full
band (0–2 orders, with an increment of 0.1 at each step). The three evaluation metrics
of different models are provided in Table 6. The performance of the estimation model
constructed using FOD processing was better than that of the model based on the original
spectrum. Specifically, the 0.4 order XGBoost model for the predicted SMC yielded the best
performance (R2

cal = 0.851, RMSEC = 2.707, R2
val = 0.835, RMSEP = 2.208, and RPD = 2.375).

Compared with the original spectral model, the R2
val and RPD of the 0.4 order model

increased by 0.117 and 1.042, respectively. Additionally, the performance of strategy II was
only slightly better than that of strategy I, but was still not as good as that of the 0.4 order
model. Therefore, these results indicated that the 0.4 order was the most effective strategy.

Meanwhile, compared with the 0.4 order model, strategy IV (MI model) generated the
most reliable estimation in this study, and its performance was superior to that of the 0.4
order model (R2

cal = 0.921, RMSEC = 1.956, R2
val = 0.921, RMSEP = 1.943, and RPD = 2.736).

Furthermore, the result of the MI model was close to the measured value. The results
indicated that strategy IV produced the best performance in coupling spectral parameters
and the SMC.

A Taylor diagram was introduced to better illustrate the effects of each model (Figure 3.4).
A good model will be closer to the red line, and the darker the color, the closer the R2

val
is to 1. It was not hard to see that the low-frequency FOD produced a model with better
performance than that of the high-frequency FOD. Among the 22 models, the MI model
yielded the most accurate results. Its color was dark blue and the R2

val was the closest to 1.
The scatterplot of the measured and estimated values is portrayed in Figure 9. The scatter
fitting line of the MI estimation model for the SMC was closest to the 1:1 line. Moreover,
compared with strategies I, II, and III, the 0.4 order model was second only to the results
of strategy IV. This result suggested that the 0.4 order model was not only superior to the
original spectral model but also that the IOD (order = 1 and 2) was inadequate. However,
the other FOD models had only decent effects in general. In conclusion, the effects of the
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four modeling strategies were ranked as follows: strategy IV > strategy III > strategy II >
strategy I.

Table 6. Comparisons of the XGBoost models for SMC retrieval based on different order model-
ing strategies.

Model Strategy R2
cal RMSEC R2

val RMSEP RPD

0 order 0.719 3.623 0.718 3.109 1.333
0.1 order 0.784 3.181 0.782 2.566 2.008
0.2 order 0.794 3.179 0.790 2.496 2.044
0.3 order 0.791 3.090 0.793 2.461 2.019
0.4 order 0.851 2.707 0.835 2.208 2.375
0.5 order 0.805 3.076 0.806 2.573 1.932
0.6 order 0.780 3.142 0.790 2.731 1.547
0.7 order 0.762 3.279 0.760 2.774 1.700
0.8 order 0.781 3.539 0.757 3.023 1.525
0.9 order 0.784 3.268 0.750 2.828 1.531
1 order 0.768 3.518 0.749 3.257 1.117

1.1 order 0.754 3.590 0.727 3.213 1.277
1.2 order 0.746 3.577 0.747 2.944 1.415
1.3 order 0.758 3.435 0.748 3.054 1.479
1.4 order 0.777 3.123 0.758 2.834 1.418
1.5 order 0.781 2.974 0.759 3.026 1.147
1.6 order 0.791 3.533 0.760 2.922 1.479
1.7 order 0.795 2.847 0.771 2.762 1.415
1.8 order 0.806 2.684 0.785 2.704 1.500
1.9 order 0.780 3.035 0.762 3.076 1.049
2 order 0.751 2.910 0.743 3.000 1.226

MI 0.921 1.956 0.921 1.943 2.736
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The distribution of SMC was uneven (Figure 10). There was a higher SMC in the
eastern part of the farmland (west of bare land) and a lower SMC in another part. This
result showed the spatial distribution of the SMC was nonstationary, even in the plot.
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4. Discussion

Hyperspectral sensors supply plentiful information and observation perspectives.
Goran et al. reported on a UAV platform applied for daily accurate practice in agriculture
and forestry [98]. Figure 3 and 4 show that UAV-based hyperspectral data had finer spatial
and spectral resolutions. Such data are more conducive to serving precision agriculture
projects. For example, the SMC values had extremely uneven distribution in this study
(Figure 10)—consistent with the results found by Lian et al. [3]—because of water scarcity
and strong evaporation in arid regions. Timely monitoring is crucial to proper irrigation.
Furthermore, Ehsan et al. stated that precise measures of irrigation are urgently needed
because irrigated agriculture consumes large amounts of scarce fresh water in arid re-
gions [99]. The optimal results indicated that SMC estimations were reliable. The key to
precision agriculture depends on the accuracy and availability of spatial information [12].

The spectral derivative method was adopted to deal with the multicollinearity of the
spectrum [49,50,100]. The results showed that the effects of FOD technology for hyperspec-
tral data combining images with spectra were significant. More importantly, this study
verified that the image quality corresponded to the spectral effects when the FOD was
of the order of 0.4. Consistent with the literature, this result showed that low-frequency
FOD (0.75 order) was superior to high-frequency FOD [50]. This may have been because
the features of the red edge weaken as the order increases and inherent spectral noise
strengthens. This result is consistent with those of other studies [49–51,100]. Additionally,
studies have shown FOD pretreatment to be better than IOD pretreatment [100,101], be-
cause the IOD filters out large amounts of background information, highlighting the edge
features and causing substantial information loss. Preprocessing is essential for imaging
hyperspectral data with high-dimensional features. However, the second-order deriva-
tives are not satisfactory according to image processing results, which is consistent with
previous research [22,50]. Consequently, the FOD retained information by relying on the
original characteristics.

The band importance was portrayed to confirm the rationality of constructing the
estimated SMC model with high precision (Figure 11). In general, the XGBoost algorithm
can provide the importance of each variable under different FOD strategies. The importance
score can be used to characterize the importance of participating in the estimation model.
In the low-frequency FOD, the higher importance of the band was mainly concentrated at
400–460 nm, near 550 nm, near 700 nm, and near 960 nm. For the high-frequency FOD, areas
of higher importance were concentrated at approximately 400–450 nm and approximately
700 nm. These bands were the strong absorption bands of chlorophyll and water in the
plants [102,103], whereas the chlorophyll of the crop canopy changes with the degree of
drought [104]. Such changes appeared in the spectral bands that responded to different
chlorophyll contents. This result was similar to the research by Yang et al. [52]. Therefore,
this result indicated that the low-frequency FOD identified more sensitive spectral bands.
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The MI strategy enhanced the correlation between the spectral parameters and SMC.
Such an advantage might be because of the synergy among multiple sensitive bands and noise
reduction. The MIs better visualized spectral features, allowing us to explore more subtle
spectral information compared to using the traditional correlation map. However, many stud-
ies have used the spectral index method while considering only two bands [21,50,51,105,106].
Including previous research [22], the maximum correlation between the spectral index of the
two bands and the SMC was 0.773. In comparison, the maximum correlation between MI and
SMC was increased by 0.039 in this study, which might be the effect of the red-edge bands.
The MI strategy may also prove useful for estimating SMC values from satellite-borne remote
sensing data using the red-edge bands (such as Sentinel 2 or Sentinel 3) [87]. In addition,
the MI strategy improved the modeling precision compared with other full spectral bands
because the MI strategy reduced the dimensionality of the hyperspectral data and extracted
the bands containing sensitive information.

In this study, an effective strategy was provided for the integration of FOD technology
and MI within an XGBoost algorithm framework. Although the estimation strategy had
high precision, agricultural SMC was underestimated. Comparing the measured SMC
and the estimated SMC values, the mean and median of the estimated SMC values were
24.46% and 23.97%, respectively (Figure 12). Similarly, the fitting line (red line) of the
estimated value was also lower than the 1:1 line (Figure 9). It is generally known that
it is still difficult to construct a perfect model to represent an actual object. Although
machine learning algorithms try to mine data as much as possible, models are merely
simplified representations of the real world. XGBoost is a leader in ensemble learning, as it
uses as small a sample as possible to achieve good performance estimates [107]. Hence,
XGBoost is still beneficial in estimating models and soil mapping. It is common for the
estimated value to be lower than the measured value in studies of digital soil mapping
because all of the processes and their interactions are not sufficiently understood, which
might require more relevant information, for example multitemporal hyperspectral data.
However, compared with other studies, the results of the XGBoost model are the closest to
the true values [66,89,108].
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Soil monitoring is necessary for precision agriculture, especially because the SMC
has extensive spatial heterogeneity in arid regions [109]. It is noteworthy that drought
and salinization may happen at the same time, because salinization is a form of aridity.
Moreover, crop models [110] and thermal sensors [111] are indispensable in measuring
drought stress. This will also be the focus of our further research. In recent years, merely
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considering the vegetation indices or spectroscopy information could be an appropriate
method to estimate the physical and chemical properties of vegetation and soil [112,113].
To reduce errors, the calibration process should involve real-time kinematic (RTK), al-
though the operation process involves coordinate information being recorded twice. In
further studies, an ensemble framework will be built on hyperspectral and thermal data to
expand the comprehensive estimation of agricultural SMC. With increasingly fragile agroe-
cological systems, this study offers a good method for sustainable precision agricultural
development. Moreover, this study provides new strategies to prevent drought disasters.
Accurate agricultural management approaches will be able to better respond to the threats
of increased aridity based on these results.

5. Conclusions

A fractional-order derivative (FOD) technique was utilized to improve the effects
of imaging hyperspectral data in data mining. The plan provided a strategy with high
performance for SMC estimation in arid areas under scarce data conditions. This study
investigated the improvement of fractional-order derivatives of spectral imaging data,
combining images with spectra in two ways. Not only was the image quality enhanced and
useful information highlighted, but more significant relationships between the SMC and
the spectrum were also captured. The 0.4 order yielded the lowest PSNR and SSIM values
and the highest NIQE value. Compared with the original image, the first- and second-order
derivative correlations with the SMC were increased by 0.165, 0.157, and 0.158, respectively.
Additionally, the gray correlation was improved by 0.159 compared to that of the original
data. The MI algorithm yielded the synergistic effect of multiple sensitive bands while
reducing the dimensionality of high-dimensional data. Among all spectral parameters
of the MI, the MI8 performed best, with an absolute maximum correlation coefficient of
0.818. The application of the FOD method improved the accuracy of SMC estimation using
hyperspectral imaging data. The 0.4 order played an important role, producing model
results that were more suitable than those of the original data (R2

val = 0.835, RMSEP = 2.208,
and RPD = 2.375). Under the framework of the XGBoost algorithm, an excellent estimation
model (R2

val = 0.885, RMSEP = 2.145, and RPD = 2.505) was yielded by combining spectral
parameters based on the order of 0.4 with the MI. In this study, the outcomes might inspire
further research on precision farming management and agricultural informatization in arid
regions relying on remote-sensing technology. The resulting conclusions contribute to a
better understanding of the effects of FOD technology on spectral imaging data for mining.
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10.3390/rs13081562/s1, Figure S1: Results based on different FOD-preprocessed hyperspectral
images. Shown here are RGB images, with the red, green and blue bands being R659, R550 and
R479, respectively. (a) is a hyperspectral image cube; (b)–(u) are the processing results from the 0.1
to 2 orders, Figure S2: Results based on different FOD-preprocessed spectral curves. The red areas
represent the SDs of the spectra. (a)–(u) are the processing results from the 0 to 2 orders, Figure S3:
Optimal slice maps of the correlation coefficients between the SMC and the potential 10 MI based on
spectral bands. The color bars represent the correlation coefficients between the SMC and MIs, and
the X-axes, Y-axes, and Z-axes are the respective wavelengths that represent the three bands of the
MIs. The intersections of the three slices are the absolute maxima of the correlation coefficients.
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Abbreviations

UAV unmanned aerial vehicle
SMC soil moisture content
XGBoost eXtreme Gradient Boost
FOD fractional-order derivative
MI multiband indices
RGB red–green–blue
R2 the coefficient of determination
R2

cal the coefficient of determination about calibration
R2

val the coefficient of determination about validation
RMSE the root mean square errors
RMSEC the root mean square errors about the calibration set
RMSEP the root mean square errors about the validation set
RPD the ratio of the performance to the deviation
Vis-NIR visible and near-infrared
IODs integer-order derivatives
S-G second-order polynomial smoothing and five-band smoothing
SD standard deviation
G-L Grünwald–Letnikov
PSNR peak signal-to-noise ratio
SSIM structural similarity index
NIQE naturalness image quality evaluator
GRA gray relational analyses
GR gray relational grade
DI difference index
RI ratio index
NDI normalized difference index
SPXY sample partitioning used a joint x–y distance
r correlation coefficient
max maximum
min minimum
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