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Abstract: Surface fuel loading is a key factor in controlling wildfires and planning sustainable forest
management. Spatially explicit maps of surface fuel loading can highlight the risks of a forest fire.
Geospatial information is critical in enabling careful use of deliberate fire setting and also helps to
minimize the possibility of heat conduction over forest lands. In contrast to lidar sensing and/or
optical sensing based methods, an approach of integrating in-situ fuel inventory data, geospatial
interpolation techniques, and multiple linear regression methods provides an alternative approach
to surface fuel load estimation and mapping over mountainous forests. Using a stratified random
sampling based inventory and cokriging analysis, surface fuel loading data of 120 plots distributed
over four kinds of fuel types were collected in order to develop a total surface fuel loading model
(IntSFL-BioTopo model) and a fine surface fuel model (InfSFL-BioTopo model) for generating tSFL
and fSFL maps. Results showed that the combination of topographic parameters such as slope, aspect,
and their cross products and the fuel types such as pine stand, non-pine conifer stand, broadleaf
stand, and conifer-broadleaf mixed stand was able to appropriately describe the changes in surface
fuel loads over a forest with diverse terrain morphology. Based on a cross-validation method, the
estimation of tSFL and fSFL of the study site had an RMSE of 3.476 tons/ha and 3.384 tons/ha,
respectively. In contrast to the average loading of all inventory plots, the estimation for tSFL and
fSFL had a relative error of 38% (PRMSE). The reciprocal of estimation bias of both SFL-BioTopo
models tended to be an exponential growth function of the amount of surface fuel load, indicating
that the estimation accuracy of the proposed method is likely to be improved with further study. In
the regression modeling, a natural logarithm transformation of the surface fuel loading prevented
the outcome of negative estimates and thus improved the estimation. Based on the results, this paper
defined a minimum sampling unit (MSU) as the area for collecting surface fuels for interpolation
using a cokriging model. Allocating the MSUs at the boundary and center of a plot improved surface
fuel load prediction and mapping.

Keywords: wildfire fuel loadings; sampling-based inventory data; ordinary cokriging method;
regression analysis; lidar remote sensing

1. Introduction

Wildfires are recognized as one of the major disturbances in terrestrial forest ecosys-
tems. Fire can significantly change forest attributes and destroy the habitat of wildlife while
at the same time, it can create another important habitat. Naturally occurring wildfires
caused by lightning or extreme climate events (a long dry season or drought and high
temperature) are generally inevitable. Fires are also frequently used to clear forest for
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large-scale plantation establishment [1] and small-scale agricultural uses [2—4]. Although
rapid warming has recently resulted in more wildfires worldwide, human activities have
been recognized as the major causes of wildfire [5]. Most human-caused wildfires can
therefore be prevented by using fires responsibly and taking preventative measures [6].

During a long, dry heat-wave period, an original wildfire can occur naturally and
may become uncontrolled when the weather conditions, topography, and fuels, the drivers
of fire behavior, are suitable for fire spread or propagation [7,8]. From the viewpoint of
ecosystem succession, a burnt forestland will recover over a long-term period of succession
and consequently be suitable for the development of new communities of vegetation and
wildlife [9]. However, large-scale and high-intensity fires are likely to occur simultaneously
over a landscape and therefore cause profound societal impacts [10]. The most recent
example of such extreme natural disturbance would be the 2019-2020 Black Summer
megafires in Australia [11]. In contrast to prescribed fires, the biomass burning events
release a significant amount of particular matter into the air [12]. Uncontrolled forest fires
can be recurrent and cause a significant loss of aboveground biomass stocks. Observations
of forest fires in northern Brazil showed the tropical rain forests lost more than 60% of
the biomass stocks in 3-7 years after the last major fire in a series of recurrent fires; even
for large trees with diameter > 50 cm, the biomass loss was about 54% in areas that
burnt three times [13]. Similarly, the carbon loss of tropical forest in northern Australia
caused by surface fires was equivalent to 46% of the annual net primary production
(NPP) of the forest [14]. Although smaller carbon-stock reductions of about 6% of annual
NPP were reported for temperate forests versus 11% for natural vegetation landscapes,
wildfire-caused biomass consumption has become a significant source of carbon emissions
globally [15]. Management of fuel loads therefore becomes an important issue for the safe
use of fire, wildfire prevention, and REDD achievement conservation [16].

Fuel is the combustible biomass found in forests and can be divided into fine fuels
such as leaves, grasses, and small twigs, and larger fuels such as shrubs, branches on the
ground, downed trees, and logs [17]. From the standpoint of vertical dimension, the fuel
can be classified as ground fuels, aerial fuels (trees, snags, and ladder fuels), and canopy
fuels (green leaves and branches of crowns). Accordingly, a fire occurring in the humus
layers, moving slowly, which can probably smolder for a long time, is called a ground
fire; a fire burning only surface litter and duff is a surface fire, while a fire that burns trees
over their entire height to the top is called a crown fire. Human-caused wildfire generally
begins as a ground/surface fire at a small scale but occasionally it can become a crown
fire and cause huge damage to the forest. Therefore, a map of fuel load distribution can
highlight the prevalence of wildfire risk and guide people in more careful use of fire in
order to minimize the possibility of heat transfer via conduction/radiation/convection
in forests.

When considering the possibility of ignition of a forest fire, identifying fuels that are
most likely to burn is related to the water content and the amount of surface fuels in a forest.
In other words, the fuel loadings should include the quantities of duff, litter, fine-woody
debris, and coarse woody debris or logs (fallen dead woods) distributed over the ground
surface of the forest because these are the primary factors for predicting fire effects from on-
site fuels [18]. The fuel-loading models (FLMs) designed by Sikkink et al. [18] emphasized
the importance of fuel composition for ground and surface fires. When fires become
uncontrollable, the amount of crown materials will be included in the fuels available for
crown fires and the trunk may or may not be burnt in crown fires. Therefore, many studies
have been conducted to explore methods for deriving the distribution of fuel or biomass
(ton/ha) using a variety of data such as forest inventory data and airborne lidar scanning
(ALS) data for aboveground biomass [19-22] and canopy biomass [23-25]. According to
the remote sensing-based IPCC method, a canopy fuel map can be derived using an ALS
canopy height model by segmenting every single tree, using, for example, mathematical
morphology-based watershed segmentation [26-29], Multilevel Morphological Active
Contour (MMAC) [30] or Multilevel Slicing And Coding (MSAC) techniques [31]. Moreover,
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the latest development of lidar sensing enables precise inventories of surface fuel and
canopy fuel using mobile terrestrial lidar instruments [32-35]. To overcome the high
cost of high-density point cloud ALS data, alternate methods for surface fuel loading
(SFL) estimation can be based on mathematical/empirical models using inventory data
such as vegetation/species maps and related environmental factors [18,36], satellite full-
waveform lidar data [37,38], and photon lidar data [39]. More recently, the approach
has been extended to integrate optical sensing images such as infrared orthophotos and
QuickBird images with ALS data to improve fuel mapping accuracy [40-43]. The major
strength of lidar technology in fuel estimation is the ability to retrieve fuel heights and
discriminate between fuel types [36]. It is impossible to measure surface fuel loads directly
from lidar data because lidar pulses can rarely penetrate the dense litter and duff layers on
the bare earth surface and travel back to the sensor.

Surface fuel inventories involve the complicated task of the collection of live biomass
such as grasses, forbs, and small woody plants and dead fuels such as duffs, debris, and
fallen dead wood over a large area of forest floor. Lidar technology is considered to be an
efficient method of gathering information of detailed biomaterials distributed on the land
surface. However, there still are difficulties in the determination of surface fuel loads over
a wide range of forests using this technology. In practice, the determination of surface fuel
loads is a process related to the collection and analysis of diverse surface fuels, fuel bed
depth, and bulk density in the field. Fuel depth varies widely, for example, from 0.3 m for
grasses to 1.8 m for shrub fields and 0.06-0.30 m for timber litter in forests [44]. Therefore,
the surface fuels lying on the fuel bed 0.3 m above the earth surface are generally collected
to account for the bulk density [45]. In addition, the ground is generally covered with
surface mass due to the weathering effect and accumulation of fine materials. In spite of the
ability of laser pulses to penetrate canopy gaps and reach the ground, collecting sufficient
numbers of point clouds that lie on the surface fuel and the earth surface remains difficult
and therefore, characterizing surface fuel though lidar point clouds is still challenging.

Surface fuel loads and bulk density are primarily subject to forest structures related to
species composition, phenology, and canopy height [41,46-50]. Distribution of surface fuel
loads is therefore a consequence of the interaction of multiple factors such as forest type
or overstorey/understorey species, topographic relief, and climate. A traditional forest
fuel inventory is capable of collecting the loads and bed depth of surface fuel and can
further differentiate and measure a variety of fuel sizes, for example, duff mass, litter mass,
fine-woody debris, coarse-woody debris, and fallen dead wood (FDW). In practice, a field
inventory of surface fuel loads within the whole area of sample plots has to collect and
measure the masses of the litter layer and duff layer. The work is time consuming and
labor intensive and significantly disturbs the surface stability and seed bank when the plot
covers a large area, for example, 10 by 10 square meters or even larger. The distribution
of fuel masses is most likely spatially dependent in a relatively local space. This kind of
spatial autocorrelation can be described via geostatistics which incorporates the spatial
coordinates of sample data to interpolate values for locations where samples were not taken.
Geostatistical methods such as kriging and cokriging (refer to Section 2.2 for the details)
capture observed spatial dependence among regional points. In addition, the distribution
of forests is typically a consequence of natural processes in which terrain morphology such
as the slope, aspect, and elevation may influence the amount of solar radiance, temperature,
humidity, and water availability on the slope, and these further affect the weathering
and accumulation of surface fuel mass on a slope. Thus, the integration of traditional
inventory and geostatistical methods could be helpful for mapping fuel distribution. A
geospatially explicit continuous map of surface fuel loads can be a fuel baseline for the use
of fire protection scenario generation and forest management. Therefore, the objective of
this study was to propose an algorithm for generating surface fuel load maps through the
integration of forest types, topographic variables, and in-situ inventory mass data using
geostatistical analysis and multiple linear regression methods. The surface fuel load was
presented as two types: fSFL (the fine- and coarse surface fuel loads) and tSFL (the total
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surface fuel load, i.e., the sum of fSFL and the FDW mass). With detailed composition
complexity of fSFL and tSFL distribution over the study site, the uncertainty in mapping
the surface fuel load was further examined, and a strategy to generate the surface fuel load
was suggested.

2. Materials and Methods
2.1. Study Site and Data Acquisition

The forest in the area of the Dajiaxi Working Circle, managed by the Taiwan Forestry
Bureau, was selected for this study. The forest located at 121°07'42""-121°27'03"E and
24°08'09”-24°26/31"N in north central Taiwan (Figure 1) has been frequently disturbed
by fires during the last few decades. According to the official records revealed on the
website of the Forestry Bureau (https://forecast.forest.gov.tw /Forecast/# accessed on 10
February 2021), a total of 2171 fires occurred in the 37 working circles of national forests
from 1963 to 2019, averaging 37 + 39 fires per year, with a minimum and maximum of
three and 252 fires, respectively, while averaging 55 + 74 per working circle in which the
minimum frequency was 2 and the maximum was 287. Historical records of the Dajiaxi
Working Circle revealed that larger fires occurred frequently during the period from 1963
to 1990. The annual occurrence frequency ranged from 0 to 20, and the burnt area was
on average 526 & 717 ha per year. Due to the implementation of a fire-fighting approach
that incorporates the Incident Command System and Government Flying Service, the fire
frequency and burnt area, after 1990, was significantly reduced to 0 to 4 and 39 + 84 ha
per year, respectively. Most of the fires occurred in the dry season from winter to the early
spring; during this period, fire is most likely caused by careless use of fire. The prevalence
of forest fire in the Dajiaxi Working Circle was around 10% and ranked 3rd among the 37
forest management units. The Dajiaxi national forest is therefore officially considered as a
hotspot area for fire.

The altitude of the Island of Taiwan ranges from 0 to 3950 m. The forests on the island
vary dramatically along with the changes in altitude, temperature, and latitude. With
respect to the altitudinal variation, the forest is divided into the foothill zone (tropical forest),
submontane zone (subtropical forest), montane zone (warm-temperate and temperate
forests), upper montane (cool-temperate forest), subalpine zone (cold-temperate forest),
and alpine zone (subarctic forest) [51]. The elevation of this site ranges between 1115
and 3885 m across the subtropical-temperate—subarctic forest zones, and the temperate
forest dominates this area. The forest types include conifers, mixed pine-conifer-broadleaf
(hereafter mixed), and broadleaf forests. Specifically, this site has a lot of Taiwan red pine
(Pinus taiwanensis) plantations which were originally managed for wood production and
thus account for a major part of the coniferous forest even though it has been suffering from
a high risk of forest fire for decades. The pine is therefore listed together with the conifer,
mixed, and broadleaf forests as one of the forest types for fuel load inventory and SFL
modeling. Correspondingly, each of the forest types was sequentially encoded as 1: Taiwan
red pine, 2: conifer, 3: mixed, and 4: broadleaf in this study. The map of forest types was
generated using high-resolution ortho-photos obtained from the Taiwan Forestry Bureau.

The airborne lidar scanner data were acquired on 14 December 2018 via Strong Engi-
neering Consulting Company using a P68C-TC plane. A small-footprint, full-waveform
lidar system (Riegl LMS-Q780) mounted on the aircraft provided high-accuracy point cloud
data. Lidar data were collected at an operating flight altitude of 3400-4000 m (or 1970-2370
m above ground level) with a laser pulse repetition rate of 240-270 KHz. The resulting
lidar dataset with ground and canopy point cloud density around 2.5 and 15 points per
square meters, respectively, was used to produce a 1.0-m cell resolution of a rasterized
digital elevation model (DEM) and digital surface model (DSM) using a linear interpolation
technique. Both DSM and DEM were used to produce CHM data for aboveground biomass
mapping in a previous study, while only DEM data were used to derive topographic
parameters such as elevation, slope, and aspect for this study. The range of the DEM data,
classified degree slope (CS), and classified degree aspect (CA), as well as the reciprocal
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of degree slope (RDS) are shown in Figure 2. Forest type and topographical variables are
abbreviated as BioTopo variables hereafter.

(b) £
4 -.-. - ,-""
. T . /§ .
{ o .. '.‘ . S @
oo ) .’. ® . ‘:
Forest types SN TN
£ Pine A
= Conifer I Legend
£ mm Mixed Study site
. 1 Broadleaf ® Fire sites

Frequency
(5] w -
< (=] <

o

E
| IJ ‘FLJFLFLJJ L1

1 23 456789101112

(=]

Month
1963 1973 1983 1993 2003 2013 2023

Year

Figure 1. The biological data used in this study. The green polygon in (a) shows the geolocation of the forest with detailed
forest types at the site. The total area of this study site is about 46,504 ha. Subfigure (b) depicts the sites of fires (red dots)
occurring during the period from 1963 to 2019, and correspondingly the bar chart in subfigure (c) shows the fire frequency
counted based on the year/month sequence. The white portion within the study site consists of rivers, inland lakes, and

private agriculture land.

In implementing airborne laser scanning, aerial photographs with 80% endlap and
50% sidelap were acquired using a PhaseONE iXA 180 camera. The geometric distortion
of the aerial photography had a value of 0.0169°, 0.0209°, and 0.0188° for the yaw, pitch,
and roll error, respectively, which accounted for an overall error of 0.0328°. The aerial
photographs were used to generate a 0.2-m cell resolution orthophoto whose x-, y-, and
z-coordinates had RMSE values of 5.05, 2.45, and 1.36 cm, respectively, accounting for
an overall RMSE of 5.78 cm, based on the RTK-based ground control points. With the
high-resolution DEM and orthophotos of the study site, a series of route planning was
implemented in advance for in-situ inventory.
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Figure 2. Topographical variables of the study site ((a): DEM, (b): slope class, (c): aspect class, and (d): reciprocal of the

slope degree).

2.2. Surface Fuel Load Inventory Using Stratified Random Sampling and Cokriging Analysis

This study designed a three-level sampling strategy (Figure 3) to collect sufficient
SFL sample data. The sampling process was first implemented using forest type as the
strata and basemap-ID as the sampling unit. A series of random numbers indicating a
sampling unit was selected in which a level-1 plot with an area of 20 m by 20 m was drawn
for the pine, conifer, mixed, and broadleaf forestsover the study site (Figure 4). Second,
a level-1 plot was divided into four subplots (level-2) with a size of 10 m by 10 m. Third,
every subplot was evenly subdivided into 1-m-gridded microplots (the size is identical to
topographical variables derived from ALS DEM data), and the particular microplots (level-
3) located at the four corners and the center of each level-2 subplot whose surface fuels
including dull, litter, fine-woody debris, coarse-woody debris, and fallen dead wood were
investigated. Fourth, an ordinary cokriging method (Equation (1)) was applied to derive
a distribution map of fSFL over the level-1 plot in the 1-m gridded cells, and finally, the
fSFL of a level-2 subplot was determined by aggregating the values of all 1-m cells within
the area of the corresponding subplot. After that, the tSFL of a subplot was determined by
summing up the fSFL and the observed FDW mass within the corresponding area.
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D Plot D Subplot . Micro-plot

Figure 3. An illustration of the 3-level sampling scheme for the surface fuel load inventory.
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Figure 4. Location of plots for the fuel loading inventory. Subfigures (a-d) show the examples of the stands of pine, conifer,
conifer-broadleaf mixed, and broadleaf forests.

The in-situ field inventory was carried out between February and July in 2019. Virtual
base station real-time kinematic (VBS-RTK) technology was applied to locate the inventory
plots in the forest. In addition, a GeoSLAM terrestrial mobile lidar scanner ZEB Horizon
was used to capture 3D data for the plots for another aboveground biomass study (Figure 5).
Live and dead surface fuels, including 1-hr, 10-hr, 100-hr, and 1000-hr timelag fuels, were
collected separately [18,36,52]. For each fuel category, the fresh (or wet) weight and absolute
dry weight were measured in-situ and in the laboratory, respectively. For each category, a
fuel sample of 500 g was sent to be oven-dried at a temperature of 105 °C for measuring
the absolute dry weight [53]. With the dry—fresh weight ratio of each subsample, the value
of surface fuel loads of every plot was determined.
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Figure 5. A site scene of a post-hoc field survey plot for the surface fuel model performance determination. The upper

image displays surface fuel distributed over a pine stand mixed with a few broadleaf saplings and juveniles. The images to

the lower left present a profile of litter /duff/soil in the plot, and those in the center to the lower middle show the cleared

ground of the subplot area (10 m by 10 m) after the surface fuel collection. The image to the lower right shows the integrated

control point for the VBS-RTK positioning and terrestrial mobile lidar scanning with a ZEB Horizon.

Under normal circumstances, surface fuel distribution is mainly governed by the
location of vegetation/trees, which are distributed randomly/systematically over the
forestland area in natural/planted forests, and is most likely related to topography, partic-
ularly the slope and aspect. This is because litterfall as well as fallen dead logs naturally
move downslope due to gravity and collect at a position where the movement is blocked
by topography or objects. In addition, when the fallen dead wood decomposes/decays, the
rolling debris will accumulate more at the bottom of slopes over a limited local space. In
other words, the amount of fine surface fuel or dead biomass can gradually change in terms
of the physical characteristics over a slope, and fallen dead wood can occasionally interrupt
the continuity in stands [54]. The possibility of discontinuity/continuity of surface fuel
distribution increases with an increase in the area of interest of factors such as power-
ful typhoons or tropical cyclones that frequently bring high winds and rainfall, causing
biomass to move to lowland areas, inland lakes or the ocean. A plot-based forest inventory
is generally area limited, and attributes of the trees and the ground surface within a plot
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tend to be homogeneous; thus, the surface fuel properties of points in a plot are supposed
to be spatially dependent. Because cokriging analysis conducts interpolation according
to a semivariogram model, the technique can determine the spatial dependence among
points [55,56]. In cokriging analysis, the fSFL in the level-3 1-m cells within a level-1 plot
can therefore be presented as a function of the observed amount of surface fuel (the primary
variable), with the slope degree, degree aspect, and fuel bed depth the three secondary
variables. The cokriging system containing one primary and three secondary variables is
defined as:

™=

z5 =

1

m 14 q
wizi+ Y Bixi+ Y Mok + Y T 1)
=1 k=1 =1

Il
-

where z is the estimate of Z at location 0; z1, 2y, ... , z, are the primary data at n locations;
X1, X2, «++ , Xm, U1, U2, ..., Up, and uy, up, ..., u; are the secondary data at m, p, and g
locations, respectively. o, &y, ..., o, B1, B2, -+ s Bms Y1, Y2, -+, Yp,and Iy, Iy, ..., I, are
cokriging weights to be determined.

In the cokriging analysis, a variety of semivariogram models such as exponential, cir-
cular, spherical, and Gaussian models was tested and evaluated using the cross-validation
method. Only the semivariogram model fitted with a smaller RMSE was used to generate
the fSFL map of a plot. The microplot f{SFLs over a level-1 plot area were further used to
aggregate the level-2 subplot-based fSFL values and tSFL.

2.3. Modeling of Surface Fuel Loads Using Multiple Linear Regression

In this study, the regression coefficients (B) of a multiple linear regression (Equation
(2)) were estimated by the method of ordinary least squares using Equation (3).

Y =XB+ € @
B = (XX)"'X'Y ®)

In Equation (3), X is the matrix of independent variables including CS, CA, RDS, and
NFT (the normalized forest type, which is determined as the ratio of FT to the maximum
value of FT) and Y is the dependent vector InSFL. X’X = R is the correlation matrix of
independent variables as each of them is standardized by its own mean and standard
deviation. In this study, 120 level-2 plots were collected and randomly divided into
training and assessing sub-datasets. Based on leave-20%-of-the-plots-out (5-fold) cross-
validation [38], all of the sample plots were evenly grouped into five assessing datasets. As
a result, the average and standard deviation of performance measures were determined. In
order to explore if estimation bias was related to fuel type, an additional evaluation was
implemented based on leave-1-fuel-type-out cross-validation.

In the regression analysis, two surface fuel load models were generated, that is, the
fSFL-BioTopo model and tSFL-BioTopo model in which fSFL and tSFL represent the fine
surface fuel loads and total surface fuel load, respectively, and BioTopo is associated with
the biological and topographic variables. The fSFL and tSFL models derived from the
training dataset were further applied to derive a distribution map of the fSFL and tSFL
for the Dajiaxi National Forest. Accuracy of the fSFL and tSFL maps was evaluated by
a cross-validation method via the root-mean-square error (RMSE) and the percentage
root-mean-square error (PRMSE). The RMSE is a scale-dependent accuracy measure and
is presented on the same scale as the surface fuel load; in contrast, the PRMSE is scale-
independent and measures the accuracy as an error percentage relative to the average of
observations [22].

3. Results

3.1. The Derived fSFL Semivariogram Models and Their Performance in Estimating Level-1 Plot
Surface Fuel Loads

Based on the rule of the smallest estimation bias in the cross-validation of a cokriging
method in the level-3 microplot, a semivariogram model with the smallest RMSE was
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applied to generate a 1-m cell SFL map for the corresponding level-1 plot. Detailed
information of the fitted models, prediction maps, RMSEs, and the percentage of RMSE
related to the mean average of fSFL observations (PRMSEs) in the inventory data is shown
in Table 1. As can be seen, the best prediction of f{SFL for every single plot of the forest
types was mostly achieved by an exponential semivariogram model. Out of 30 level-1 plots
with the tested secondary variables, the variable slope was the most frequently used as
the supplementary data to describe the spatial change in fSFL. Table 1 also shows 17 of
the 30 models whose fSFL was predicted via the slope or simultaneously via the aspect
and/or fuel bed depth. Fuel bed depth was another frequently selected variable which
was used alone to account for the distribution of the amount of surface fuel in 11 models
and another five models when combined with other secondary variables. In contrast, the
aspect appeared to be additional supplementary data when accompanied with the slope.

Table 1. The ordinary cokriging method-derived maps of 1-m cell fine surface fuel loads (fSFL) and for the inventory plots

of forest types.

Forest Type Plot1

Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8

Pine \ ‘ -“ . “
!#"-i_ ~

Model * Gaus Exp @ Exp @ Exp @ Exp @ Spher Exp @ Exp @
RMSE 0.3036 0.3158 0.1604 0.1999 0.1762 0.1809 0.2667 0.0902
PRMSE 26.31 28.71 15.31 20.91 16.94 19.54 27.61 4.83
o “1 ’ ' ‘ ' |

Model * Exp @ Exp @ Exp @ Exp @ Exp ® Exp @ Exp @ Exp @
RMSE 0.2428 0.2594 0.2023 0.1687 0.3012 0.1423 0.2750 0.2387
PRMSE 32.81 31.18 18.46 29.91 43.15 22.80 39.51 35.42

* 4 P .

o "*"i"" X
Model * Exp @ Exp ® Exp @ Cir @ Exp @ Exp @ Exp © X
RMSE 0.6082 0.7723 0.2239 0.2777 0.4112 0.2295 0.1988 X
PRMSE 39.14 50.95 36.58 35.06 31.29 30.68 48.88 X

o . . . E 4 ‘ . X

- 4 S

Model * Exp @ Exp @ Exp @ Exp @ Exp @ Exp @ Exp @ X
RMSE 0.2229 0.1215 0.0934 0.2685 0.1332 0.1712 0.3411 X
PRMSE 24.44 17.21 21.13 45.05 23.13 29.12 43.61 X

*: Exp, Spher, Cir, and Gaus represent the exponential, spherical, circular, and Gaussian semivariogram models, respectively. The codes
(1), (2), (3), (4), (5), and (6) after the type of semivariogram model indicate a combination of secondary variables used in deriving that
semivariogram model. Correspondingly, the codes represent slope, slope-aspect, slope—fuel bed depth, fuel bed depth, slope-aspect-fuel
bed depth, and aspect—fuel bed depth, respectively.

Recall the bias of the fSFL prediction map: the best accuracy had an RMSE of
0.0902 kg/100 m? or an equivalent error rate of PRMSE = 4.83% for a pine forest while
the lowest accuracy had an RMSE of 0.7723 kg/100 m? and an PRMSE of 50.95% for a
mixed forest. On average, the method of integrating 3-level stratified random sampling
and cokriging analysis was able to derive the amount of surface fuels at an RMSE of
0.2533 4 0.1390 kg/100 m? or a PRMSE of 29.66 4 10.64%. In addition, the SFL distribu-
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tion within the area of every single plot showed quite a different pattern among plots of
the pine, conifer, mixed, and broadleaf forests. The natural variation of fSFL in a variety of
forest types and topographic features revealed the spatial heterogeneity of fSFL distribu-
tion in forests, indicating that the method proposed makes sense for gathering plot-based
surface fuel loads with a low cost of labor and time for forest inventories.

3.2. The Level-2 Subplot-Based fSFL-BioTopo Models and Their Performance in Generating the
fSEL Map of the Whole Forest

The amount of fine surface fuels of the 120 level-2 subplots in an area of 10 x 10 m?
is shown in Table 2 (hereafter a pixel) and was aggregated from the cokriging-derived
level-1 SFL. map. As can be seen, the pine stands had fSFL values that ranged from
73.71 kg/pixel to 149.75 kg/pixel, with an average of 107.32 & 24.56 kg/pixel greater
than 99.58 + 56.11 kg/pixel, 81.34 £ 22.90 kg/pixel, and 73.54 + 16.28 kg/pixel of the
mixed stands, conifer stands, and broadleaf stands, respectively. The broadleaf stands on
average had obviously smaller fSFL while the mixed stands, whose fSFL values displayed
a significant and dramatic change indicated by their standard deviation, was almost three
times larger than those of the pine, conifer, and broadleaf stands.

Table 2. The aggregated amount of fine surface fuel loads (fSFL) in level-2 subplots.

Forest Type Subplot 1 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 AVG STD
LL 149.75 132.98 75.89 161.72 121.82 63.54 92.59 79.22 107.32  24.56
Pine LR 122.12 120.37 125.91 126.11 139.38 101.47 87.41 83.19
(n1=32) UL 139.70 120.52 73.71 119.99 82.82 84.83 86.04 109.47
UR 120.34 110.68 128.56 78.36 97.3 112.78 76.40 109.42
LL 89.93 90.90 113.00 91.88 76.28 55.86 66.12 60.31 81.34 2290
Conifer LR 95.32 76.19 135.27 46.10 76.17 40.48 82.05 48.35
(n2=32) UL 93.78 85.37 110.91 68.92 99.70 82.24 90.00 92.86
UR 85.60 56.18 138.06 49.73 67.62 68.18 84.53 84.99
LL 86.04 223.01 104.74 87.04 225.84 73.07 36.48 X 99.58  56.11
Mixed LR 80.86 227.40 48.80 94.39 174.59 89.64 41.86 X
(n3 =28) UL 87.53 138.60 63.41 80.39 111.58 73.27 56.27 X
UR 91.69 180.47 39.15 87.23 104.04 46.44 34.30 X
LL 83.50 67.42 54.91 71.69 56.90 65.14 92.40 X 7354 1628
Broadleaf LR 107.28 74.87 53.79 64.40 62.95 58.54 104.31 X
(n4 =28) UL 74.98 92.06 49.62 85.58 63.65 732 84.48 X
UR 100.47 77.08 44.76 68.04 70.53 64.07 92.55 X

1: The abbreviations LL/LR/UL/UR indicate the level-2 subplot on the lower left/lower right/upper left/upper right of a level-1 plot
listed in Table 1. The value of each entry has a unit of kg/pixel. A pixel has an area of 100 m?. AVG and STD represent the respective
average and standard deviation of the values for a forest type.

The ANOVA test showed that the derived fSFL-BioTopo model using the fSFL data of
level-2 subplots displayed an R-squared value of 0.162 (F = 3.096, p < 0.005, n = 120). In
Equation (4), the dependent variable is the natural log-transformed fSFL (InfSFL, kg /pixel),
and the independent variables are the original or first-order topographical variables (NFT,
AC, and SC), their second-order interaction product (NFTxAC, NFTxSC, and ACxSC) and
third-order interaction product (NFTXxACXSC). Based on the cross-validation test, this
model was able to achieve an accuracy of RMSE = 34.10 kg/pixel and PRMSE = 37.59%. In
contrast, when the 6-class SC was replaced by four classes (thatis, 1: <5°,2: 5-10°, 3: 10-20°,
4: >20°) and the 8-class AC was regrouped as four classes (1: North, 2: East, 3: South, 4:
West), the alternative InfSFL-BioTopo model (Equation (5)) displayed an R-squared value of
0.173 (F = 8.063, p < 0.001, n = 120) and had an RMSE = 33.07 kg /pixel and PRMSE = 38.03%.
The RMSE and PRMSE differences between Equations (4) and (5) were 1.03 kg/pixel and
0.44%, respectively, which accounts for a relative change rate of 3% and 1% in the RMSE
and PRMSE. It was therefore concluded that the performance of the two models was almost
identical.
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InfSFL. = 3.785174 + 0.819635*NFT + 0.154689«AC + 0.416842+SC — 0.230969+NFTxAC — 0.671540+NFTxSC @)
—0.072628+SCxAC + 0.127985+*NFTxACxSC

InfSFL. = 3.911091 + 1.209008+NFT + 0.076095%AC + 0.375311xSC — 0.237776+NFIXAC — 0.842360+xNFITxSC 5)
—0.040685+SCxAC + 0.130257+NFTxACxSC

3.3. The Level-2 Subplot-Based tSFL-BioTopo Model for Total Surface Fuel Loading Estimation

The detailed information of total surface fuel loads for the 120 subplots is shown in
Table 3 in which the italic numbers indicate the fallen dead wood mass of that particular
subplot. On average, the largest amount of FDW mass within the subplot area was found in
the conifer stand, with an average of 27.57 £ 26.66 kg/pixel, followed in descending order
by pine stands (13.42 £ 10.28 kg/pixel), broadleaf stands (12.04 + 11.55 kg/pixel), and
mixed forest stands (3.77 & 3.44 kg/pixel). In contrast to the fSFL, the increasing amount
of FDW mass in pine, conifer, mixed, and broadleaf forest stands was around 6.25%, 8.47%,
2.70%, and 4.68%, respectively; this indicates that the prevalence rate of FDW in the conifer
and pine stands was significantly higher than that in the mixed and broadleaf stands.

Table 3. The aggregated amount of total surface fuel loads (tSFL) in level-2 subplots.

Forest Type Subplot T Plot1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot7 Plot 8 AVG STD
LL 149.75 145.32 75.89 161.72 125.38 70.93 92.59 109.61 114.03  24.99
Pine LR 122.12 132.71 12591 126.11 142.93 108.86 87.41 113.58
(n1=232) UL 139.70 132.86 73.71 119.99 86.38 92.22 86.04 139.86
UR 120.34 123.02 128.56 78.36 100.86 120.17 76.40 139.81
LL 89.93 90.90 113.00 91.88 77.19 55.86 66.12 114.54 88.23 26.70
Conifer LR 95.32 76.19 135.27 46.10 77.07 40.48 82.05 102.59
(n2 =32) UL 93.78 85.37 110.91 68.92 100.61 82.24 90.00 147.10
UR 85.60 56.18 138.06 49.73 68.53 68.18 84.53 139.22
LL 90.18 224.96 104.74 87.04 226.88 83.38 37.88 X 102.27  55.71
Mixed LR 85.00 229.36 48.80 94.39 175.62 99.94 43.26 X
(n3 =28) UL 91.67 140.55 63.41 80.39 112.61 83.58 57.67 X
UR 95.83 182.43 39.15 87.23 105.08 56.75 35.70 X
LL 83.50 67.42 5491 72.18 56.90 88.72 92.40 X 76.98 16.63
Broadleaf LR 107.28 74.87 53.79 64.89 62.95 82.12 104.31 X
(n4 =28) UL 74.98 92.06 49.62 86.06 63.65 96.78 84.48 X
UR 100.47 77.08 44.76 68.53 70.53 87.65 92.55 X

T: The same as in Table 2. The italics is used to highigh the partiular plots.

The inclusion of FDW mass did not change the relationship of the total surface fuel
loads among the forest types, that is, the pine stand had the highest amount of tSFL,
followed by the mixed, conifer, and broadleaf stands. The significant variation in tSFL
in the mixed stands remained significantly larger than that in the other forest types. The
R-squared value of the derived IntSFL-BioTopo model as shown in Equation (6) was 0.144
(F=2.701, p < 0.013, n = 120). The performance of this model in predicting tSFL of the whole
forest had an RMSE of 35.02 kg/pixel, corresponding to a PRMSE of 36.57%. Similarly,
Equation (7) shows the alternative IntSFL-BioTopo model for tSFL estimation using NFT,
4-classes SC, 4-classes AC, and their interaction product variables. The R-squared value
of this model was 0.168 (F = 7.836, p < 0.001, n = 120), and RMSE and PRMSE were 33.81
kg/pixel and 37.85%, respectively. The performance measures of the two models were also
quite close, with a difference in RMSE and PRMSE of 1.21 kg/pixel and 1.28%, respectively.
In contrast to Equation (6), the relative change in the two measures of Equation (7) was 3%
and 4%.

IntSFL = 4.481948 + 0.171296+NFT 4 0.082297xAC + 0.153252+SC — 0.170669+*NFTxXAC — 0.364650%«NFTxSC ©)
—0.041167+SCxAC + 0.092501+*NFTxACxSC
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IntSFL. = 4.433072 + 0.635037*NFT — 0.012423*AC + 0.163312+SC — 0.145670«*NFTXAC — 0.541648+NFTxSC

—0.000879xSCxAC + 0.077361+NFITxACxSC @

For the 5-fold cross-validation, the respective average RMSE and PRMSE were
34.57 £+ 8.76 kg /pixel and 37.58 £ 6.11% for the fSFL and 35.36 + 9.09 kg/pixel and
36.38 & 5.98% for the tSFL. However, for the leave-1-fuel-type-out cross-validation, a
significant difference in estimation performance among the four trials was observed. When
the pine, conifer, mixed, or broadleaf plots were sequentially excluded from modeling and
then used for validation, the PRMSE for the fSFL estimation was 36%, 34%, 62%, and 109%,
respectively, but 32%, 35%, 62%, and 102% for the tSFL estimation (Table 4). Obviously, the
mixed and broadleaf surface fuel loads tended to be significantly over-estimated if they
were not included in modeling. Both fSFL and tSFL of the broadleaf stands appeared to
be significantly over-estimated because the surface fuel load in the stands was lower but
under-estimated for the mixed stands due to the evidently diverse surface fuel load in the
stands. In other words, a smaller PRMSE only occurred in the estimation when the plots of
pine or conifer were not used for modeling, and the prediction bias appeared to be related
to fuel type. Collecting appropriate numbers of plots for each fuel type for deriving a
general model or having a sufficient number of plots for deriving fuel type-specific models
should be able to prevent the significant over-estimation and/or under-estimation problem.

Table 4. Summary of the performance of fSFL and fSFL models based on cross-validation.

Model 1 £SFL RMSE  PRMSE tSFL RMSE  PRMSE
Model R? (kg/m?) (%) Model R? (kg/m?) (%)
]i:q“at‘.o“ @/ 5162 (F=3.09, p < 0.005, n = 120) 34.10 37.59 0.144 (F = 2.701, p < 0.013, n = 120) 35.02 36.57
quation (6)
]%quat‘."“ ©)/ 0173 (F=8.063, p <0.001, n = 120) 33.07 38.03 0.168 (F = 7.836, p < 0.001, n = 120) 33.81 37.85
quation (7)
DeGroup 1 0.154 (F = 2.295, p = 0.034, 1 = 96) 23.28 28.56 0.128 (F = 1.844, p = 0.089, 1 = 96) 24.10 28.84
DeGroup 2 0.167 (F = 2.526, p = 0.020, n = 96) 25.82 33.75 0.164 (F = 2.469, p = 0.023, n = 96) 25.73 31.44
DeGroup 3 0.182 (F = 2.801, p = 0.011, n = 96) 46.70 46.30 0.145 (F = 2.128, p = 0.049, n = 96) 47.96 4559
DeGroup 4 0.136 (F = 1.986, p = 0.066, n = 96) 39.25 3791 0.120 (F = 1.713, p = 0.116, n = 96) 39.05 36.11
DeGroup 5 0.193 (F = 3.016, p = 0.007, n = 96) 37.82 4136 0.188 (F = 2.908, p = 0.009, = 96) 39.94 39.90
DePine 0.106 (F = 1.352, p = 0.237, n = 88) 38.47 35.84 0.051 (F = 0.609, p = 0.747, n = 88) 37.01 3245
DeConifer 0.232 (F = 3.455, p = 0.003, = 88) 27.82 34.20 0.240 (F = 3.607, p = 0.002, n = 88) 30.70 34.79
DeMixed 0.257 (F = 4.160, p = 0.001, n = 92) 61.56 61.82 0.246 (F = 5.231, p < 0.001, n = 92) 63.02 61.62
DeBroadleaf 0.342 (F = 6.242, p < 0.001, n = 92) 80.11 108.94 0.258 (F = 4.167, p = 0.001, n = 92) 78.89 102.48

1: The specific models (Equations (4) and (6)) used for generating surface fuel load maps of the whole study site. Performance measures of
the models were determined based on all of the plots. DeGroup 1-5 represents the five evaluations of leave-20%-of-the-plots-out cross-
validation; the respective average RMSE and PRMSE were 34.57 + 8.76 kg/pixel and 37.58 £ 6.11% for the fSFL and 35.36 & 9.09 kg/pixel
and 36.38 & 5.98% for the tSFL. DePine, DeConifer, DeMixed, and DeBroadleaf represent the four evaluations of leave-1-fuel-type-out
cross-validation; the respective average RMSE and PRMSE were 51.99 + 20.31 kg/pixel and 60.20 & 30.20% for the fSFL and 52.40 £ 19.51
kg/pixel and 57.83 + 28.21% for the tSFL. Both cross-validations included six slope classes and eight aspect classes.

4. Discussion
4.1. The Uncertainty of Surface Fuel Loading Estimation in fSFL and tSFL Models

Because the relative error in the two fSFL-BioTopo models (Equations (4) and (5)) was
small, and that of the two tSFL-BioTopo models (Equations (6) and (7)) was almost identical,
estimation performance of the paired models for both fSFL and tSFL can be considered
equal. The uncertainty of surface fuel models is therefore discussed based primarily on the
estimation of Equations (4) and (6).

The predicted values of surface fuel loading over the whole area of the study site
are shown in Figure 6 and are summarized in Table 5. Based on the prediction maps of
the whole forest, the fSFL mass of the pine stands ranged from 1.42 to 18.44 ton/ha and
averaged 10.67 £ 1.72 ton/ha. Taking into account the forest areas, there was approximately
379,718.31 tons of fine surface fuel within the pine stands. This is the largest amount of fine
fuel mass among the forest types over the whole forest. In contrast, the fine fuel mass of the
conifer, mixed, and broadleaf stands averaged 9.29 & 1.10 ton/ha, 8.22 &= 1.53 ton/ha, and
7.18 £ 2.40 ton/ha, respectively, and resulted in a total mass of 130,433.75 tons, 57,555.40
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tons, and 52,283.57 tons. The relative amount of fine surface fuel mass among the four
forest types derived from the InfSFL-BioTopo model is quite similar to that observed in
the subplot values. A similar trend appeared in the total surface fuel map derived from
the IntSFL-BioTopo model. In addition, the amount of tSFL of the forest types showed the
same sequence of pine > conifer > mixed > broadleaf, with an average value of 9.61 £ 1.01
ton/ha, 8.81 £ 1.03 ton/ha, 8.40 & 1.49 ton/ha, and 7.71 £ 2.25 ton/ha, respectively. The
results show that the InfSFL-BioTopo and IntSFL-BioTopo models are capable of performing
fSFL and tSFL estimations, and the estimates are generally consistent with the sampling
inventory results. This reveals that the distribution map of surface fuel loading generated
by each of the models is able to provide a baseline for accounting for the accumulation of
surface fuel loads over time.

As noted by comparing the descriptive statistics of the two models in Table 5, the
mixed and broadleaf fSFL estimate was generally smaller than the tSFL estimate by 0.18
ton/ha and 0.53 ton/ha while the pine and conifer stands’ fSFL was generally greater than
the tSFL by an amount of 1.05 ton/ha and 0.48 ton/ha. Mathematically, the situation of
fSFL > tSFL in a forest stand should not happen according to their definitions as described
in Section 2.2. Recall the descriptive statistics of inventory data shown in Tables 2 and 3:
the fallen dead wood mass in the pine and conifer stands was almost three times higher
than that in the mixed and broadleaf stands. In view of the range of surface fuel loading
estimates of the models, the tSFL of pine and conifer stands was apparently smaller than
the fSFL, with values of 10.66 vs. 17.02 and 10.60 vs. 12.29. In contrast to the mixed
and broadleaf stands (11.75 vs. 11.87 and 13.56 vs. 13.30 for the range of fSFL and tSFL
estimates), a significant uncertainty occurred in the estimation of the IntSFL-BioTopo model,
and the source of uncertainty should be the inclusion of fallen dead wood mass. This kind
of estimation uncertainty was also observed in the estimation bias of the subplots (Figure 7)
in which an extra amount of bias in the estimates of tSFL was highlighted by an arrow with
respect to those corresponding hollow bars.

Table 5. A summary of surface fuel loadings with respect to forest types in Dajiaxi National Forest.

Models Forest Areas Minimum Maximum Average STD Total
Types (ha) (ton/ha) (ton/ha) (ton/ha) (ton/ha) (tons)
InfSFL-BioTopo Pine 13,070 1.42 18.44 10.67 1.72 139,445.59
(Equation (4)) Conifer 14,039 1.04 13.33 9.29 1.10 130,433.75
Mixed 7001 1.02 12.90 8.22 1.53 57,555.40
Broadleaf 7280 0.66 13.96 7.18 2.40 52,283.57
Sum 41,390 0.66 18.44 9.17 2.08 379,718.31
IntSFL-BioTopo Pine 13,070 1.28 11.95 9.61 1.01 125,665.94
(Equation (6)) Conifer 14,039 1.03 11.62 8.81 1.03 123,659.56
Mixed 7001 1.06 12.81 8.40 1.49 58,835.28
Broadleaf 7280 0.76 14.32 7.71 2.25 56,147.02
Sum 41,390 0.76 14.32 8.80 1.55 364,307.80
Difference Pine 13,070 —6.50 1.34 —1.05 1.04 —13,779.65
(fSFL—tSFL) Conifer 14,039 —3.34 0.83 —0.48 0.45 —6774.19
Mix 7001 —2.52 0.79 0.18 0.26 1279.88
Broadleaf 7280 —2.19 1.10 0.53 0.32 3863.45
Sum 41,390 —6.50 1.34 —0.37 0.89 —15,410.51
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Figure 6. The surface fuel loading regression model-derived fSFL map (a) and tSFL map (b) of the Dajiaxi National Forest.
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Figure 7. Prediction bias of surface fuel loadings in the InfSFL-BioTopo and IntSFL-BioTopo models. The x—axis represents
the identity of inventory samples, and the y—axis is the bias determined by the difference between estimated and inventory
data. A negative value indicates an underestimation while a positive value represents an overestimation. The arrow below
the hollow bars indicates that the corresponding inventory subplots (identity number: 21-24/57-60/93-96/119-120) had a
significant FDW mass as well as a larger estimation bias in the tSFL estimates.

4.2. The Dependency of Estimation Bias on the Amount of Surface Fuel Loads

In Section 3, the cross-validation tests showed that fSFL and tSFL were predicted
with a similar accuracy of RMSE (33.84 kg /pixel vs. 34.76 kg/pixel) and PRMSE (37.29%
vs. 36.28%), indicating that the InfSFL-BioTopo and IntSFL-BioTopo models have almost
the same ability to predict surface fuel mass in the forest. The similarity was revealed
through the bias of the inventory subplots as shown in the bar chart in Figure 7. However,
the difference in fSFL and tSFL in a one-hectare areal basis over the whole forest of the
study site showed more than 50% of the areas whose fSFL was larger than tSFL. This is
particularly evident in the pine and coniferous forests (Figure 8).
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Figure 8. Map of the difference between MLR-derived tSFL and fSFL estimates over the study site. The negative values are

a result of larger fSFL and smaller tSFL, indicating prediction uncertainty in the IntSFL-BioTopo model.

Although the estimation appeared to be bias-independent and randomly based on the
scatter plot of bias vs. estimates in Figure 9a,b, the prediction bias still revealed a linear
dependency on the observed value. This is evident in Figure 9¢,d, where the original variable
was converted to the deviation from the mean of observed values, i.e., fSFL-fSFLayg or
tSFL~SFL,yg. The prediction bias can be presented as a negative linear function of the
transformed variable, i.e., the bias is most likely to be compensated by the fuel mass itself,
and the bias-adjustment value or compensatory value yqom can be determined by the linear
models shown in Figure 9¢,d. The compensated fSFL and tSFL estimates can be retrieved by
subtracting the yom from the original estimates of fSFL and tSFL using Equations (4) and
(6), respectively. Accordingly, the compensated estimates of fSFL and tSFL through the bias-
adjustment models in Figure 9c,d were significantly improved to 11.64 kg /pixel and 12.84%
and 11.37 kg/pixel and 11.87% for RMSE and PRMSE, respectively. The bar chart shown in
Figure 10a,b demonstrates the improvement of prediction bias for the original estimation and
the compensated estimation of fSFL and tSFL with respect to each of the subplots.

4.3. A Possible Strategy for Improving Surface fuel Load Mapping

The prediction bias of the InfSFL-BioTopo model and the IntSFL-BioTopo model
(Equations (4) and (6)) can also be presented as a nonlinear function of the observed value
of surface fuel loads. Estimates derived from the regression models can be over- or under-
estimated and correspondingly generate a positive or negative prediction bias, determined
as 7 — y. Each bias can be adjusted to positive by introducing an additive component, ¢, to
compensate for the negative values without changing the relationship between the bias
and the observed values. Assuming that the compensated offset value c is > the maximum
observed value of tSFL, the reciprocal transformation of “fSFLy;,s + ¢” and “tSFLyp;as + ¢”
can be presented as an exponential growth function of the observed value of fSFL or tSFL,
respectively (Figure 11). The transformed bias is helpful to diagnose the prediction bias
behavior with respect to the original scale of the fSFL and tSFL observed values. As shown
in Figure 11a,b, the R-squared value of the two exponential growth models was 0.8872 and
0.8713 when a constant value of 250 was assigned to the compensative offset.
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Figure 9. An examination of prediction bias of surface fuel loadings. The independency between the bias and predicted
values of fSFL (a) and tSFL (b) via Equations (4) and (6). A linear dependency of the surface fuel mass estimation bias on
the deviation from the mean of the observed values was formulated as a bias-adjustment model of Bias—adjfSFL-MLR for
the estimate of fSFL shown in (c) and Bias—adjtSFL-MLR for the estimate of tSFL shown in (d). The compensated value
(Ycom) derived from the bias-adjustment model can be applied to appropriately restore surface fuel loading by subtracting
Veom from the originally estimated value of fSFL or tSFL.
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Figure 10. Changes in bias for the surface fuel loading estimation between the original InfSFL-BioTopo model and its
bias-adjustment model (a) and the IntSFL-BioTopo model and its bias-adjustment model (b).

In the multiple linear regression models (Equations (4) and (6)), a larger surface
fuel load tended to be underestimated while a smaller fuel load was most likely overes-
timated, revealing that a smaller range of surface fuel load estimates was made by the
InfSFL-BioTopo model and the IntSFL-BioTopo model. Similarly, based on the reciprocal
transformation, a smaller surface fuel load was generally found to have a smaller value of
transformed bias and vice versa. The exponential growth function in Figure 11a,b shows
that the greater the surface fuel load, the more significant the bias in the estimation. This
is most likely induced by a shortage of samples of larger fuel loads in deriving the multi-
ple linear regression models because the number of samples with respect to the diverse
amounts of surface fuel loads is generally proportional to the size of the corresponding

populations.
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Figure 11. Nonlinear dependency of the surface fuel load estimation bias on the amount of observed surface fuel load. The
transformed bias of the original InfSFL-BioTopo model and the IntSFL-BioTopo model was positively related to the values
of fSFL (a) and tSFL (b).
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Figure 12 provides a generalized logistic distribution of the tSFL and fSFL observed
values. The probability density function of this distribution is abbreviated as GL(x; «,
B3, v for the shape, scale, and location parameters. Specifically, the distributions for tSFL
and fSFL are GL(tSFL; 0.1804, 18.57, 90.04) and GL(fSFL; 0.2109, 17.38, 84.35), respectively.
Figure 12a,b reveals a right skewed distribution, indicating the rareness of larger surface
fuel load samples. In this study, the standard deviation and mean of the inventory data
were 36.63 kg/pixel and 95.76 kg/pixel for the fSFL in the forests and 35.80 kg/pixel and
90.70 kg/pixel for the tSFL, which resulted in a coefficient of variation (CV) of around
0.38-0.39 for the forests. Statistically, the CV is used to examine the extent of data variability
in relation to the arithmetic mean of a variable. The evidence of both the generalized logistic
distributions of samples and CV suggests that increasing the number of inventory samples
covering a wide range of a variable, particularly with a sufficient number of observations
for diverse fuel loads, would be expected to upgrade a model’s estimation performance.

Probability Density Function Probability Density Function
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Figure 12. Probability density function of the observed values of surface fuel mass. The distribution of inventory fuel mass
data is GL(tSFL; 0.1804, 18.57, 90.04) (a) and GL(fSFL; 0.2109, 17.38, 84.35) (b) where the x-axis is the observed value of fuel
loads and the y-axis is the percentage frequency of individual fuel loads.

4.4. An Examination of the Appropriateness of the Cokriging-Based Surface Fuel Mapping Method

An additional independent inventory of surface fuel loads was carried out in an area
of 10 x 10 square meters for examining the appropriateness of the sampling scheme in
deriving the plot-based SFL map. The SFL of the whole plot was 100collected. As shown
in Table 6, a few samples of 2-m size microplots located in the black cells of the locational
template (template no. 2-5, with 5, 9, 13, and 25 samples), were used to derive a cokriging
semivariogram model for generating the SFL prediction map. The RMSE of the four models
was 0.65, 0.80, 0.69, and 0.40 kg/ m?, which is equivalent to a PRMSE of 29.71%, 39.05%,
34.34%, and 17.54%, respectively, indicating the best accuracy was achieved by a geospatial
cokriging model that used all samples from the whole plot area at the scale of a 2-m size
sampling scheme. The difference in PRMSE between the fourth case and the first case
was approximately 12%, indicating the proposed method to collect surface fuel loads of
inventory plots is a viable approach.

In contrast, templates 1 and 6 show alternative sampling schemes at a 1-m scale. The
cokriging model derived using template number 6 had a prediction accuracy of RMSE
0.05 kg/ m? and PRMSE 2.30%; the predicted values were quite close to the observed
values. Compared with template 2, the smaller values of both RMSE and PRMSE achieved
by template 1 also reveal the appropriateness of the proposed method in reducing labor
costs while retaining accuracy for generating surface fuel load maps. The 1-m size cell is
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therefore defined as the minimum sampling unit (MSU). Table 7 further demonstrates the
extrapolation map of surface fuel loads extended from a limited predefined map of the five
sample microplots. The RMSE and PRMSE did not show significant differences among
the four centralized sampling schemes (denoted as CenLL, CenLR, CenUL, CenUR), but
the two measures showed an evident increase in the four edged sampling schemes. The
results indicate that the extrapolation is not appropriate for deriving surface fuel loads of
inventory plots, and the MSUs should be distributed along the boundary as well as in the
center of a plot.

In published articles, much research demonstrates that the performance in the esti-
mation of surface fuel loads using lidar data and optical images varies dramatically. From
the perspective of PRMSE, the integrated approach of diverse remote sensing data was
around 20-38% for a dense coniferous forest located in central Greece [33] and 37-98%
for a bark beetle-affected forest in eastern Grand County in north-central Colorado [57].
A better accuracy of PRMSE around 5-47% was achieved for an upland oak-dominated
forest in Kentucky using small footprint full-waveform lidar data [58]. According to Franke
et al. [59], a PRMSE ranging from 21 to 41% was achieved when measuring diverse coarse
woody debris in a forest savanna in the Brazilian Cerrado using only multi-temporal
Landsat OLI images. In contrast, the 37% of PRMSE achieved in this study is quite close to
the moderate accuracy revealed in previous studies, reflecting the potential of applying
stratified random sampling to forest types, topographical variables, and inventory data in
generating baseline information for surface fuel loading. The classification of forest types
was determined based on the biological conditions of the study site. This system is quite
similar to the fuel types of coniferous, deciduous, mixed wood, slash, and open grassland,
as defined in the Canadian Fire Behavior Prediction System (FBPS) [36]. Various research
has demonstrated the feasibility of integrating ALS and optical images to map the fuel
types (alternatively fuel models), such as the ones defined by the Northern Forest Fire
Laboratory (NFFL) [36,41,49,50,60,61]. The proposed algorithm for mapping the surface
fuel load is therefore most likely able to substitute the fuel types of the FBPS, NFFL, and
NFDRS classification systems to moderately improve the mapping performance for forests
with undulating terrain morphology in mountainous area.

Table 6. A comparison of surface fuel load mapping using different numbers of samples within a spatial scale of a 10-m

size plot.
Template No. 1 2 3 4 5 6
"= o= oER
Locational template n | ##
and the number of T ‘ [T H #
samples (NS) for | | SEmmmm |

deriving model 1

NS =5@1 m NS =5@2m NS=9@2m NS = 13@2 m NS=25@2m  NS=100@1 m
» -— L4 ’
srL »
Prediction
Semlr\rrle:)l;;(;lgram Exponential Exponential Gaussian Gaussian Gaussian Exponential

Secondary variables

slope, aspect, slope, aspect, slope, aspect, slope, aspect, slope, aspect, slope, aspect,
fuel bed depth  fuel bed depth  fuel bed depth  fuel bed depth  fuel bed depth ~ fuel bed depth

RMSE (kg/m?)

0.59 0.65 0.80 0.69 0.40 0.05

PRMSE (%)

26.58 29.71 39.05 34.34 17.54 2.30

1 The black and gray boxes show the training and testing samples for cokriging model derivation and accuracy evaluation, respectively.
The size value comes after the symbol “@” presenting the area of a microplot.
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Table 7. A comparison of appropriateness of extended prediction based on the predefined cokriging surface fuel load map 1.
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T The black and gray boxes show the training and testing samples for cokriging model derivation and accuracy evaluation, respectively.
The surface fuel load map for the particular area bounded by the training samples was first generated through the cokriging semivariogram
model and then extended to the extent defined by templates no. 7-14. The xx/xx% values below each map specify the RMSE/PRMSE that
was derived from the corresponding template.

5. Conclusions

Surface fuel load estimation and mapping are of particular importance, not merely for
the origin of fire and better prediction of fire spread and intensity, but also for understand-
ing the source of soil nutrients. Decomposed vegetative mass can easily enter into nutrient
cycling and support the needs of vegetation growth and forest development. An in-situ
field inventory is the direct method to collect real data of surface fuel load in a forest, but
the method is only implementable over limited or small areas in the view of costs of labor,
time efficiency, and finance. In general, the surface fuel load over a forest area is a result of
the accumulation of litterfall and dried and short-lived vegetation mass as well as fallen
dead wood, and wildfire consumes surface fuel. A fire-behavior model can be used to
chart the post-fire fuel dynamics when the dynamics of fuel accumulation are established
based on the historical records of fire regimes and initial surface fuel load [62]. Empirical
models with predictors derived from lidar data and/or satellite images provide alternative
methods of estimation at a certain accuracy or uncertainty. In fact, surface fuel masses
generally form a dense cover on the ground surface. It is impossible for lidar pulses to
penetrate the fuel bed and reach the bare ground. Consequently, measuring the surface
fuel load directly with lidar point cloud data from the air and even the ground is obviously
quite challenging.

The amount of surface fuel mass will change over time due to diverse influences
induced by the interaction of biological, physical, and climatological factors; therefore, the
information revealed through a map of surface fuel distribution is most likely valid or
practical only for a limited period. Frequent updates of fuel maps are required for efficient
management of forest fuel in order to control fire risks. In view of the economic cost of fuel
mapping, a method of deriving accurate surface fuel load maps is needed that will be both
easier to implement and at a lower cost. Considering the complexity of undulating terrain
morphology and inaccessibility of vehicles in mountainous areas, the proposed method for
estimation and mapping of surface fuel loads using topographic variables and classified
fuel models (forest types) is highly appropriate to meet this need. To implement the 3-level
stratified random sampling based approach for surface fuel load mapping, the user should
apply a fuel type (also fuel models) classification as needed and then carry out inventories
to collect data for generating a map of the surface fuel load.

For deriving a reliable prediction of surface fuel loads of an inventory plot, it is recom-
mended that the minimum sampling unit for collecting surface fuel should include the four
corners and the central position of an inventory plot in order to allow the cokriging method
to achieve an accurate prediction. In the proposed method, the orthogonal decomposition
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design of the plots was mainly for the convenience of linking with raster-based remote
sensing data. The size of a plot area can be determined based on the pixel size of the fuel
type map and the topographic map. The plot design can be flexible in the geometries
and sizes that allow compatibility with a variety of forest inventory systems, for example,
the forest inventory and analysis (FIA) plot design of the USDA that establishes three
additional plots next to a core plot at a fixed distance and in three directions [63]. The
plot design of the Indonesia National Forest Inventory is a systematic cluster design. It is
composed of clusters, temporary sample plots, and permanent sample plots. The fuel load
data collected via the Cluster-TSP-PSP plot design [64,65] can directly adopt the proposed
approach.

Biological variables are the primary leading factors of the surface fuel load. Some
of the factors are likely to change over time due to growth, competition among trees,
and disturbances. To address the temporal-related changes, a spatiotemporal dynamic
model of biological mass transition would be a critical solution for better surface fuel load
management.
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