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Abstract: An automatic custom-made procedure is developed to identify macroplastic debris loads
in coastal and marine environment, through hyperspectral imaging from unmanned aerial vehicles
(UAVs). Results obtained during a remote-sensing field campaign carried out in the seashore of
Sassari (Sardinia, Italy) are presented. A push-broom-sensor-based spectral device, carried onboard a
DJI Matrice 600 drone, was employed for the acquisition of spectral data in the range 900−1700 nm.
The hyperspectral platform was realized by assembling commercial devices, whereas algorithms for
mosaicking, post-flight georeferencing, and orthorectification of the acquired images were developed
in-house. Generation of the hyperspectral cube was based on mosaicking visible-spectrum images
acquired synchronously with the hyperspectral lines, by performing correlation-based registration
and applying the same translations, rotations, and scale changes to the hyperspectral data. Plastics
detection was based on statistically relevant feature selection and Linear Discriminant Analysis,
trained on a manually labeled sample. The results obtained from the inspection of either the beach site
or the sea water facing the beach clearly show the successful separate identification of polyethylene
(PE) and polyethylene terephthalate (PET) objects through the post-processing data treatment based
on the developed classifier algorithm. As a further implementation of the procedure described, direct
real-time processing, by an embedded computer carried onboard the drone, permitted the immediate
plastics identification (and visual inspection in synchronized images) during the UAV survey, as
documented by short video sequences provided in this research paper.

Keywords: hyperspectral; plastics; remote sensing; marine litter; reflectance; UAV-based technique

1. Introduction

Over the past decades, the production of plastics has increased drastically, and at
the same time, marine plastic litter is increasing too, with a strong impact on human
and marine life. The plastics floating on the sea and ingested by marine organisms are
responsible for choking, starvation, internal injuries and digestive tract blockage [1]. For
this reason, there is the need for innovative, affordable, and sustainable approaches to
monitor the presence of plastics in the marine environment [2–4].

Each plastic polymer exhibits specific narrow bands of absorption in the Short-Wave
InfraRed (SWIR) spectrum, and in particular in the 900−1700 nm wavelength range. The
spectral properties of plastics can be detected by hyperspectral imaging (HSI) or imaging
spectrometry, which is a spectral sensing technique whereby an object is photographed
using a relatively large number (typically greater than ten) of narrow optical bands in
a broad spectral range. This technology has been exploited in a laboratory setup [5–7]
for the identification of different types of plastics in order to discriminate materials and
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allow for the recovery of valuable plastics. As an example, Figure 1 shows representative
spectral signatures, recorded during laboratory experiments by Balsi et al. [7], for the
plastic typologies of interest for this research, namely polyethylene terephthalate (PET) and
polyethylene (PE). Such spectra are obtained by calibration with respect to the response
of a reference white reflector (Spectralon tile). Inspection of the figure confirms that each
polymer has characteristic absorption peaks (i.e., relative minima of reflectance distribution)
at distinctive wavelengths. The main absorption peaks are located at wavelengths 1130 nm,
1170 nm, 1420 nm, and 1660 nm for PET and 1040 nm, 1210 nm, 1420 nm, and 1540 nm
for PE. A feature detection algorithm, based on a decision on several discriminating ratios
of wavelength samples, can be applied to automatically label individual spatial pixels
according to the material detected [6].
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Figure 1. Spectral signatures of plastics typologies measured in laboratory-controlled conditions
(Balsi et al., [7]).

When implemented on aerial systems carrying lightweight hyperspectral sensors
onboard, this technology offers affordable ‘above-the-head’ monitoring, allowing wide area
coverage and very high geospatial resolution [8]. The integration of hyperspectral imaging
devices on aerial systems can be performed using different aerial platforms: Manned
aircraft or unmanned aerial vehicles (UAV) systems. Aircraft allow surface monitoring
with a wide flight range and high payload in terms of weight and dimensions, thus making
it possible to manage a large number of sensors and to inspect a relatively large area. UAVs
are a cheaper alternative to airborne-based remote sensing whose peculiarities are the
relatively high spatial ground resolution and the possibility of highly flexible and timely
monitoring, due to reduced planning time. If no payload limitation occurs, UAVs may
carry onboard hyperspectral imaging platforms suitable for the inspection of macroplastics,
i.e., plastic litter having a typical size of few centimeters or more, which can be exploited in
systems where devices, controlled by a pilot on a boat, are able to identify floating plastics
in real time and guide the boat towards the target to allow the litter collection.

Even though it is an emerging field of application, remote sensing relying on UAV
systems has been systematically applied for environmental monitoring applications such as
forestry [9,10], agriculture [11], viticulture [12,13], landfills [14], and so on. The main driver
for this revolutionary experimental approach is the fast pace of technological advances
and the miniaturization of sensors, airframes, as well as the development of powerful data
analysis software [15]. In addition to these application fields, hyperspectral remote sensing
has the potential to provide long-term, global monitoring even though for marine plastics
it is still in its early stages [16]. Some recent examples of remote-sensing investigations
for plastic detection are documented in [17–19], where promising results regarding the
possibility of distinguishing plastics from the surrounding seawater using the unique
absorption features of polymers are shown. Garaba et al. [17] used an airborne short-wave
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infrared (SWIR) imagery to remotely detect ocean plastics at an altitude of 400 m over an
oceanic plastic polluted site; ocean plastics were first identified in the true-color red, green,
and blue (RGB) camera mosaics and then geolocated in the SWIR imagery to extract their
SWIR spectra. Topouzelis et al. [18] explored the feasibility of detecting marine plastics
using geoinformation acquired from unmanned aerial systems (UAS) and open-access
Copernicus Sentinel satellite missions. Their remote-sensing experiments were based on
multispectral (NIR) imaging of three artificial plastic targets (10 m × 10 m), discussing
the benefits of geo-spatial resolutions, effects of atmospheric correction, and pixel size
coverage of the measured spectral signal. In a following study [19], the same research
group examined the spectral behavior of the UAS images for smaller plastic targets (5 m ×
5 m, better simulating near-real conditions), using an inverse spectral unmixing calculation
and a matched filtering data processing for the detection and quantification of floating
marine debris.

In the present study, a remote-sensing field campaign was carried out along the
seashore of Sassari (Sardinia, Italy), aimed at identifying macroplastic debris loads in the
sea and on the coast, through an automatic custom-made procedure. A push-broom-sensor-
based spectral device characterized by low cost, weight, and power consumption was
placed on a DJI (Shenzhen, China) Matrice 600 drone and employed for the acquisition
of spectral data in both a marine environment and in the nearby seashore. The measure-
ment chain did not require a GPS/inertial measurement unit for post-flight georeferencing
because a camera equipped with a standard lens was employed for this purpose. The
hyperspectral platform was realized by assembling commercial devices, whereas algo-
rithms for the mosaicking, post-flight georeferencing, and orthorectification of the acquired
images were developed in-house. The plastics detection was based on statistically relevant
feature selection and Linear Discriminant Analysis, trained on a manually labeled sample.

2. Materials and Methods
2.1. The Inspected Sites

Experiments for the identification of plastic litter in the sea and on the coast took place
in north-western Sardinia, Italy. The case studies were located on the shore of Platamona
(N 40◦49′44” E 8◦33’06”) and Porto Ferro (N 40◦40′53” E 8◦12’18”) beaches, both in the
province of Sassari, Italy. Satellite images and ground-based photographs of both sites
are shown in Figure 2. Both Platamona and Porto Ferro beaches are exposed to northerly
winds that occasionally push litter towards the beach, especially in the case of Porto Ferro,
which is located at the bottom of a deep inlet. However, such events are fortunately
quite infrequent, and when the beaches were visited for inspection, in October 2019 and
February 2020, they were both quite clean, if not for sparse and small debris. For this reason,
experiments have been performed by using controlled targets deployed on the sandy beach
and adjacent sea water, as described in Section 3. For both surveys, the weather was sunny,
with low wind, very calm sea at Platamona (29 October 2019, morning), and small waves
breaking at the shore at Porto Ferro (21 February 2020, morning). The sea bottom, as well
as the shore, were sandy and in the areas of flight the water was between 0 and 2 m deep.

2.2. The Hyperspectral Imaging System, the UAV, and Onboard Instrumentation

The illustration reported in Figure 3 shows the DJI Matrice 600 drone employed for the
measurement campaign and the hyperspectral device mounted on board. An Intel NUC
single-board computer manages the synchronization, acquisition, and storage operations.
In the platform design, the essential need for a device of reduced weight (about 2.5 kg
in this non-optimized configuration) and low consumption (less than 100 W) has been
carefully considered. In this way, the drone has a safe operating autonomy of more than
20 min.
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A linear spectrometer ImSpector NIR17 OEM (Specim, Finland) is coupled with a
SWIR camera (Bobcat 32 from Xenics, Belgium) of 256 × 320 pixel resolution (50 frames
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per second maximum acquisition frequency). The assembled spectral device (hereafter
spectrometer camera) allows the acquisition of the hyperspectral information in the short-
wave infrared range of the electromagnetic spectrum (900–1700 nm). Through a slit, the
spectrometer captures a narrow line image of the target and disperses the light from each
line pixel into a spectrum, orthogonally with respect to the line. Each spectral image
impressed on the SWIR camera sensor has a spatial axis and a spectral axis. Spectral
features of the entire target (i.e., the hyperspectral cube) can be obtained, in a so-called
“push-broom” system, by acquiring images of the target while it is moving with respect to
the spectral device or by moving the spectral device with respect to the target. In the latter
case, the position of the spectrometer camera must be precisely recorded for post-flight
georeferencing. GNSS (Global Navigation Satellite System) and IMU (Inertial Measurement
Unit) are generally used for this purpose. This requires that the temporal resolution of the
IMU system coincides with the frame rate used to acquire the spectral images and that the
detected positions can be correlated with the corresponding images without ambiguity.
The system developed in this study does not require a high-time-resolution and high-
accuracy IMU because post-flight georeferencing is performed by employing a camera
(UI-3240-CP-C-HQ from IDS, Germany, hereafter mosaicking camera) of 1280 × 1024 pixel
resolution equipped with a standard lens. The spectrometer and mosaicking cameras
are synchronized by hardware triggering and arranged with parallel optical axes. The
acquisition frequency of both cameras is set equal to 16 fps.

Figure 4 displays one sample image acquired with the mosaicking camera and the
corresponding image acquired simultaneously with the spectrometer camera. As shown
in the figure, the image acquired with the mosaicking camera presents a portion of the
area under investigation whereas the one acquired with the spectrometer camera contains
the spectral features of the line image seen through the slit the spectrometer is equipped
with. Such a line spans approximately the central part of the mosaicking camera field of
view, even if it has a slightly smaller aperture size. Since several simultaneous images
are acquired with the two cameras (i.e., the mosaicking and the spectrometer cameras)
during each flight of the field survey, a mosaicking procedure is required to reconstruct
the area under investigation and to properly georeference the line images acquired with
the spectrometer camera. The in-house algorithms developed to achieve these goals are
described in Section 2.3.

A few examples of spectra, taken on several points of the same scan, are shown in
Figure 5. The y-axis of the plot presents Raw Digital Number units, corresponding to the
sensor response recorded as 8-bit integers. It is apparent that, within the spectrum of the
sensors, two bands show very low response. This is due to the fact that natural sunlight has
very small content in these bands, due to atmospheric absorption [20]. Specific narrowband
absorption of plastics is also not evident without calibration of the spectra.

The pixel width, projected to ground level, at a 10 m distance (the typical distance
between sensors and target), is about 7 mm (transversally with respect to the flight direc-
tion), for the hyperspectral camera. Even though the same spacing between pixel centers
in the directions across and along the flight path is desirable (in order to have the mosaic
pixels approximately square), as the drone velocity (about 1 km/h) and the acquisition
frequency (16 Hz) are taken into account, a spacing between hyperspectral lines in the
flight direction of about 17 mm is obtained, suitable to identify objects a few cm wide. A
lower flight speed would lead to an increase in time required for the survey and cause a
distortion of the surveyed area due to attitude corrections in presence of wind. The use of
a higher-frequency SWIR camera will permit an increase in flight speed, with a consequent
reduction in the survey duration, while keeping pixels approximately square.
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and non-plastics (green), namely wood, glass, floor tiles, grass-covered ground; ordinates are in Raw Digital Number units,
corresponding to the sensor response recorded as 8-bit integers. (b) Hyperspectral cube layer for wavelength 1010 nm:
superimposed magenta points correspond to plastics spectra of panel (a), green points to non-plastics spectra.
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2.3. Hyperspectral Image Processing

The processing of the data simultaneously gathered by the mosaicking (visible im-
ages) and the spectrometer (spectral images) cameras is accomplished by performing the
following steps.

(i) Transformation of visible images taken over the scene into a single image obtained
through a mosaicking procedure; translations, rotations, and scale changes between
each couple of consecutive images are taken into account.

(ii) Use of mosaicking results to correctly assign the line image acquired by the spectrom-
eter within the investigated area.

(iii) Construction of the hyperspectral cube (image of the scene at the different wave-
lengths).

To reconstruct the mosaic, the reciprocal positions of subsequent images of the ac-
quired sequence, which usually consists of more than 150 images, are determined via the
two-dimensional Fourier transform (2-DFFT) for detecting the maximum spatial correlation
between image pairs. In fact, the rigid translation between a couple of images is related
to the position of the peak of the cross-correlation among them. In the case of images
acquired from an aerial vehicle, the mere translation between pairs of consecutive images
is very unlikely. More generally, the images are affected by rotation and change of scale.
Therefore, one image of the pair is rotated in the range of −5◦ to 5◦ with a 0.05◦ step, and
the scale is modified relative to the original size of −6% to 6% with a step of 0.5%. The
2-DFFT procedure is iteratively applied to each image pair to select the image pair that
maximizes the consistency of the luminosity. This methodology is suitable to process the
large number of images detected by an aerial platform where it is assumed that no tilt
occurs and that potential scale changes are the same in the two principal directions. As a
matter of fact, the procedure adopted is equivalent to a four-parameter homographic trans-
formation (similarity). Given the flight profile normally employed (nadiral images taken at
approximately constant height and speed) and the requirements of the plastic detection
survey (i.e., detection of objects, rather than topographic mapping), the orthorectification
of the mosaic was not performed to keep computational cost low. Further details about the
image-processing procedure are provided in [21,22]. The whole procedure is schematically
illustrated in Figure 6, showing (a) a subset of images acquired by the mosaicking camera
during one flight of the field survey (extracted from the set containing 154 images), (b) the
result of the mosaicking procedure applied to the entire set of 154 images, and finally (c)
the image at wavelength 1050 nm extracted from the reconstructed hyperspectral cube.
The spatial resolutions of the mosaicking and spectrometer cameras are different and for
this reason images shown in Figure 6b,c have different size and texture though they refer
to the same area. The lower resolution of the spectrometer camera, i.e., Bobcat 32 from
Xenics, is the reason why the image in Figure 6c appears blurred. Nevertheless, the objects
clearly recognizable in Figure 6b can be located and identified.

2.4. The Plastics Detection Algorithm

The wavelength spectrum of the hyperspectral sensor (900–1700 nm), projected onto
the wide side of the SWIR sensor, is sensed into 320 bands, each about 2.5 nm wide. Since
such a level of detail is not necessary for plastic discrimination [6], the original 320 bands
were subsampled by 1

4 . A further selection was required in order to delete wavelength
bands affected by absorption and scattering effects from atmospheric gases (mainly water
vapor) and aerosols [20]. After such a selection, 38 10-nm bands, covering the ranges
950–1030 nm (band 1), 1110–1230 nm (band 2), and 1440–1590 nm (band 3) were retained
and processed for plastics identification.
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Figure 6. (a) Selection of images acquired during one of the flights above the seashore; (b) result of
the mosaicking procedure applied to 154 images; (c) image at wavelength 1050 nm extracted from
the corresponding hyperspectral cube.

Hyperspectral data gathered within the three selected wavelength ranges were pro-
cessed in order to obtain feature vectors for each spatial pixel. First of all, raw intensity
values (elements of the hyperspectral cube, for each spatial pixel and wavelength) were
normalized by computing the means of the raw vectors over the three band ranges: m1 for
band 1, m2 for band 2, m3 for band 3. The feature vector was then assembled as follows:
The first two components were m2/m1 and m3/m1. The following components were the
intensities in band 2 normalized by dividing by m2 and the intensities in band 3 normalized
by dividing by m3. The rationale for such choice is that characteristic absorptions of plastics
polymers are not contained in band 1, but such a band is useful to set a common intensity
mean level for pixels of different spectral properties, and possibly illuminated by changing
overall radiation over time. Such operation has a similar effect as calibration and as taking
reflectance ratios over two wavelengths (e.g., [6]). The first two components (means ratios)
were included in the feature vector heuristically, because normalization would hide such
information that may also be significant. Feature vector dimension is therefore 31 (2 mean
ratios plus 29 intensity components), and the assembly of feature vectors over all spatial
pixels may also be seen as a modified hyperspectral cube.
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For the purpose of plastic waste detection, the major concern is not to determine which
specific polymer a given object is made of, but to identify objects classified as a generic
“plastics” class, as opposed to other objects classified as a “non-plastics” class. However, it
can be conjectured that the “non-plastics” class is not convex and not linearly separable
from the “plastics” class, because the wavelengths characterizing each polymer are not
the same. Such situation is illustrated in Figure 7, showing feature vectors of PET, PE, and
non-plastic samples from the learning set considered. It is apparent that the two polymers
are characterized by different features, each distinguishable from non-plastic reflectors,
which are more homogeneous among themselves in the response, despite being made of
heterogeneous materials. Therefore, it is appropriate to classify each polymer separately,
and then combine results. For such a task, linear classifiers are good candidates (e.g., [23]),
with the advantage of simple and fast implementation. Therefore, after considering other
parametric and non-parametric options, Linear Discriminant Analysis (LDA) [24] was
chosen.
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Figure 7. (a) Feature vectors of PET (blue), PE (red), and non-plastic samples (black) from the training set; (b) difference of
the means of vectors from panel (a): Diamonds: (PET)- (non-plastics); circles: (PE)- (non-plastics).

Multi-class classification was applied in this study, with the attention focused on PET
or PE polymers (either low density LDPE or high density HDPE, which have essentially
the same spectral behavior, differing only in density), taking into account that extension
to a wider variety is immediate, given a good training sample. Single-polymer classes
were combined into a compound “plastics” class by applying logical OR (set union) of the
results.

Reducing the dimensionality of the feature vector improves the generalization ability
of the classifier and allows for using a limited number of manually labeled training exam-
ples. For this purpose, the minimum-redundancy/maximum-relevance criterion [25] was
employed. Such algorithm ranks feature vector components according to their relevance to
the specific classification, jointly minimizing the inter-dependency between such variables,
as a measure of the redundancy of an additional feature if added to the higher-rank features
already selected in an iterative way. By cross-validating classifications in preliminary tests,
a number of features between 5 and 10 resulted in being generally appropriate, and finally,
10 features were chosen in all the case studies described in Section 3. In fact, increasing
the number of features did not appear to significantly impact either computation time or
generalization ability. Table 1 indicates which bands were automatically selected as features
by the algorithm, in order of relevance. Please notice that some wavelengths correspond to
the main absorption peaks that can be deduced from Figure 1. The others do not appear,
because they are located in bands where solar radiation is low. Furthermore, some adjacent
wavelength groups appear in the list (e.g., 1200–1210–1220 nm and 1550–1560–1570 nm for
PE, as well as 1540–1550–1560–1570 nm for PET).
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Table 1. Most relevant wavelengths chosen automatically for polymer discrimination.

Rank Order PE Wavelength [nm] PET Wavelength [nm]

1 1150 1620
2 1560 1550
3 1210 1180
4 1270 1570
5 1570 1510
6 1180 1270
7 1550 1560
8 1220 1220
9 1200 1540
10 1250 1240

The LDA classifiers were set up by training them using a training set of 279 samples,
acquired in several preliminary flights in different conditions, and corresponding to 65,
80, and 134 manually selected spectra of PET, PE, and other materials (in particular grass,
sand, water, besides wood, glass, etc.), respectively. Taking samples from data acquired on
different scenes and in different environmental conditions guaranteed better generalization
to new cases.

From this basic set, labeled into three classes (PET/PE/non-plastics), different derived
training sets were built as follows:

• Set 1 contains all samples of the original set, labeled into plastics (positive class) or
non-plastics (negative class). This set reflects the final purpose of the detection.

• Set 2 contains all samples of PE for the positive class, and all non-plastic samples in
the negative class.

• Set 3 is obtained in the same way as Set 2, for PET samples.
• Set 4 contains all samples of PE for the positive class, and all non-plastic samples

together with all PET samples in the negative class.
• Set 5 is obtained in the same way as Set 4, but for PET samples in the positive class

and PE samples in the negative one.

Sets 2 and 3 are meant to train the classifier to recognize a single polymer, and do not
include samples of the other polymer, in order to treat it as a “don’t care” case, while Sets 4
and 5 forced the classifier to be more specific on a single polymer, and to consider the other
as “negative” to detection.

In order to obtain a plastics/non-plastics classifier from the ones derived from Sets
2 and 3 or Sets 4 and 5, the positive results have to be combined by applying a set union
operation over the positive response pixels of each classifier (i.e., a logical OR operation on
the results, taking positive response as “true”). The final purpose of such operations is to
compare the performance of the classifier obtained on Set 1 with the combined classifiers.

3. Results and Discussion

A distinctive feature of the developed algorithm was to separately identify PE and
PET plastics, whose spectral properties differ from each other. For this reason, the classifiers
obtained from Sets 2 and 4 for PE and from Sets 3 and 5 for PET were compared in order
to test the conjecture that more specific classifiers (those obtained from Sets 4 and 5) are
expected to work better. The results for all these cases are shown for a relevant example
in Figure 8. As the ground-truth reference (material identification masks, Figure 8b) is
obtained manually, the actual pixel count suffers from marginal error, but the comparison
is not affected. It is apparent from Figure 8c–f that classifiers derived from Sets 4 and 5
perform significantly better than those obtained from Sets 2 and 3, as conjectured.
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Figure 8. (a) Identification of materials. Panel above is a mosaic of visible-spectrum images, below
the corresponding hyperspectral cube layer for wavelength 1010 nm; (1) white floor tiles; (2) LDPE
wrapping bags; (3) LDPE wrapping sheet; (4) PET bottles (5) HDPE bottles; (6) wood; (7) glass bottles.
Background is low grass. (b) Manually drawn masks for PE (above) and PET (below): Positive in
white, negative in black. Classification results for classifiers trained on (c) Set 2, (d) Set 3, (e) Set 4, (f)
Set 5: Positive in pink for PET, green for PE, negative in white. Optimized thresholds were used. It is
apparent that the results obtained on the latter two sets are “cleaner” (more specific) and cover the
areas better (more sensitive).

The performance of the classifiers was evaluated on the basis of ROC (Receiver
Operating Characteristic) curves generated by using the discrimination threshold as a
parameter, i.e., essentially the displacement of the separating plane from the origin. ROC
curves are obtained by plotting true-positive rates (TPR—ratio of the number of vectors
correctly classified as positive to the total number of positive cases considered) vs. false-
positive rates (FPR—ratio of the number of vectors wrongly classified as positive to the total
number of negative cases considered), i.e., by studying the trade-off between sensitivity
(recognizing correctly most positive cases) and the complement to 1 of specificity (the latter
being the case of recognizing most negative cases correctly) caused by accepting more or
fewer cases as positive. For a perfect classifier, such curves should ideally be squashed
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to the upper-left corner of the graph (both sensitivity and specificity equal to 1, which is
equivalent to TPR = 1 and FPR = 0), and the best parameter value is the one corresponding
to the knee of the curve that is closest to the upper-left corner (at least when the risk of
false positives is considered as important as the risk of false negatives).

Results for the classifier trained on Set 1 (all plastics together) were then compared
with those for a classifier obtained by combining the results of classifiers trained on Sets
4 and 5, each of the latter sets with the optimum threshold. The results, in terms of ROC
curves, are shown in Figure 9. Inspection of the figure reveals that the combined classifier
performs significantly better than the all-plastics classifier trained on Set 1. This statement
is apparent from the example displayed in Figure 10, where plastics have been more clearly
identified by the combined classifier than by the one trained on Set 1. Indeed, these latter
results correspond properly to the stated task of detecting a generic “plastics” class from
everything else, while the distinction among polymers was instrumental to the optimal
design of the classifier.
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Figure 9. True Positive Rates vs. False Positive Rates. (a) ROC curves for classifiers trained on Set 2 (black circles); Set 4
(empty circles); Set 3 (black triangles); Set 5 (empty triangles). The curves for Sets 3 and 5 (empty markers) are both closer
to the upper-left corner than those for Sets 2 and 4 (black markers), respectively, denoting better performance. (b) ROC
curve for Set 1 (all plastics together), compared with the optimal two-stage classifier (Set 4 OR Set 5 results for optimal
parameters—isolated star), which is closer to the upper-left corner of the figure than any point of the all-plastics ROC curve.

In order to optimize the sensor setup and to validate the methodologies previously
described, the classifier, developed after the training procedure by using different sets
of samples, was tested to check a controlled target consisting of an array of plastic and
non-plastic litter laid on the grass and on bare earth. The target materials were inspected
using the UAV-based remote-sensing system described in Section 2.2, according to the
same procedure used for the main in situ remote-sensing campaign. Results are shown in
Figures 11 and 12: For both experiments, the output of the hyperspectral image processing
clearly reports the shape of objects made of PE (in green) and PET (in pink), neglecting all
the non-plastic objects and those made of other plastic typologies. The objects appearing
in blue were identified as plastics, but the algorithm responded positively both to PE and
PET.
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Figure 10. (a) Result of classification for the classifier trained on Set 1 (all plastics together); (b)
combined classifier (Set 4 OR Set 5): Green denotes detected PE, pink denotes PET, and blue points
where both classifiers respond positively; (c) manually drawn materials identification mask for all
plastics.
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Figure 11. Detection of objects over grass: (1) Plastic crate; (2) PET container; (3) cardboard; (4) PS tray; (5) aluminum foil;
(6) floor tile; (7) PET container; (8) PET bottle; (9) brick; (10) wood; (11) PET container; (12) HDPE bottle; (13) PET bottle; (14)
metal can; (15) plastic thread; (16) PET tray; (17) wood; (18) and (19) glass bottles; (20) PET bottle; (21) Styrofoam floater; (22)
and (23) PET bottles; (24) HDPE bottle; (25) PET bottle; (26) iron container (with pasted label); (27) floor tile. Color codes as
in Figure 10.

It is interesting to notice that Polypropylene (PP), which was not included in the
training set, is actually efficiently recognized as PE or both as PE and PET. From the point
of view of recognizing plastics, this means that training a specific classifier for PP is not
actually necessary.

The validated procedure was applied to the hyperspectral data gathered on the
seashore of Sassari (Sardinia, Italy). Since at the time of the in-situ inspections at the
Platamona and Porto Ferro sites almost no litter was found either on the beach or in the
sea water facing the beach, targets were prepared on site, through several plastic and
non-plastic objects attached in line, using a rope, to ensure their removal at the end of the
mission, and an anchor at one extremity, to provide stability of the assembly. Bottles were
empty to prevent a possible sinking of samples. These targets were positioned both on the
sandy beach and in the sea water at least 20 m away from the coastline.
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Figure 12. Detection of objects over bare earth: (1) PET bottles; (2) unknown plastics container; (3)
Polypropylene (PP) containers; (4) unknown plastics container; (5) PP containers; (6) floor tile; (7)
LDPE bags; (8) HDPE bottles. Color codes as in Figure 10.

Some representative results are displayed in Figures 13–15. Figure 13 displays an array
of five objects floating on the sea (Platamona beach), clearly visible in the image on the
left. The final results obtained from the application of the detection algorithm are shown
in the image in the bottom-right corner: Two PE objects have been correctly identified
(and displayed in green), while the other objects and the background are neglected by
the classifier, thus they appear as dark in the image. In the top-right corner, the same
figure shows the image, extracted from the hyperspectral cube, corresponding to the
wavelength 1010 nm from which, at a different extent, all the objects are distinguishable.
The comparison of the two images on the right clearly shows the role of the trained classifier
able to discern the type of plastics and then to highlight only the selected type of polymer
(PE).

The same methodology was applied to identify and distinguish plastic objects on the
sand of Platamona and Porto Ferro beaches, whose results are shown in Figures 14 and 15.
In particular, Figure 14 displays the visible image of a litter assembly on the sand, its
spectral (at wavelength 1010 nm) counterpart, and the output provided by the classifier,
highlighting, using the conventional colors of green and pink, PE and PET materials,
respectively. Figure 15 provides a further example of the identification of PE and PET
objects on the sandy beach. Two separate scans of the hyperspectral sensor are shown
near a mosaic of several images of the visible image sensor. It is worth noting that, even
though the background is less favorable, as compared to the sea water (featuring a very low
reflectance in the SWIR wavelength range), the type and shape of target objects are correctly
identified. Finally, inspection of figures confirms that in all situations, the developed system
performed remarkably well, also detecting small PE and PET objects (#1 and #2 in Figure 15)
that were incidentally present on the beach and not placed there on purpose.
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Figure 13. Detection of plastic objects in the sea of Platamona beach: (1) HDPE bottle; (2) unknown
plastics canister; (3) metal-coated wrapper; (4) PVC pipe; (5) wood. Green denotes detected PE. As
the PVC pipe is black, response in the SWIR spectrum is almost null, just as water, that appears
completely dark throughout the sensor bandwidth.
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Figure 15. Detection of plastic objects on Porto Ferro beach: (1) Small piece of a plastic football; (2) 

unidentified debris; (3) PE wrappers; (4) PET bottles; (5) HDPE bottles; (6) Styrofoam floater. The 

mosaic representing the scene under investigation was obtained from visible spectrum images taken 

Figure 14. Detection of plastic objects on Platamona beach: (1) Wood; (2) way marker post, of
unknown plastics; (3) unknown plastics wrapper; (4) PVC pipe; (5) unknown plastics canister; (6)
HDPE bottle; (7) cloth; (8) soft plastics container; (9) PET plastics container; (10) false positive; (11)
metal cans; (12) PS container; (13, 14) PET bottles; (15) unknown plastic wrapping; (16, 17) glass
bottles; (18) Styrofoam.
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Figure 15. Detection of plastic objects on Porto Ferro beach: (1) Small piece of a plastic football;
(2) unidentified debris; (3) PE wrappers; (4) PET bottles; (5) HDPE bottles; (6) Styrofoam floater.
The mosaic representing the scene under investigation was obtained from visible spectrum images
taken during several passes over the area, the red boxes indicate approximate areas covered by the
hyperspectral cubes processed.

An interesting characteristic of a UAV-based remote-sensing system for macroplastics
identification is related to the possibility of real-time detection of the plastic litter during
the flight survey, particularly useful especially for floating litter. In fact, such litter is
continuously moving, so that detection performed online permits the immediate warning
or logging of its position for later use, taking into account winds and currents. As discussed
in Section 2.3, hyperspectral cubes were reconstructed using the mosaic of visible images
acquired simultaneously, and based on such cubes, static materials classification maps were
reconstructed. However, it is to be noted that mosaicking is not a well-posed problem in the
case of floating litter, because object positions, which should be assumed constant, actually
may not be. There are situations where mosaicking is impossible, for instance on an object-
free perfectly smooth water surface, where no significant points can be found in images
at all, or in fast-moving water, where objects are rapidly displaced and the background is
not stable. Thanks to the very low computation load of the detection algorithm, real-time
detection can indeed be performed even by a very low-performance embedded computer
carried on board the drone.

Examples of short video sequences, gathered during both the Platamona and Porto
Ferro surveys, have been reported as Supplementary Material to this paper, and some
snapshots of the video clips documenting real-time detection are reported in Figure 16.
A yellow line overlapped to the framed scene indicates the position of the hyperspectral
sensor line, relative to the visible image; when PE or PET objects are intercepted by the
yellow line during a real-time inspection, a red bar appears in the upper part of the frame
to indicate a positive response of the plastics detector, otherwise a green bar is displayed
(to indicate a negative response).
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Figure 16. Snapshots from real-time detection. Yellow lines indicate the position and field-of-view of the hyperspectral
sensor line, relative to the visible image. A red or green bar indicates positive or negative response of the plastics detector,
respectively. (a) PET bottles on grass; (b) Platamona; (c,d) Porto Ferro.

4. Conclusions

UAV-based remote-sensing systems have a great potential for the detection and identi-
fication of marine plastic litter. It was demonstrated in this research that the identification
of the plastic types may derive from a process involving the mosaicking of gathered images,
the hyperspectral image processing, and the application of a trained algorithm able to dis-
cern the spectral properties of each polymer. This process was implemented by training the
algorithm using different sets of samples in order to identify the classifier most suitable for
PE and PET plastic detection and verified by inspecting plastic and non-plastic controlled
targets.

The measurement and processing chain was used for the remote-sensing inspection
of the seashores of Sassari (Sardinia, Italy). Tests performed on the sandy beaches and in
the seawater were able to distinguish both the shape and the typology of macroplastics
(at the moment PE and PET, but in principle the method can be applied to a large cohort
of different polymers), even in a real-time application. This last characteristic permits an
immediate detection of floating plastics, making it possible to remove them or to trace and
monitor their position for a successive intervention. Compared to current methods for the
identification of marine plastic litter by remote sensing, the methodology presented in this
paper has the advantage of being completely automatic in its field application, and capable
of real-time operation.

The developed plastics detection algorithm is obtained by supervised learning of a
linear classifier. Such a methodology proved quite effective, and the linear classifier has
the advantage of requiring very little computation resources, so that it can be implemented
even on a tiny board computer operating in real time on board a drone. Other types of more
sophisticated machine learning frameworks do not seem necessary, since indeed the most
work-intensive task required in this context is the manual labeling of training samples,
which cannot be automatized. Nevertheless, since neural and deep-learning architectures
are envisaged in the near future for Internet of Things and edge-computing, as a future
development of this work, the same data might be processed using a neural architecture to
assess possible advantages of such learning machines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13081557/s1, Video S1: Balsi et al._real-time-detection.mp4.
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