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Abstract: Point cloud registration is one of the basic research hotspots in the field of 3D reconstruction.
Although many previous studies have made great progress, the registration of rock point clouds
remains an ongoing challenge, due to the complex surface, arbitrary shape, and high resolution
of rock masses. To overcome these challenges, a novel registration method for rock point clouds,
based on local invariants, is proposed in this paper. First, to handle the massive point clouds, a
point of interest filtering method based on a sum vector is adopted to reduce the number of points.
Second, the remaining points of interest are divided into several cluster point sets and the centroid
of each cluster is calculated. Then, we determine the correspondence between the original point
cloud and the target point cloud by proving the inherent similarity (using the trace of the covariance
matrix) of the remaining point sets. Finally, the rotation matrix and translation vector are calculated,
according to the corresponding centroids, and a correction method is used to adjust the positions
of the centroids. To illustrate the superiority of our method, in terms of accuracy and efficiency, we
conducted experiments on multiple datasets. The experimental results show that the method has
higher accuracy (about ten times) and efficiency than similar existing methods.

Keywords: registration; rock mass; local invariants; point matching; point cloud

1. Introduction

With the continuous advancement of laser scanning technology, the use of laser
scanners as tools to generate 3D point clouds of complex scenes for structural engineering
applications has been greatly promoted. However, due to technical limitations, when
scanning large scenes, single-site scanning usually only obtains partial angle data of the
scene and cannot obtain complete scene data. In addition, when affected by object occlusion,
even small scenes require multi-station scanning coverage of the whole scene [1]. Therefore,
to obtain complete scene data, the fusion of multi-station scanning data is one of the
fundamental and important approaches in the field of 3D point cloud research.

However, several characteristics of rock mass point clouds jointly hinder the appli-
cation of existing methods. First, these point clouds are usually massive. Generally, rock
mass data collection in the field environment is larger than collection in urban or indoor
environments. Tens of millions of points can be collected in one scan, which makes algo-
rithms with high time complexity impractical. Second, the associated resolution is high.
The resolution of terrestrial laser scanners has reached the millimeter level, allowing for
the preservation of details and accurate surface information. However, a disadvantage of
registration is that this high resolution makes it difficult to extract unique features from
a single point, as it is difficult to identify features that distinguish a point from nearby
similar points, which means that points with similar features will be clustered. When a
point does not have sufficient discriminating ability, the corresponding point matched in
the two scans will be unreliable. Third, the surface of a rock mass is complex and irregular.
Unlike objects in urban or indoor scenes, the surface of the rock mass is highly different.
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This article mainly focuses on the point clouds of rock masses, due to the characteristics
of rock masses described above. In addition, it is difficult to extract features from natural
vegetation and defined regions of interest in a wide range of flat areas (e.g., plains and
deserts), which makes it necessary to consider the problem from a holistic perspective. The
local sharp features (i.e., interesting registration points) are more obvious for rock mass.

Based on the above considerations, we propose a new registration method, which is
mainly divided into the following steps: First, to efficiently and accurately extract the above
feature area points, a new interesting point detection method, called sum vector filtration
(SVF), is proposed. SVF counts the sum vector formed by a center point and its neighbors,
which measures the amount of change between each point p and its neighbors pr. In this
way, the interesting points (Section 3.1) of the rock mass point cloud are selected, in order
to reduce the amount of data. Then, the remaining points are clustered and the point
cloud rotation invariant is calculated, in order to determine the corresponding relationship.
Finally, centroid correction is applied to obtain more accurate registration results. Our
main contributions are made in addressing the following problems: (1) efficiently handling
massive data; (2) fully utilizing high-resolution data; and (3) extracting robust features
from irregular surfaces.

The remainder of this paper is organized as follows. Section 2 provides a quick review
of other algorithms related to this work. Section 3 presents the entire framework and
implementation details of the proposed method. Section 4 reports the experimental results
and analysis. Section 5 discusses the highlights, possible extensions, and limitations of
our work.

2. Related Work

Generally speaking, point cloud registration methods can be divided into two cate-
gories: coarse registration and fine registration [2]. The purpose of coarse registration is
to estimate the initial transformation between the initial point cloud and the target point
cloud. The resulting calibration is usually further refined using the iterative closest point
(ICP) algorithm [3] or its variants [4–8]. There are two reasons that demonstrate the impor-
tance of the coarse registration and fine registration processes for point cloud registration:
First, the ICP algorithm starts from an initial estimate of the rigid body transformation. If
the two point clouds are not close in space, the ICP algorithm may fall into a local mini-
mum. Secondly, the ICP algorithm requires a good initial transformation to improve the
computational efficiency of the algorithm, especially when processing high-resolution data.

2.1. Coarse Registration

Coarse registration methods can be divided into two categories: sampling point meth-
ods [9–14] and feature-based methods. According to the selected features, feature-based
methods can be further subdivided into three categories: local feature-based methods [15–18],
global feature-based methods [2,19–23], and depth feature-based methods [24–28].

Sampling point methods: These methods select a number of points in the target point
cloud and the original point cloud, either randomly or according to specific rules, and then
compare the selected points to find the corresponding relationship.

Chen et al. [9] proposed a registration method based on random sampling consistency.
It first randomly selects three non-collinear points from the original point cloud, and a
triangle can be constructed from the three points selected. Similarly, the method finds three
points in the target point cloud that are similar to the triangle formed by the three points
randomly selected from the original point cloud. Assuming that the three pairs of non-
collinear points have a corresponding relationship, a rotation matrix and translation vector
can be obtained by the three pairs of corresponding points. Repeating the above operation
k times, k rotation matrices and translation vectors are calculated, and, finally, through
comparison, the rotation matrix and translation vector with the smallest registration error
are selected as the final result. This method has strong robustness, but it is obvious that
the method needs to find all points in the target point cloud that have a corresponding
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relationship with the filtered points in the original point cloud, which causes the method
to have lower computational efficiency.

Different from randomly selecting non-collinear points, Aiger et al. [10] proposed a
registration method based on the use of four coplanar points (4PCS), which reduces spatial
matching operations by constructing and matching congruent four-point pairs, thereby
accelerating the registration process. Specifically, their method constructs a coplanar four-
point set in the original point cloud P and the target point cloud Q of any pose, using affine
invariance constraints, matching the corresponding point pairs that meet the conditions
in the coplanar four-point set. The largest common pointset (LCP) strategy is used to
find the four-point pairs with the largest overlap after registration, thus obtaining the
optimal matching result. Based on the 4PCS method, many improved methods have been
proposed. For example, the Super-4PCS [11] algorithm adopts an intelligent indexing
strategy to reduce the computational complexity of the 4PCS algorithm. In K-4PCS [12],
sparse key points are used to replace the random sampling points of the original algorithm,
in order to achieve high-precision point cloud registration. The Generalized 4PCS [13] and
Super Generalized 4PCS [14] algorithms improve the construction process for the original
algorithm with four coplanar points, generalize the construction of the coplanar four-point
base, and no longer strictly restrict the four points to co-exist on a plane.

Feature-based methods: Feature-based methods usually involve similar processes,
including feature extraction, description, and matching. The extracted features mainly
include local, global, and depth features. The following describes feature-based registration
methods, according to the different features used.

(1) Local feature-based methods Generally, the local feature-based coarse registration
method first filters some feature points through use of a point cloud filtering method,
mainly including Gaussian curvature [15], feature lines, planes, and other features. Then,
feature descriptors are constructed for the remaining feature points, and the original and
target point clouds are matched through the correspondence of feature descriptors.

Rusu et al. [16] proposed the use of point feature histograms (PFH) to encode the shape
information of local surfaces, which has a strong discriminating ability but is extremely
time-consuming. To solve this problem, Rusu et al. [17] later used a simplified point
feature histogram (SPFH) to construct a fast point feature histogram (FPFH), which has
the characteristics of fast and strong discriminating ability; however, the normal quality
of the point cloud has a great influence on the FPFH. Tombari et al. [18] proposed the
signature of histograms of orientations (SHOT) method. SHOT first divides the local sphere
into subspaces, then calculates a normal vector and key point normal deviation for each
subspace, thus reflecting the points in the subspace, and finally calculates the concatenation
vector of each subspace corresponding feature. Although SHOT is very descriptive, it
is sensitive to changes in point density resolution. Wang et al. [15] used the Gaussian
curvature to filter registration points of interest, established a complete graph of N-sections
to find the correspondence, and used Singular Value Decomposition (SVD) to decompose
the conversion matrix, in order to obtain a more ideal registration effect.

(2) Global feature-based methods Unlike local features, which only focus on neigh-
boring points, global features reflect higher-level geometric features. The main global
features include lines and surfaces. Habib et al. [19] and Al-Durgham et al. [20] proposed
registration frameworks based on straight lines, but their methods require the data to
have obvious straight line characteristics. Based on this, Yang and Zang [21] extended the
straight line to a curve, which reduced the algorithm’s dependence on the data but, at
the same time, increased the algorithm complexity. Different from the line-based method,
the surface-based method has higher robustness. Hu et al. [2] proposed a method based
on plane polygon matching. Their method first extracts a plane from the data and then
uses principal component analysis to project the polygons surrounding the plane into the
same space and calculates the overlap ratio to determine the correspondence between the
planes. However, this method requires a number of common planes in the overlap area.
Dold et al. [22] proposed a registration method that uses corresponding image informa-
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tion to optimize plane matching. V4PCS [23] improves the efficiency of the algorithm by
establishing a voxel-based four-face congruence set. Registration methods based on global
features are more robust to noise and point cloud density changes than methods based on
local features; however, these methods have higher requirements, in terms of the data used,
and require the data to have obvious line and surface features.

(3) Depth feature-based methods With the rapid development of deep learning net-
works, some methods using deep learning features to represent manual design features
have emerged. Differing from other registration methods, this type of method searches
for corresponding relationships at the feature level. Zeng et al. [24] proposed to realize
the corresponding 3DMatch between local three-dimensional data by learning the descrip-
tors of local spatial blocks. Their method finds the closest key points in the 3DMatch
descriptor space by calculating the 3DMatch descriptor. Gojcic [25] proposed a framework
of 3DSmoothNet, which uses the Siamese network to learn feature representations with
smaller local point clouds. Wang et al. [26] proposed an end-to-end method, which first
uses the network to learn point cloud features, and then introduces an attention mecha-
nism for approximate matching operations. There also exist some registration algorithms
that integrate multiple methods, such as Aoki [27], which combines pointnet [28] point
cloud feature learning methods with traditional Lucas and Kanade (LK) image registration
methods [29]. These methods have obtained good results on some data, but require a
pre-trained network, which means that these methods require a large amount of training
data and have poor scalability.

2.2. Fine Registration

Fine registration mainly refers to ICP [3] and its derived algorithms [4,6,8,30–35]. The
ICP algorithm is one of the most widely used 3D point cloud registration algorithms. It
uses a Euclidean transformation approach to solve the rotation and translation matrix of
two point clouds and the corresponding registration error. The ICP algorithm continuously
solves the estimated transformation matrix, until the root mean square error (RMSE)
registration error converges to the local optimal solution. Although ICP has the advantages
of simplicity and good convergence, it is limited by the initial position of the point cloud
and can easily fall into a local optimal solution when solving the point cloud registration
problem with outliers.

To improve the robustness of the ICP algorithm, scholars have proposed a series of
variants of the ICP algorithm. The LM-ICP [30] algorithm uses the Levenberg–Marquardt
algorithm to solve the ICP registration model. It use the Distance–Transform (DT) algorithm
to replace the KD-tree for searching for the nearest neighbors, thus reducing the influence of
the initial position of the point cloud on the registration results and improve the registration
efficiency. On the basis of the ICP algorithm, a more robust and practical Trimmed ICP [31]
algorithm has been proposed. In this method, the nearest neighbors obtained from each
iteration are selected; that is, the Euclidean distances of the matched points, estimated
in pairs, are sorted and discarded. For the point set with a larger distance, the penalty
percentage is dynamically calculated by the kernel function. When the Trimmed ICP
algorithm is applied to the point cloud registration problem with outliers and noise, it can
obtain good registration accuracy. However, the high proportion of outliers still poses a
huge challenge to the robustness requirements of the point cloud registration algorithm.
Bouaziz et al. proposed the Sparse ICP [6] algorithm, which uses sparse representation
theory to further improve the robustness of the ICP algorithm, i.e. increasing the p-norm
penalty term in the norm registration model to improve the accuracy of solving matching
points in each iteration. However, the use of an augmented Lagrangian to solve large-
scale point cloud registration problems is inefficient. Mavridis et al. [32] proposed a
more efficient Sparse ICP algorithm, combined with the simulated annealing algorithm, to
accelerate the convergence speed of point cloud registration.

Under the premise of obtaining a better initial position of the point cloud, the iterative
nearest point algorithm has good robustness in solving the point cloud registration problem;
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however, there are also some shortcomings that can continue to be optimized, such as
the slow convergence as the number of iterations increases and the high time cost of
searching for the nearest neighbor. In response to the above shortcomings, scholars have
differed from the iterative closest point registration algorithm to construct new registration
models, such as probability density models, implicit least squares functions, Gaussian
mixture models, and combinations of other optimization algorithms, in order to improve
the point cloud registration efficiency and precision. Magnusson et al. [36] proposed the
normal distribution transform (NDT) algorithm based on the probability density model,
which uses the D-dimensional Gaussian function as the registration model. Whether the
corresponding point cloud is divided into the same voxel is an important factor affecting
the final result of the method. The biggest advantage of the algorithm is that the nearest
neighbor matching point does not need to be solved during the iteration process; as
such, it has low computational complexity. Gruen and Akca [37] proposed a method that
estimates the transformation parameters between 3D surface patches through minimizing
the Euclidean distances between corresponding surfaces by least squares. Matching is
achieved by minimizing a goal function. As the functional model for least squares matching
is non-linear, initial approximations for the parameters must be provided. Jian et al. [38]
proposed the use of a mixed Gaussian model to replace a single Gaussian model. To
improve the robustness of the registration model, the voxel Gaussian model is weighted
separately, such as NDT, EM-ICP [4], and so on. Aiming at the accuracy of point cloud
registration, some scholars have proposed point-to-plane [33], point-to-line [34], surface-to-
surface [35], and generalized iterative closest point (G-ICP) [8] methods. However, these
methods still suffer from sensitivity to the initial position. Pomerleau et al. [39] conducted
comparative experiments on the variant ICP method using real data and pointed out the
advantages and disadvantages of various methods.

In summary, whether a registration method is based on local features or global features,
it depends on the feature description. In addition, some methods build descriptors based
on all points, which are inefficient when faced with massive rock mass point clouds.
Compared with traditional registration methods, methods based on depth features have
obtained excellent results on certain datasets; however, these results all rely on a trained
model, which makes these methods lack scalability, in general, and they usually require
a large amount of pre-training of the model using labeled data. The ICP algorithm and
most of its variant methods still have the shortcomings of being sensitive to the initial
position of the point cloud and can easily to fall into a local optimum. The iterative finding
of corresponding points between the source point cloud and the target point cloud reduces
the efficiency of the algorithm.

Inspired by the methods mentioned above, we propose an efficient registration solu-
tion for rock mass point clouds. In the proposed method, we use the invariances of point
of interest sets, in terms of rotation and translation, to perform a coarse registration, then
fine-tune the centroids to achieve fine registration. This avoids a heavy computational
burden while achieving high accuracy.

3. Methodology

This section details the key steps of the proposed registration method, including
filtering points of interest, clustering, pair matching, and centroid correction (see Figure 1).
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Figure 1. The main stages of the proposed method: (a,b) the input target point cloud and source point cloud, respectively;
(c,d) the filtered points of interest, represented as red points in (c) and green points in (d); (e,f) the cluster results and
centroids, represented as green points in (e) and red points in (f); (g,h) examples illustrating the centroid correction step (the
yellow point in the target point cloud is the feature point location after correction); and (i) the registration result. The green
color explains that the image in (i) is the result of registration, which is different from the one in (a).

3.1. Filtering Points of Interest

Generally, an ideal feature point should exist in a salient area that is different from
surrounding regions and describes the most important and distinctive information content.
Therefore, as shown in Figure 2, four types of areas in the rock mass are considered
characteristic areas:

(1) The tip of the rock: It is mainly located at the tip of the rock or a part of the rock.
(2) The protruding part of the rock boundary: In general, the boundary of the rock is not

a strictly straight line and, thus, the bulge of the boundary is considered to be the
main feature on the rock boundary.

(3) Bedding trace: The junction area of two or more rocks merges the features of multi-
ple rocks.

(4) Plane protrusion: In the rock mass, there may be protrusions in a plane area, and the
characteristics of this area are obviously different from those of the surrounding plane.

The local SVF value of a center point, p, is defined as:

pSVF =

√√√√1
k

∥∥∥∥∥ k

∑
i=1

Wi(~p− NPS(~pr
i ))

∥∥∥∥∥
2

, (1)

where W represents the Gaussian weight function, r is the sampling radius, NPS(pr)
represents the nearest point sampling method to sample the neighborhood point pr, and k
represents the sample number of NPS.

(a) (b)

Figure 2. (a) Locations of four types of points of interest. Red indicates corner points, green indicates
the protruding parts of the rock boundary, orange indicates the rock junctions, and blue indicates a
plane protrusion. (b) A point of interest (green) and a non-interest point (red).
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In fact, as shown in Figure 2b, the points in the above four characteristic regions obtain
a larger SVF value. In other words, in a planar area, the vector formed by the center point
(the red points) and one of the neighboring points (the red line in Figure 2b) will have at
least one vector that is symmetrical to the center point (green lines in Figure 2b and the
blue line, which is the sum vector of the two green lines), which makes the SVF value
smaller. On the contrary, the direction of the vector formed by the feature area points and
its neighbors is similar and has a positive correlation with the sum vector (the green point
and black lines in Figure 2b), which leads to a larger SVF value for feature area points.

When the calculation of the SVF value (Figure 3b) is completed, the points with SVF
values between the thresholds δmin and δmax are retained as points of interest (Figure 3c),
where δmin is used to delete those points with relatively small SVF values, generally points
in a flat area, and δmax is used to eliminate some outliers (as shown in Figure 4). The
retained points of interest are usually only a small part of the initial points. Such a filtering
operation is considered necessary when registering a large number of rock mass point
clouds. For example, as shown in Figure 3c, for a point cloud with 300,000 initial points,
after the feature point filtering operation, only 3600 points of interest were retained. For
clarity, the remaining points are denoted as T f and S f , which represent the target points of
interest and the original points of interest, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3. Data processed in different stages of feature extraction: (a) original point cloud; (b) SVF
value distribution of the original point cloud; (c) points of interest after filtering operation; (d) points
of interest in the original point cloud; (e) centroids of the clusters; and (f) centroids in the original
point cloud.

Figure 4. The value distribution of Figure 3b.

3.2. Clustering

The preserved points of interest are distributed in various feature regions, and those in
the same feature region are clustered with each other. At this stage, these points of interest
are divided into several cluster centers, according to the density-based spatial clustering
of applications with noise (DBSCAN) [40] algorithm. What needs to be considered in the
clustering process is the clustering radius, which should not be too large or too small. On
the one hand, if the clustering radius is too small, the clusters will be unstable and multiple
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clustering centers may be obtained in the same characteristic region. On the other hand,
if the clustering radius is too large, multiple feature areas will be classified into the same
category when the distance between them is relatively close. Both of the above situations
will have a negative impact on the final registration. In fact, a clustering radius which
is applicable to all data does not exist. To obtain valid clustering results, we considered
clustering on multiple scales, and then empirically chose a reasonable scale.

By clustering, points of interest are classified into a small set of clustering points. The
cluster center of each cluster point set is calculated and regarded as the feature point. The
cluster center of the target point cloud and the point of interest of the source point cloud
are denoted as Tc and Sc, respectively. As shown in Figure 3e,f, this process further reduces
the number of points and obtains more representative feature points.

3.3. Pair Matching

After the above processing stages, several cluster centers and points of interest around
each cluster center are retained. The purpose of this stage is to determine which correspon-
dences exist in Tc and Sc. Different from constructing descriptors for each feature point and
surrounding points of interest, we take each cluster point set as the research object, find
that they undergo invariant amounts of translation and rotation, and judge the similarity
between the clustering point sets Tc and Sc based on this characteristic.

Assuming that T i
c and S i

c are the ith corresponding centers in Tc and Sc, and the
rotation matrix and translation vector between them are R and t, respectively, then T i

c can
be represented by S i

c:
T i

c = RS i
c + t. (2)

If T i
cs and S i

cs are denoted as cluster point sets corresponding to T i
c and S i

c, respectively,
as the point set is composed of several points of interest, the corresponding relationship
between points in T i

cs and S i
cs is affected by the order of the point set. To eliminate the point

concentration point set S i
cs, a permutation matrix X is used to adjust the order of the point

concentration. Then, we use S i
cs to represent T i

cs, as

T i
cs = RS i

csX + t. (3)

Let ūT i , ūS i be the mean of T i
cs and S i

cs, respectively, and let T̄ i
cs and S̄ i

cs denote
T i

cs − ūT i and S i
cs − ūS i , respectively. Then, we obtain

T̄ iT
cs ∗ T̄ i

cs = XTS̄ iT
cs ∗ S̄ i

csX, (4)

where X is the permutation matrix. Assuming Xi,j=1, then (T̄ iT
cs ∗ T̄ i

cs)(j,j) = (S̄ iT
cs ∗ S̄ i

cs)(i,i).
Obviously, it can be obtained that, after the rotation, T̄ iT

cs ∗ T̄ i
cs and S̄ iT

cs ∗ S̄ i
cs have the

same trace.
tr(T̄ iT

cs ∗ T̄ i
cs) = tr(S̄ iT

cs ∗ S̄ i
cs). (5)

More generally, the NPS method is used to sample k representative points on T̄ i
cs and

S̄ i
cs, respectively, which is as follows:

tr(NPS(T̄ iT
cs ∗ T̄ i

cs)) = tr(NPS(S̄ iT
cs ∗ S̄ i

cs)). (6)

Then, each cluster set has a corresponding centroid, and, finally, the obtained centroid
is used to find the rotation matrix and the translation vector.

The similarity between two cluster sets can usually be judged by Formula (6) at
multiple scales. However, there may be some mismatched point sets in complex scenes. To
solve this problem, we select the first n ≥ 3 as corresponding point sets, and then select
m ≥ 1 corresponding point sets for verification. For example, the first three most similar
corresponding point sets may be considered to be the correct matching point set pairs,
after which several remaining point set pairs can be randomly selected for verification. If a
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smaller mean square error (MSE) is obtained, the selected corresponding point set pair is
considered to be a correct matching set.

3.4. Centroid Correction

Although each clustering point set can get their accurate clustering center through
calculation, the corresponding clustering center is biased, due to various aspects (e.g., noise
and missing points). At this stage, a cluster center position correction method is used to
adjust the position of cluster centers. As shown in Figure 5, the cluster centers T i

c , T i+1
c

and the cluster centers S i
c, S i+1

c are the corresponding feature points located in the target
point cloud and the original point cloud, respectively. When the feature point T i+2

c in the
target point cloud is known, the corresponding feature point, S i+2

c , in the original cloud
can be expressed as

CS i+2
cs

= {p′ ∈ S | L(T i
c ,p) − ` ≤ L(S i

c ,p′) ≤ L(T i
c ,p) + `, L(T i+1

c ,p) − ` ≤ L(S i+1
c ,p′) ≤ L(T i+1

c ,p) + `}
S i+2

cs
′
= {p ∈ CS i+2

cs
| min(L

(CS i+2
cs

,S i+2
c )
}

S i+2
c = 1

k

k
∑

i=1
S i+2

cs
′

, (7)

where k is the size of S i+2
sc , L(T i

c ,p) represents the Euclidean distance between T i
c and p, ` is

the search error threshold, and S i+2
cs
′ is the i + 2th set of clustering points after correction.

In fact, when a pair of feature points are known, the position of the second pair of
feature points can be corrected accordingly. When two pairs of feature points are known,
only a small number of candidate positions are left. Similarly, if three pairs of feature
points are known, the position of the fourth pair of feature points will be locked to a few
areas. If more corresponding feature points are known, the remaining feature points can be
calculated theoretically.

Figure 5. Illustration of centroid correction process. On the left, the centroids of the target point
cloud are shown. S i+2

c is the original location of the centroid corresponding to p, while p′ is the
corrected location.

4. Experimental Results and Analysis

The proposed registration method was implemented based on the PCL (Point Cloud
Library) [41] library, which includes: point cloud pre-processing, Kd-tree establishment,
SVD decomposition for the transformation matrix, ICP registration, and point cloud vi-
sualization. The code was executed on an Intel (R) Core i7-4790 3.60 GHz CPU with
4.00 GB RAM.

To verify the effectiveness and efficiency of the proposed registration method, the
following comparative experimental methods were used:
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- The NDT method, proposed by Magnusson et al. [36], solves the transformation
matrix based on statistical information after voxelizing the point cloud, which was
provided with the PCL library.

- The Generalized-ICP (G-ICP), proposed by Segal et al. [8], optimizes the distance
criterion of the traditional ICP algorithm, which was provided with the PCL library.

- The Plane Detection and Polygon Matching (PPB) method, proposed by Hu et al. [2],
establishes the corresponding relationship, according to the proportion of the plane
polygon area of the overlapping part, which was executed using the code provided by
Hu et al. [2].

- The N-point Complete Graphs (NCG) method, proposed by Wang et al. [15], uses the
Gaussian curvature to select feature points (points of interest) and N-point complete
graphs to calculate the transformation matrix, which was executed using the code
provided by Wang et al. [15].

In this section, the parameters, test data, and evaluation metrics are introduced. Finally,
the registration results of our method and the comparison method for rock mass point
clouds are used for comparison and analysis.

4.1. Parameter Tuning

Table 1 lists the main parameters used in the proposed method. As shown in Table 1,
these parameters were divided into four groups.

Table 1. Summary of the parameters.

Stage ID Parameters Meaning Configuration Method

Filtering
Points of
Interest

1 r Search radius 0.2–0.5 m

2 δmin
The minimum allowable value
of SVF

0.1–1, depending on the number
of points and the search radius

3 δmax
The maximum allowable value
of SVF

0.2–2, depending on the number
of points and the search radius

4 k Number of sampling points 32–128, depending on the point
cloud density

5 n f
The minimum allowable size
of pr

2*k–5*k, depending on k and the
point cloud density

Clustering

1 cr The clustering radius
0.05–0.2 m, related to the density
of the point cloud

2 nmin
Minimum number of points of
valid cluster

16–128, related to the density of
the point cloud

3 smax Maximum size of valid cluster Default is 10 m

Pair
Matching

1 lmax
Maximum difference between
corresponding points Default is 1.0

2 pk

Number of sampling points
for calculating the centroid
in pair matching stage

Default is 16

Centroid
Correction

1 `
Permissible error range for
position correction Default is 0.1 m

2 ck

Number of sampling points
for calculating the centroid
in centroids correction stage

Default is 16

In the point of interest filtering stage, the parameters of r, δmin, and δmax were used
to calculate the SVF value. Among them, r was used to determine the range of the local
point cloud for calculating the SVF value, δmin and δmax were used to limit the range of the
SVF value, and the points with SVF values between δmin and δmax were retained. When
the number of collected points is larger and the search radius is larger, δmin and δmax
can be increased appropriately. k is the number of sampling points, which was used to
uniformly participate in the calculation of the SVF value. n f is the threshold for selecting
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valid clusters, and cluster sets with less than n f points were deleted. The optimal settings
of k and n f are proportional to the point cloud density. In the clustering stage, cr is the
clustering threshold, which was used to determine which cluster set the unknown point of
interest belongs to. nmin is the minimum number of points allowed in the valid clusters,
and clusters with fewer than nmin points were considered invalid clusters. Similarly, smax is
the maximum distance allowed by a legal cluster, and, when the farthest point in a cluster
was further than smax, it was considered an invalid cluster. When the point cloud density is
larger, theoretically, nmin and smax should also increase. In the pair matching stage, lmax is
the maximum difference for judging the similarity of two point sets. When the difference
is greater than lmax, it was considered that there was no correspondence between the two
point sets. pk is the number of sampling points, and its function was similar to that of k.
In centroid correction stage, l was used to correct the error threshold of the feature point
position. ck is similar to pk and k, being the number of sampling points in this stage. In the
pair matching and centroid correction stages, the setting of these parameters was based on
experience. When higher accuracy is required, the parameter values need to be adjusted
appropriately; however, this may cause some steps to fail.

4.2. Datasets and Evaluation Metrics

All the rock mass point clouds used in this section were derived from the public
Rockbench repository [42], and their basic information is shown in Table 2 and Figure 6.
Note that the point clouds Rock1 and Rock2 are single-block point clouds, where the target
point cloud was constructed by a rigid body transformation. Both Rock3 and Rock4 have
two point clouds acquired at different scanning stations, where there is an overlap between
the source point cloud and target point cloud.

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Four different rock mass point clouds: (a) Rock1; (b) Rock2; (c,d) two different data of Rock3; (e,f) two different
data of Rock4; and (g) the corresponding image of Rock4.

Table 2. The experimental dataset for registration.

Data Number of Points Bounding Box Size (m) Density (r = 0.5 m)

Rock1 306,778 32.49× 28.71× 8.77 413.06
Rock2 264,309 51.49× 23.94× 12.29 164.33

Rock3-Part1 1,638,869 85.44× 40.44× 20.97 635.49
Rock3-Part2 1,517,037 87.79× 42.19× 32.87 628.69
Rock4-Part1 467,310 41.54× 7.32× 7.97 1426.86
Rock4-Part2 486,966 40.58× 10.20× 8.51 1413.57
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To quantitatively evaluate the registration results, the Root Mean Square Error (RMSE) [15]
was used as the evaluation metric. The RMSE represents the root mean square distance of
the corresponding point pair after the registration of two point clouds, which is defined
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
pi − p′i

)2
, (8)

where N represents the number of points in the overlapping part and pi and p′i represent
the corresponding point pairs in the overlapping part.

4.3. Robustness Test

As some typical registration algorithms are very sensitive to the initial position of the
point cloud, we chose Rock1 for experiments under different initial positions, in order to
verify the robustness of the proposed method to the initial position.

Figure 7 shows the distribution of the distance between four different locations in
the source point cloud and the target point cloud. Figure8a–d illustrates the Rock1 point
cloud at different positions and angles. Figure 8e shows the final registration results of
the proposed method. It can be seen that our method had strong robustness to the initial
position and angle of the point cloud. This was because the proposed method is based on
the use of “candidate corner points” to complete the registration. The relative position of
the feature point within the point cloud did not change with the change of the point cloud
angle and position.

(a) (b)

Figure 7. Distribution of the distance between four different locations in the source point cloud and
the target point cloud: (a,b) the distance distributions before and after registration, respectively. The
letters a–d in the figure correspond to Figure 8a–d, respectively.

(a) Location 1 (b) Location 2 (c) Location 3 (d) Location 4 (e) Our Result

Figure 8. The results of registration for Rock1 with different positions: (a–d) the four different positions of Rock1; and
(e) the final results. The green color indicates the source point clouds with different positions. As the final results are almost
identical, only one set of results is shown.

We also considered the robustness of the proposed method to point clouds with
different overlap ratios and conducted an experimental verification. As shown in the
first row of Figure 9, we took 20%, 25%, 50%, and 70% of the original Rock2 point cloud
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as the source point cloud. The location of the target point cloud was random, and the
final registration results are displayed in the second row. It can be seen that the proposed
method was robust to both different overlap rates and initial positions.

(a) 20% overlap ratio (b) 40% overlap ratio (c) 50% overlap ratio (d) 70% overlap ratio

Figure 9. The results of registration for Rock2 with different overlap ratios: (a) Rock2 with 20%
overlap ratio; (b) Rock2 with 40% overlap ratio; (c) Rock2 with 50% overlap ratio; and (d) Rock2 with
70% overlap ratio.

4.4. Analysis of Registration Results for Rock Mass

Figure 10 shows the registration results for three sets of point clouds by different
methods. Figure 10a–c presents the registration results of Rock1, Rock2, and Rock3,
respectively. The first row in this figure presents the original position of the three sets of
point clouds, while the remaining rows present the registration results of each method.

As shown in Figure 10, the G-ICP method failed to register the Rock2 and Rock3 point
clouds. This was because the G-ICP method is not robust to the initial position and angle of
the point cloud. When the position or angle of the source point cloud and target point cloud
significantly differed, the final registration result of G-ICP method was unsatisfactory, due
to the local optima problem. The NDT method had a good registration effect on the Rock1
and Rock2 point clouds, which underwent rigid body transformations, but it was not ideal
for the two Rock3 point clouds with overlapping parts. The plane characteristics of the
overlapping part in Rock3 were weak, but the PPB method is based on plane extraction to
find the corresponding relationship; thus, the PPB method failed to register the Rock3 point
cloud. For the Rock2 and Rock3 point clouds, the NCG method obtained good results,
but there was a slight dislocation in Rock1. The final registration results of the proposed
method were all visually ideal.

Figure 11 illustrates the registration results for the Rock4 point cloud by the different
methods. From a visual point of view, the registration of NDT and G-ICP for Rock4 failed,
while the registration result of NCG was not ideal. There was a certain error in the overlap
of the two point clouds, and they were not completely aligned. The PPB method had a
slight dislocation. The final registration of the proposed method demonstrated that it can
complete the registration work well.

Observing the RMSE error in Table 3, we can see that the G-ICP method had a large
RMSE error, due to multiple registration failures. The NDT method’s registration results for
Rock1 and Rock2 were visually successful (see Figure 10), but its RMSE error was relatively
large. This was because the NDT method is based on the use of statistical information to
complete the initial registration, but no further ICP algorithm is used for optimization.
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Data

NDT

G-ICP

PPB

NCG

OURS

(a) Rock1 (b) Rock2 (c) Rock3

Figure 10. Comparison of registration results by different methods for (a) Rock1, (b) Rock2, and (c) Rock3. The red color
indicates the original point cloud, while green indicates the target point cloud.
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(a) Rock4

(b) Registration result of NDT

(c) Registration result of G-ICP

(d) Registration result of PPB

(e) Registration result of NCG

(f) Registration result of the proposed method

Figure 11. The registration results of different methods for Rock4. (a) is the input point cloud, (b–f) are NDT, G-ICP, PPB,
NCG and the proposed method registration results, respectively. The red and green colors represent the original point cloud
and the target point cloud.

Table 3 shows that PPB method had higher errors for Rock1, Rock2, and Rock4, and
failed to register Rock3. This was because the PPB method uses the relationship between
the areas of extracted planes to find the corresponding relationship during registration,
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and the results of plane extraction have a greater impact on registration. The registration
error of the NCG method for the four point cloud sets was small. Tables 3 and 4 fully show
that the efficiency and accuracy of the proposed registration method are ideal.

Table 3. RMSEs(m) of the four compared methods for each point cloud.

Method Rock1 Rock2 Rock3 Rock4

NDT 2.79e-02 1.69e-02 1.61e-02 5.66e-02
G-ICP 1.53e-05 1.22e+01 2.95e-00 5.90e-02
PPB 5.12e-02 2.99e-02 7.31e-00 3.50e-02
NCG 2.84e-06 5.17e-06 2.68e-05 7.75e-03
OURS 3.22e-07 5.31e-07 2.37e-06 6.82e-03

4.5. Runtime Analysis

Table 4 shows the registration time of different methods for the four sets of point clouds.
The table shows that the NDT and G-ICP methods were inefficient. When the number of
points reached millions (Rock3 and Rock4), these two methods were less practical, due
to their lower efficiency. The efficiency of the NCG method was lower than that of PPB
and our method. In Rock3 and Rock4, our method had lower time complexity than the
other methods. This was because the PPB method needs to compare the corresponding
relationship of each plane, and there were more planes in Rock3 and Rock4. The difference
was that our method only focuses on cluster sets, where the matching of such cluster sets
is efficient.

Table 4. Time consumption(s) of four methods for each point cloud.

Method Rock1 Rock2 Rock3 Rock4

NDT 100.408 173.942 4375.56 526.72
G-ICP 88.654 433.265 3994.34 614.06
PPB 13.201 10.920 143.597 39.846
NCG 50.882 38.775 463.716 59.86
OURS 14.891 12.292 72.363 31.014

5. Discussion

3D point cloud registration has become one of the key research hotspots in the field
of remote sensing in recent years. Our research was carried out using the public dataset
Rockbench [41]. From feature point extraction to the final registration process, a series of
new ideas was implemented.

The comprehensive display of the experimental results demonstrates that the proposed
method has high accuracy and efficiency in the registration of rock mass point clouds,
mainly due to the following factors:

(1) Efficient and accurate selection of points of interest. Starting from the prior knowledge
that feature points are usually located in regions with drastic changes (e.g., the four
types of feature regions introduced in Section 3.1), by using the relationship between
the center point and the neighboring points to form a vector, the points in the feature
region are effectively selected out. After this process, only a small number of points of
interest is retained, which greatly reduces the amount of further calculations.

(2) Efficient matching method. Point of interest matching is essential for finding the
similarity between points of interest. We found that the geometry formed by the point
and its neighbors after rotation has an invariant quantity, which allows a local point
set to be considered as a whole, rather than just considering the individual point. In
addition, the comparison of invariants on multiple scales improves the robustness of
the method.
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(3) Fine adjustment of point position. After finding the corresponding point, fine-tuning
of the point can align the position of the feature point. This step further improves the
accuracy of the proposed method.

From visual observation (Figures 10 and 11), there was almost no ghosting (ghosting
is the visual effect of two corresponding planes that do not completely overlap) in our
method, but there were some ghosts in the sampling contrast method. In the quantitative
analysis (Table 3), our method had an accuracy an order of magnitude higher than that of
the compared methods, as well as having certain advantages in speed.

However, the method still has some areas that can be improved. There are multiple
steps in the whole method, with several parameters involved in each stage. Adjusting these
parameters is cumbersome and has an impact on the final result. Simplifying the steps and
the setting of adaptive parameters may be an important research direction. The choice of a
single invariant is not stable enough. Although the comparison at multiple scales increased
the robustness, it still required many attempts in a more complex environment. Finding
and synthesizing other invariants to form a joint feature vector may help to improve the
robustness of the method.

6. Conclusions

In this paper, we introduce, in a step-by-step manner, a new and effective method for
rock mass point cloud registration. First, we define four types of rock mass points as points
of interest. Then, using the feature of positive correlation between the points of interest and
the vector composed of their neighboring points, it is judged that the sum of these vectors
will have a larger modulus, such that the points with a larger modulus of the sum vector
are retained as interest points. The method avoids complex calculations, has high efficiency,
and can effectively extract the four types of points of interest. Second, we prove that there
are specific invariants between feature point sets that have corresponding relationships
and use this fact to determine the correspondences between feature point sets. This method
avoids constructing complex descriptors for each feature point and improves the efficiency
of the algorithm. Finally, we judge the position relationship between the known feature
points and the feature points to be corrected to determine the possible locations of the
feature points to be corrected in the data, as a set of candidate locations. Then, the center of
the point set closest to the point to be corrected is used as the corrected position of the point
set. This method calibrates the position of the feature points and improves the accuracy
of the algorithm. We analyze the experimental results qualitatively and quantitatively
and summarize and explained the advantages of the proposed method. At the end, we
discuss and point out some problems of the proposed method and briefly detail potential
corresponding solutions.

The proposed method is based on the sharp features of the point cloud. Therefore, it
is suitable for registration of point clouds with sharper features on the surface. For point
clouds with few or no sharp features at all (e.g., if the overlapping part is a single plane),
the proposed registration method is not applicable.
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