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Abstract: Acoustic methods are routinely used to provide broad scale information on the geograph-
ical distribution of benthic marine habitats and sedimentary environments. Although single-fre-
quency multibeam echosounder surveys have dominated seabed characterisation for decades, mul-
tifrequency approaches are now gaining favour in order to capture different frequency responses 
from the same seabed type. The aim of this study is to develop a robust modelling framework for 
testing the potential application and value of multifrequency (30, 95, and 300 kHz) multibeam 
backscatter responses to characterize sediments’ grain size in an area with strong geomorphological 
gradients and benthic ecological variability. We fit a generalized linear model on a multibeam 
backscatter and its derivatives to examine the explanatory power of single-frequency and multifre-
quency models with respect to the mean sediment grain size obtained from the grab samples. A 
strong and statistically significant (p<0.05) correlation between the mean backscatter and the abso-
lute values of the mean sediment grain size for the data was noted. The root mean squared error 
(RMSE) values identified the 30 kHz model as the best performing model responsible for explaining 
the most variation (84.3%) of the mean grain size at a statistically significant output (p<0.05) with 
an adjusted r2 = 0.82. Overall, the single low-frequency sources showed a marginal gain on the mul-
tifrequency model, with the 30 kHz model driving the significance of this multifrequency model, 
and the inclusion of the higher frequencies diminished the level of agreement. We recommend fur-
ther detailed and sufficient ground-truth data to better predict sediment properties and to discrim-
inate benthic habitats to enhance the reliability of multifrequency backscatter data for the monitor-
ing and management of marine protected areas. 

Keywords: multibeam echosounder; multifrequency backscatter; sediments; texture; marine pro-
tected area; monitoring; management 
 

1. Introduction 
Multibeam echosounders (MBES) have become the instrument of choice for observ-

ing and mapping the marine environment [1–5]. While they are routinely used in hydrog-
raphy, navigational charting, offshore resource exploration, and geology, their applica-
tion to ecological baseline and monitoring surveys is still developing [1,6]. Data acquired 
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using MBES surveying provide broad-scale information about the geographical range and 
distribution of marine habitats on the seafloor. For ecological applications, the benefits of 
these MBES datasets have still not been fully optimized because of a lack of scale consid-
eration between available lower resolution (~5m scale) remote sensing data and the actual 
representation of relevant features in the marine environment (<1m resolution) on MBES 
[5]. Several attempts have been made to statistically quantify the benefits of multivariate 
approaches to enhance seafloor characterization [1,7–10], but none of these yields suffi-
cient evidence to evaluate the discriminatory power of multifrequency backscatter specif-
ically with respect to sediment grain size. 

Generally, marine surveys are expensive to conduct, so there is great benefit in max-
imizing the information derived from them [11]. New ideas in seafloor mapping continue 
to emerge in terms of MBES data acquisition (e.g., multifrequency) and processing (e.g., 
object-based image analysis and automatic feature identification). These emerging devel-
opments have the common goal of maximizing the value of MBES data (backscatter and 
bathymetry) to support marine spatial planning more effectively, as well as the design, 
monitoring, and management of marine protected areas [2,7,12,13]. Traditionally, 
backscatter data and its derivates relied on single-frequency MBES systems, which acquire 
data across narrow bandwidths [4, 5,14]. With the upgrade in sonar technology and the 
growing scientific interest in wider bandwidth data, multifrequency backscatter acquisi-
tion is now routinely achievable [1,3,7,9, 15–17]. This area of marine research is motivated 
by advances in the multispectral satellite remote sensing of terrestrial environments, 
which provides clear wavelength separation of multiple land cover types and terrestrial 
features. Spectral reflectance responses of different features on land (e.g., bare soil and 
different vegetation types) have been demonstrated to provide improved discrimination 
for detailed terrestrial mapping [18–20]. However, in aquatic environments, multispectral 
remote sensing is restricted to shallow coastal areas because of the heavy attenuation of 
electromagnetic radiation (EMR) in the water column [21], making acoustic MBES systems 
the preferred choice for seafloor mapping. 

Multibeam survey strategies are generally optimized for the acquisition of bathyme-
try (travel-time) data, often ignoring the ecological and geological value of backscatter 
(amplitude) data [5], although there are significant efforts underway to highlight the im-
portance of these data and to standardize their acquisition and processing [6]. Measured 
backscatter is a function of surface and volume scattering, which are in turn functions of 
operating frequency, grazing angle, and sediment characteristics. The frequency-depend-
ence element of the backscatter strength is strongly linked to (i) the dominant scattering 
regime (interface or volume scattering), (ii) seabed roughness (across scales from sediment 
grain size to local slope), and (iii) the responses by volume scattering related to signal 
penetration [6]. In terms of the physics of scattering, surface scattering is directly propor-
tional to seabed roughness (sediment grain size and bedforms) relative to the sonar fre-
quency, while volume scattering is dominantly controlled by the distribution of scatterers 
(such as shells) below the seabed and acoustic attenuation, which again is frequency-de-
pendent. Gaida et al. [9], supports the idea that fine sediments are better discriminated 
using low frequency acoustic signals linked to high signal penetration. Site specific studies 
have demonstrated that fine sediments have variable frequency responses [17]. Until now, 
no single study has yielded sufficient evidence to address the limitations and challenges 
of working with multifrequency backscatter data. A number of concerns have been raised 
in relation to the interpretation of backscatter data, including the lack of absolute sonar 
beam calibration, which makes it hard to accurately quantify seafloor properties [22], the 
lack of repeatability and comparability as a result of varying survey approaches [16], and 
the issue that backscatter measurements are not fully supervised and standardized [6]. 
Again, the physical relationships between multiple frequencies and different sediment 
types are complicated, and the various contributions cannot be separated [23]. 

Statistical relationships between backscatter data and surficial sediment properties 
have been proposed [14,24,25], but mostly based on single-frequency data. These 
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approaches (including univariate and multivariate techniques) require that the backscat-
ter data be segmented prior to the analysis or production of benthic habitat maps [5,26]. 
Given the aforesaid, the two dominant techniques reported for extracting statistical vari-
ables from the backscatter data include first order statistics (mean and standard deviation) 
and second order statistics, with the latter derived from spectral and textural analyses 
[2,7,16,23,27]. These approaches are also preferred as they make it possible to extract mul-
tiple features from the data that can serve as inputs for other techniques, such as auto-
mated object-based classification [9,28]. Automating the segmentation of backscatter data 
can also provide more reliable, repeatable, and objective outputs compared with tradi-
tional expert (“by eye”) interpretation methods (e.g., [10]). With the increasing availability 
of multifrequency backscatter data, our capacity to test the acoustic responses of marine 
sediments is greatly enhanced. A better understanding of surficial sediments is essential 
for many seafloor mapping applications, including habitat mapping, installation of un-
derwater infrastructure, and mining, among other uses [5,7]. However, key questions re-
main regarding whether using multifrequency backscatter data combined with its deriv-
atives will improve our ability to reliably determine sediment grain size [7,9,29,30]. 

To address these questions, we apply a generalized linear model (GLM) on a mul-
tifrequency MBES backscatter dataset (30, 95, and 300 kHz) collected over Hempton’s Tur-
bot Bank (HTB) off the north coast of Ireland. These data were collected by a multi-insti-
tutional team of scientists working under the umbrella of the Marine Protected Area Mon-
itoring and Management (MarPAMM) cross-border project [31]. This project is one of 
three that are active in the region, the other sister projects being the Collaborative Ocean-
ography and Monitoring for Protected Areas and Species (COMPASS) and SeaMonitor, 
which is focused on marine species tracking and telemetry. Our study is concerned with 
providing a robust modelling framework for analysing archival and new datasets to crit-
ically examine the explanatory power of multifrequency backscatter and single-fre-
quency data,  and to determine the sediment grain size covering areas with strong ge-
omorphological gradients and associated seabed ecological variability. The seafloor in the 
study area, a special area of conservation (SAC) designated under the EU Habitats Di-
rective (92/43/EEC), comprises sand and gravel mixtures [32,33]. Our objectives were to 
(i) examine the multifrequency backscatter responses for discriminating different sub-
strate types, (ii) develop a suitable semi-automated workflow for deriving and selecting 
secondary derivatives (texture features) from multifrequency backscatter data, (iii) exam-
ine the statistical relationship between multifrequency backscatter data and texture with 
sediment grain size, and (iv) use the derived variables to model and predict sediment 
grain size. An improved understanding of the multifrequency responses of sediments will 
allow for enhanced reliability of the multifrequency backscatter, and for better discrimi-
nation and subsequent mapping of benthic habitats with minimal information loss. 

2. Materials and Methods 
2.1. Description of Study Area 

The study was carried out on Hempton’s Turbot Bank (HTB) off the north coast of 
Ireland. This special area of conservation (site code 002999) is designated as a sand bank 
priority geological feature (no. 1110 on Annex II of the E.U. Habitats Directive). The bank 
is part of a larger complex geological formation that extends on both sides of the Irish–
U.K. border [33,34]. This SAC plays a significant ecological role by being home to burrow-
ing lesser (Ammodytes marinus) and greater sand eels (Hyperoplus lanceolatus), which are 
both critical forage species that serve as an important prey for predatory seabirds, pisciv-
orous commercial fish, and marine mammals. The HTB SAC is also a component of an 
inter-connected network of marine protected areas that support fish larval dispersal and 
migration among other ecosystem functions [35]. 

Our study area is located at approximately 55.4407°N, 6.9708615°W, with water 
depths ranging from 20 m to 70 m (Figure 1). The sand feature under investigation covers 
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a narrow stretch (approximately 17 km in length and 2 km in width), which is within the 
north coast/north channel region of the MarPAMM project domain (Figure 1). The sand 
bank was previously surveyed under the Joint Irish Bathymetry Survey (JIBS) and the 
Mapping of European Seabed Habitats (MESH-Interreg IIIb) project because of its ecolog-
ical significance and proximity to Inishtrahull Sound, an area of interest for marine re-
newable energy because of the strong currents and tidal streams. 

The seafloor in the study area is heterogeneous, comprising of gravel, cobbles, boul-
ders, sand, and mixed sand with shells. The study site includes large asymmetric sand 
waves [33,36], which are characterized by a low-backscatter response relative to the sur-
rounding coarser sediment (Figure 2). These sand waves are mobile [33] and cover a tidal 
sandbank feature [37]. In addition, the presence of the Islay front, which is a key oceano-
graphic feature of the Irish continental shelf [38], the strong hydrodynamic conditions in 
terms of current velocity and bed stress, and strong geomorphological gradients, form a 
strong basis for interrogating the multifrequency backscatter responses of sediments [33]. 

 
Figure 1. Locations of Hempton’s Turbot Bank special area of conservation (SAC) and Marine Protected Area Monitoring 
and Management (MarPAMM) project domain areas of the North Atlantic Ocean (Bathymetry source: GEBCO, 2019). 
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Figure 2. (A) Bathymetric variation at Hempton’s Turbot Bank SAC. (B) Sediment grain size data (Folk classification) 
superimposed on the 30 kHz backscatter mosaic. The red bounding polygon shows the common analysis extent covered 
by 30, 95, and 300-kHz backscatter mosaics. 

2.2. Acoustic Data Acquisition and Processing 
We used two coincident MBES survey datasets from the Hempton’s Turbot Bank 

SAC—one collected in 2013 and the other repeated in 2019. The 2013 RV Celtic Voyager 
survey used a dual-head Kongsberg Simrad EM3002 (300 kHz) system, and the 2019 RV 
Celtic Explorer survey used Kongsberg Simrad EM302 (30 kHz) and EM1002 (95 kHz) 
systems. The acoustic wavelength therefore ranged from 50 to 5 mm. Positioning was pro-
vided by a Kongsberg SDP-10 (DP1), and variations in the heave, roll, and pitch were 
corrected for using a Kongsberg Simrad Seapath 200 motion reference system. Multibeam 
data were acquired using the Kongsberg Seafloor Information System (SIS) v.5.2. Sound 
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velocity profiles (SVPs) were derived from CTD (conductivity, temperature, and depth) 
casts. 

The bathymetry data were cleaned and tidally corrected in CARIS HIPS and SIPS 
v.9.1 and were exported at a 2 m spatial resolution. Three single-frequency backscatter 
mosaics were processed and generated using QPS Fledermaus Machine Geocoder 
Toolbox (FMGT v.7.8.9) software. These backscatter mosaics were corrected and normal-
ized for angular varying gains (AVG), using an average angular response curve at a 300-
window size and an adaptive AVG normalization band [6]. Processed backscatter outputs 
at a 0.5 m spatial resolution were exported as ASCII grids. A fourth multifrequency 
backscatter mosaic was generated using principal component analysis (PCA) in R soft-
ware’s (v.3.6.0) RStoolbox (v.0.2.6) package from these three single-frequency mosaics, 
whose ship tracks had a similar survey direction with a 100% spatial overlap. Here, the 
first principal component that explained the highest variance (82%) was retained and ex-
ported as a raster object for further analysis. The PCA is an ordination technique used to 
denoise and reduce high dimensionality between datasets, while retaining the most useful 
data and patterns [39]. This was the preferred method for including multiple source data 
while capturing the fine scale variance introduced by the frequency response but avoiding 
artificially inflating the model performance because of collinearity. 

2.3. Sediment Sampling and Grain Size Analysis 
Twenty-four sediment samples collected using a day grab were available for this 

study. Fifteen samples were collected by Ulster University in 2013 (CV13030) and nine 
samples were collected during a 2004 INFOMAR cruise (CE0402; Figure 2). The sampling 
locations were determined based on the interpretation of backscatter data, where varia-
bility in acoustic facies was qualified [33,36]. To account for the temporal offset between 
the collection of sediment samples and acoustic data, we analyzed the multibeam data for 
geomorphological changes between surveys. Difference-modelling of the 2013–2019 
MBES bathymetry datasets and a comparison of the backscatter mosaics confirmed little 
movement in bedforms or facies’ boundaries between successive surveys. This analysis 
mitigates the potential effect of temporal change over the period between the surveys, 
especially for dominant coarser materials that better reflect the hydrodynamic conditions 
of the area [33,35]. We acknowledge that the temporal effect on the finer sediments cannot 
be fully discounted. Grab samplers were deployed across gradational areas between sub-
strate types, taking into consideration the effect of wind, tides, and positional accuracy. A 
photograph of the sediment samples for each of the sampling stations together with an 
identification tag was taken immediately after recovery on deck. The samples were 
weighed, washed, and wet-sieved at 63 microns to determine the proportion of mud that 
was negligible. The remaining sediment samples were oven-dried, weighed, and sieved 
at varying mesh sizes [33]. The grain size distribution and statistics (mean and median) 
were computed using Gradistat v.4.0 [33]. We applied the Folk sediment classification 
scheme [32] on the 24 grab samples, from which we distinguished four main substrate 
classes, namely: gravel (G), sandy gravel (SG), gravelly sand (GS), and sand (S). 

2.4. Texture Extraction 
Texture denotes the spatial distribution of intensity levels in a pixel neighbourhood 

of an image. Different approaches have been developed for texture analysis for various 
applications. In the marine science domain, the grey level co-occurrence matrix (GLCM) 
method is widely utilized [2,7,23,27,30,40]. Basically, GLCM provides information about 
the number of pixel combinations that are separated by a specified distance in each direc-
tion [30]. A detailed description of the principles and theory of GLCM is given by the 
authors of [41] and [42]. Haralick texture features based on GLCM were derived in R soft-
ware (v.3.6.0) using the GLCM package (v.1.6.5), and a visual comparison of these features 
is given in Figure 3. Eight texture features were generated for each of the four backscatter 
mosaics described earlier (three single-frequency backscatter mosaics (30, 95, 300-kHz) 
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and one multifrequency backscatter mosaic derived from the PCA analysis) in a high-
performance computing (HPC) environment (Table A1). These GLCM features were ana-
lyzed based on the smallest 3 x 3 pixel moving window in each of the four angular direc-
tions (0°, 45°, 90°, and 135°). The averages of these angular GLCM features were computed 
to obtain rotationally invariant features and were later exported as 256 bit or grey level 
images [30]. At each of the twenty-four sediment samples located within the common 
analysis area, a 10x10 m analysis window centered on the grab sample location was ex-
tracted for each GLCM derivative, resulting in 768 features for analysis (4 mosaics * 8 tex-
ture features * 24 sub-images). 

 
Figure 3. Single frequency backscatter mosaics; (A,B,C) representing 30, 95, and 300 kHz, respectively; (D) multifrequency 
backscatter mosaic and a range of eight surfaces produced from the grey level co-occurrence matrix (GLCM) analysis on 
the 30 kHz backscatter. CO—contrast; CC—correlation; DI—dissimilarity; EN—entropy; HO—homogeneity; ME—mean; 
SM—second moment; VA—variance. The colour ramps for the GLCM surfaces are based on a common scheme adjusted 
to the second order standard deviation to accentuate the features in the data and are scaled between 1 (high) and 0 (low) 
texture intensities. 
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2.5. Statistical Analysis and Modelling 
The analysis involved a combination of graphical and image interpretation, as well 

as statistical modelling of the multifrequency backscatter imagery, texture features, and 
sediment grain size data (Figure 4). Exploratory analyses on both mean and median (d50) 
sediment grain size showed that d50 did not change the statistical inference. In this study, 
we used mean grain size as the response variable, and mean multifrequency backscatter 
and their GLCM features were the explanatory variables computed on a 10x10 m analysis 
window [15]. We initially compared the multifrequency backscatter responses of the four 
sediment classes (G, sG, gS, and S) using conditional boxplots showing the spread of the 
backscatter intensity values produced in the R software (v.3.6.0) under the ggplot2 
(v.3.3.0) package. This was followed by a visual comparison between backscatter, GLCM 
texture with sediments that involved images of explanatory variables extracted from 
10x10 m rasters at four stations representative of each sediment group: 12 (gravel), 10 
(sandy gravel), 13 (gravelly sand), and 15 (sand). 

Based on an exploration analysis of the data and on the recommendations by [43], we 
carried out a two-step multicollinearity test between all eight GLCM features (Figure 3) 
per frequency. Before applying the GLM on the data, we first performed a pairwise pixel-
by-pixel correlation using Pearson’s correlation coefficient between the 10x10 m image 
GLCM features (e.g., contrast vs. homogeneity). Where a Pearson’s correlation coefficient 
of p ≥ 0.7 was observed, the variables were considered collinear and one of the variables 
was removed from the subsequent analysis. As the mean values from each 10x10 m anal-
ysis window were used as the predictor variables in a GLM framework, a second multi-
collinearity test was passed on these variables. Predictor variables that had a variance in-
flation factor (VIF) >5 were eliminated from the final GLM model. Severe multicollinearity 
between predictor variables was known to amplify the estimation error of the model co-
efficients [44,45]. 

We fitted a generalized linear model (GLM) on the mean values of the retained pre-
dictors (backscatter features and GLCM) to test and compare the explanatory power of 
single-frequency vs. multifrequency backscatter with respect to the mean sediment grain 
size at a p<0.05 significance level [14,25,46,47]. The response variable (mean sediment 
grain size) was modelled using a Gaussian distribution with an identity link function. We 
later progresses to generate four GLM models from the four primary mean backscatter 
features (30, 95, and 300 kHz and multifrequency backscatter) and the retained calculated 
contrast and correlation GLCM variables [7,48]. The GLM model used in this paper as-
sumed independence of observations in the response variables and homogeneity of vari-
ance. The generalized linear model (GLM) was made up of a linear predictor [49]: 

𝜂𝜂𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1𝑖𝑖 + . . . + 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖, (1) 

where 𝜂𝜂𝑖𝑖 is the mean response, 𝛽𝛽 is the estimators, and 𝑥𝑥 are the independent variables. 
There are two functions, as follows: 
• a link function that describes how the mean, 

𝐸𝐸(𝑌𝑌𝑖𝑖)  =  µ𝑖𝑖, (2) 

depends on the linear predictor 

𝑔𝑔(µ𝑖𝑖)  =  𝜂𝜂𝑖𝑖 (3) 

• a variance function that describes how the variance (var (Yi)) depends on the mean 

var (Yi) = φV (µ) (4) 

where the dispersion parameter 𝜑𝜑 is a constant. 
The model evaluation was achieved using a leave one out cross-validation (LOOCV) 

procedure on all 24 samples in R software (v.3.6.0) using the Caret (v.6.0-86) package, 
which is a K-fold cross validation with a K equal to N (the number of data points in the 
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dataset). LOOCV provides a robust estimate of the model performance that is unbiased 
[31]. We used root mean squared error (RMSE) metrics calculated from LOOCV to com-
pare the performances of the four models, respectively. The RMSE values were specifi-
cally designed for model validation and selection, especially where problems of overfit-
ting and underfitting were expected in a multivariate regression modelling framework 
[50]. Therefore, lower RMSE values favoured models that better fit the data, and achieved 
the highest prediction of the response variable [51]. In addition, residual plots of fitted 
verses residuals for each of the models are given in the appendix (Appendix A, Figure 
A1). 

 
Figure 4. The developed workflow showing the feature extraction, selection, and data analysis as used in this study. 
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3. Results 
3.1. Acoustic Discrimination of Sediments 
3.1.1. Multifrequency-Based Acoustic Discrimination 

The four sediment types identified under the Folk classification scheme formed the 
units of comparison between the sediment types and backscatter signatures at multiple 
frequencies. The wide overlap between the maximum (-10 dB) and minimum (-50 dB) rel-
ative backscatter intensity was clear for 30 kHz, 95 kHz, and 300 kHz (Figure 5). Gravelly 
sediments had a higher backscatter response, while sandy sediments were characterized 
by relatively lower backscatter signals. Meanwhile, sand showed a wider spread in 
backscatter responses than the other sediment groups, which was the highest for 30 kHz 
ranging between -15 dB and -45 dB (Figure 5A), and lowest for 300 kHz (Figure 5C). These 
differences in acoustic responses made it easy to discern gravel from sand, especially for 
the 30 kHz data, which showed the widest separation in the backscatter responses of sed-
iments. The 300 kHz data appeared to have a relatively low discriminatory power, as the 
backscatter responses for all sediments were near-identical. 
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Figure 5. Distribution of relative backscatter intensities for different sediment classes across the three operating frequen-
cies, represented as (A) 30 kHz, (B) 95 kHz, and (C) 300 kHz. The sediment classes are represented as dark pink, pink, 
yellow, and mango for gravel (1, 11, and 12), sandy gravel (7, 10, 16, and 17), gravelly sand (13, 18, 19, 21,22, and 23), and 
sand (2, 3, 4, 5, 6, 8, 9, 14, 15, 20, and 24), respectively, classified under the Folk sediment classification scheme (triangle). 
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3.1.2. Texture-Based Acoustic Discrimination 
A visual approach for discriminating the sediment grain size distribution (response 

variable) from the backscatter, contrast, and correlation as explanatory variables is given 
(Figures 6–9). This visual approach pre-examined the relationship between backscatter 
and  GLCM texture with sediments beyond single statistical parameter estimates like 
mean and median. The rasters showed fine scale variability in the texture intensity within 
and between frequencies for each sediment group. Variability was observed for backscat-
ter and contrast GLCM features, while correlation had a rough texture with no clear pat-
tern across all the frequencies and sediment classes. Generally, mean backscatter intensity 
was relatively higher for gravel than for all the other sediment classes, ranging between -
17.82±4.1 dB and -22.7± 11.79 dB at 300 kHz and 30 kHz, respectively (Figure 6). On the 
contrary, mean backscatter intensity was relatively lower for sand ranging between -
33.27±15.55 dB and -27.21±15.34 dB for 95 kHz and 30 kHz, respectively. Meanwhile the 
contrast feature showed a slight variation in texture intensity between frequencies for the 
same sediment types, except for gravel (Figures 6–9). For gravel, the texture intensity for 
contrast was between mean values of 0.19±0.16 and 0.22±1.9 for 30 kHz and 300 kHz, re-
spectively (Figure 6). On the other hand, minimal variation in the mean values of the cor-
relation feature was observed in all frequencies within and between sediment types (Fig-
ure 6–9). These variations in texture were partly in harmony with the respective graphs of 
the sediment grain size distribution, which confirms the existence of backscatter–sediment 
relationships (Figures 6–9). 

 
Figure 6. Multipanel plot showing the visual comparison of the textural intensity for the backscatters and their GLCM 
texture derivatives for station 12, representing the gravel class. 
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Figure 7. Multipanel plot showing the visual comparison of the textural intensity for the backscatters and their GLCM 
texture derivatives for station 10, representing the sandy gravel class. 
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Figure 8. Multipanel plot showing a visual comparison of the textural intensity for the backscatters and their GLCM tex-
ture derivatives for station 13, representing the gravelly sand class. 
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Figure 9. Multipanel plot showing a visual comparison of the textural intensity for backscatter and their GLCM texture 
derivatives for station 15 representing the sand class. 

3.2. Modelling of Sediment Grain Size 
First, we presented the results of Pearson’s correlation (ρ) between the mean sedi-

ment grain size and mean backscatter. The correlation between the mean backscatter and 
mean grain size was high for all the three frequencies (Figure A2). Mean backscatter at 30 
kHz had the strongest correlation coefficient of 0.91 and was statistically significant at 
p<0.05. This was followed by 95 kHz (ρ=0.88), with the weakest correlation at 300 kHz 
(ρ=0.74). Both were statistically significant with a p<0.05. On the other hand, the statistical 
association between the selected texture features (contrast and correlation) and mean 
grain size was generally weak, and all results were statistically insignificant (p>0.05), ex-
cept for correlation (300 kHz), which had the strongest correlation coefficient of 0.79 
(p<0.05). 

The 30 kHz model explained 84.3% (adjusted r2 = 0.82) variability in the sediment 
grain size, followed closely by the 300 kHz model and 95 kHz model at 78.2% (adjusted r2 
= 0.75) and 78.0% (adjusted r2 = 0.75), respectively. All the single-frequency models were 
statistically significant (p<0.05). Lastly, the multifrequency model yielded a statistically 
significant output (p<0.05) with 86.4% (adjusted r2 = 0.84) variability. These results suggest 
that most of the variation was explained by the multifrequency model, whose output was 
more dominated by the 30 kHz data than the 300-kHz and 95-kHz models. Based on the 
RMSE values, the 30-kHz model had the lowest RMSE value at 545.2, meaning it per-
formed relatively better than all the other models in terms of data fitting and performance. 
The multifrequency model at 545.8 was the next best, whereas for the 95-kHz model and 
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300-kHz models, with the highest RMSE values of 671.9 and 674.8, respectively, offered 
the lowest predictive capacity and performance. 

The last part included the prediction of surficial sediments for each model, showing 
spatial variation in the sediment grain size using the model estimates shown in Table 1. A 
visible spatial pattern was observed between coarser and finer sediments, especially for 
the 30-kHz and 95-kHz models (Figure 10). Overall, finer sediments were more wide-
spread than coarser sediments, especially in the central green-blue section of the 30-kHz 
and 95-kHz models (Figure 10). A closer inspection of the 500x500 m small area (within 
the red box) revealed that the 95 kHz and 30 kHz models distinguished an average grain 
size of 2.3 mm and 1.5 mm, respectively. In contrast, the 300 kHz and multifrequency 
models predicted a grain size of 1.3 mm and 1.2 mm in that order. Unknown here is the 
fine-scale bedform geometry, e.g., ripples that will change the grazing angles and cannot 
be separated from the surface scattering dependence on grain size. 

Table 1. Summary results of the four generalized linear model (GLM) models presenting the model estimates and signif-
icance levels at p<0.05 (with statistically significant variables denoted with asterisks) of the selected predictor variables. 
Mean backscatter and texture variables: contrast and correlation on the mean sediment grain size. 

Covariates Estimate Std. Error t-Value P-Value 
(1) 30 kHz model     

Intercept 5862.7 892.2 6.6 0.000002 * 
Backscatter  152.7 14.8 10.3 0.000000002 * 

Contrast -1.9 5.4 -0.3 0.7 
Correlation 2220.0 2170.1 1.0 0.3 

(2) 95 kHz model     
Intercept 6712.5 1153.7 5.8 0.00001 * 

Backscatter  172.2 20.6 8.4 0.00000006 * 
Contrast -4.1 15.4 -0.3 0.8 

Correlation 276.7 2134.9 0.1 0.9 
(3) 300 kHz model     

Intercept 4280.6 1537.8 2.8 0.01 * 
Backscatter  154.0 40.8 3.8 0.001 * 

Contrast 39.8 8.7 4.6 0.0002 * 
Correlation  552.5 3424.9 0.2 0.9 

(4) Multifrequency model     
Intercept 2465.8 757.7 3.3 0.004 * 

Backscatter 577.0 83.5 6.9 0.000001 * 
Contrast 26.2 10.7 2.4 0.02 * 

Correlation -4998.9 2392.9 -2.1 0.05 
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Figure 10. Prediction of surficial sediment grain size from GLM. The following four models are shown and compared: 30 
kHz model, 95 kHz model, 300 kHz model, and the multifrequency model with the 500x500 m small areas (red polygons), 
showing subtle variation in mean sediment grain size. The values are rescaled between 1 μm (clay/silt) and 120,000 μm 
(cobbles), and standard deviation stretching is applied on a colour ramp to accentuate features. The specific grain size 
classes for different sediment types are as follows: cobble (64,000–120,000 μm), pebble (4000–64,000 μm), granule (2000–
4000 μm), very coarse sand (1000–2000 μm), coarse sand (500–1,000 μm), medium sand (250–500 μm), fine sand (125–250 
μm), very fine sand (62.5–125 μm), and clay/silt (≤ 62.5 μm). 

4. Discussion 
Traditionally, benthic habitat mapping has relied on single-frequency multibeam 

systems. However, with the improvement in sonar technology, multifrequency acoustic 
data acquisition is increasingly being used in recent studies [3,4,15]. The present study 
provides a robust framework with results highlighting the value of backscatter data ac-
quired at multiple frequencies for characterising sediments in the range of coarse sand to 
gravel. We demonstrate the potential application of a combined approach to seafloor map-
ping and characterization, while underlining the value of optimizing the acquisition plat-
forms and the reanalysis of existing legacy datasets. 

4.1. Acoustic Discrimination of Sediments 
Sediment properties have been used as abiotic proxies for seabed habitats [7,14]. Sed-

iments determine the types of biological communities associated with benthic marine en-
vironments. Subsequently, these communities can impact on the total volume scattering 
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acoustic responses of sediments [7,17]. However, direct quantification of geotechnical 
properties of the seafloor (e.g., grain size) is always a challenge. In this paper, we used 
sediment mean grain size as our response variable, and backscatter and GLCM features 
as our explanatory variables, an approach consistent with the literature [14,25]. 

Four main sediments’ classes (gravel, sandy gravel, gravelly sand, and sand) were 
identified based on the percentage proportion of grain size, with sand dominating the 
samples. The mixed sediments in this study area are characteristic of glaciated continental 
margins deposited by glacial processes and subsequently reworked by hydrodynamics. 
This type of mixed sediment dominates continental shelves in many areas of the Earth 
[36,52]. For researchers working in continental shelves, the mix of sediments has im-
portant applications for sensor choices for mapping in former glaciated margins vs. non-
glaciated margins. The initial analysis demonstrated that the 30, 95, and 300 kHz re-
sponses varied widely when sediments changed from gravel to sand sediments. We show 
key thresholds for discriminating between gravel and mixed sand sediments ranging be-
tween -10dB and -50dB, with a higher acoustic signal recorded for gravel. The higher 
acoustic signal for hard and coarse-grained sediments is associated with a higher acoustic 
impedance contrast at the surface-water interface, subsequently returning a higher acous-
tic signature to the transducer, while finer sediments tend to scatter most of the signals 
away from the transducers [53]. In fact, a wider variability in backscatter responses be-
tween -15 dB and -45 dB for sandy sediments was captured for the lower frequency 30 
kHz dataset, an observation which matches with the results of [7]. This initial finding pro-
vides evidence for the presence of a frequency-dependency component of backscatter in-
fluenced by both the interface and volume scattering regime [2,6,17,22]. The relatively 
higher backscatter responses for softer sediments has been linked to a strong volume scat-
tering return [53], which depends on the penetration depth of the acoustic signal beyond 
the small bite depth (5–10cm) of the grab sample [2,8], and favours the lower frequency 
system (30 kHz). Furthermore, the lower frequency (30 kHz) has a better separation be-
tween gravelly and sandy sediments than the 95 kHz and 300 kHz datasets [2,9,17,54]. 

From our preliminary interpretations, all the sediment types across the three frequen-
cies appeared slightly texturally dissimilar, with minimal variation within sediments (Fig-
ures 6–9). The lower frequency (30 kHz) has a relatively higher textural intensity for 
backscatter than the 300 kHz, especially for sand. This exploration revealed more detail 
compared to the use of a single statistical measure of distribution (e.g., mean), which al-
ways masks out the fine scale variability. However, this high level of detail also rendered 
these small images to the influence of noise and size-specific texture sensitivity, hence 
caution needs to be exercised while interpreting the texture intensity [10,30,40]. 

4.2. Modelling Sediment Grain Size 
Generally, a strong correlation exists between mean backscatter and mean grain size 

[14,24]. In contrast, the correlation between the individual texture features (contrast and 
correlation) and sediment grain size was generally weak and statistically insignificant 
(p>0.05), suggesting that backscatter intensity is the most important predictor variable in 
this study. The poor performance of the GLCM texture can be linked to their sensitivity 
to survey geometry [30], analysis windows, distance between pixels, and the number of 
grey levels [10,27,40]. Similarly, the GLCM texture relies on pulse length and is unreliable 
at a high incidence angle [54]. Using only a selection of incidence angles while excluding 
the near-nadir and outer beams’ regions, and dealing with a single survey line, has been 
proposed as a solution to these limitations mentioned; especially when discriminating 
large seafloor features [30,40]. Nevertheless, several other studies that use a mosaic ap-
proach instead of portions of incidence angles exist [7,15,55]. 

For single frequency models, the 30 kHz models yielded a better statistical perfor-
mance with adjusted r2 values of 0.82 and explained the most variability (84.3%), com-
pared with the 95 kHz and 300 kHz models. Our model evaluation based on RMSE values 
indicated that the 30 kHz data performed best, despite its originally intended purposes 
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for deep-water mapping based on the limitations and caveats described in this study [56]. 
This highlights the additional value of low frequency swath systems in shallow water, 
providing an additional capacity for seafloor characterisation. From a processing perspec-
tive, the higher frequency (95 kHz and 300 kHz) data add little value to the model accu-
racy, and their inclusion present a burden in terms of processing power, data storage, and 
operational interferences during repeat acquisitions. However, these findings do not ne-
gate their multiple uses in other marine applications (e.g., hydrography and object detec-
tion); rather, they emphasize the value of using a combined approach to seafloor mapping 
and characterisation. In addition, the use of low frequency data could be a useful product 
to complement statutory mapping, even if it is outside the operational range of the system. 
All these highlight the value of maximising the acquisition platforms and the reanalysis 
of existing materials from legacy datasets. 

While other studies have proposed acquisition of multifrequency backscatter from a 
single source [7,9,55], our study uses individual information from each single-frequency 
system to generate a multifrequency dataset using the PCA approach [39]. Multifrequency 
acquisition from a single source eliminates the potential problems associated with differ-
ences in sonar configuration, survey geometry, and signal penetration variation, which 
might influence the final output [2,17]. Our analysis shows negligible differences between 
the multifrequency model output and the 30 kHz model in terms of performance. This 
indicates that the 30 kHz data dominate the variance component of the multifrequency 
output, overshadowing the contribution of the 95 kHz and 300 kHz datasets. Generally, 
the results show a marginal gain of low single-frequency (30 kHz) data over higher fre-
quency data (95 kHz and 300 kHz). However, the potential ability of low frequency sys-
tems to discriminate fine-scale geomorphology is low compared with higher frequency 
systems, and fully depends on the question under investigation. Visually, the predicted 
surfaces of the sediment grain size reveal that finer sediments are more widespread at the 
central section, especially for 30 kHz and 95 kHz models (Figure 10). The higher frequency 
(300 kHz) does not reflect as much variability compared with what is captured by the low 
frequency (30 kHz) model, and is likely dominated by reflection, making the sediments 
look texturally similar. This is in agreement with previous studies that indicate that acous-
tic maps based on single-frequency data may not always show the same parts of the sea-
floor because of the effect of depth and differences on signal penetration [2,9]. In addition, 
the poor performance of the 300 kHz model can be linked to the presence of the nadir 
response dominating the 300 kHz backscatter mosaic. Backscatter signal near the nadir 
region is highly variable and has minimal power to discriminate substrates [57]. In addi-
tion, the use of only 24 samples dominated by unconsolidated coarse sediments, and a 
possible greater signal penetration in favour of the lower frequency 30 kHz data [2,6,17], 
not only affects the reliability of the results, but also adds to the complexity in interpreta-
tion. 

5. Limitations and Future Research 
The major limitation of this study is the small sample size that was available to de-

velop and validate our models. This is mainly because of the opportunistic analysis of 
existing datasets, and the physical difficulties of working in highly dynamic sea condi-
tions (e.g., tides) and coarse sediments for granulometric analysis. Furthermore, combin-
ing datasets from multiple sources introduces additional complexities such as collinearity, 
noise, and lack of independence, which might not have been fully resolved in this study. 
Notwithstanding these limitations, the study offers a robust modelling framework, and in 
future, the presence of a large sample size would allow for some of these ideas to be tested 
in greater detail. In the future, we hope to further examine the frequency dependency 
component of backscatter to answer ecological questions by incorporating bathymetry, 
bathymetry derivatives, and biological data. All these variables have the potential to be 
included as inputs to seafloor classification and benthic habitat mapping to further 



Remote Sens. 2021, 13, 1539 20 of 25 
 

 

augment the value of multifrequency MBES backscatter data for area-based monitoring 
and management in marine protected areas and other areas of the seabed. 

6. Conclusions 
The present study was designed to test the potential application of using multifre-

quency multibeam backscatter to predict sediment grain size. Visual analysis of the data 
enhances our understanding of the frequency variability of texture for different sedi-
ments, which are usually masked whenever measures of central tendency like mean and 
median values are used. The results of the study demonstrate a marginal gain of single 
low-frequency sources (30 kHz) over multifrequency analysis, which presents a burden 
in terms of processing power, data storage, and operational interferences during acquisi-
tion. This means that the use of a relatively low-frequency system initially designed for 
deep-water mapping might also be applicable in shallow water habitats or sediment dis-
crimination, especially for former glaciated continental margins. However, the generali-
zability and wider application of these results require caution because they are site and 
installation specific, as the MBES systems used here lacked absolute calibration. Further-
more, they offer useful insights into the science community (e.g., GEOHAB) and may well 
have implications for other marine applications. We recommend that standardizing the 
acquisition and processing parameters of MBES data will have great benefits to multifre-
quency backscatter investigations. Moreover, with more availability of multifrequency 
backscatter data in the future, our ability to monitor and manage marine environments 
with similar geological and ecological settings will greatly be improved. 
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Figure A1. Residual plots of the Generalized Linear Models. 
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Figure A2. Pearson correlation between mean backscatter, mean texture (contrast and correlation) and mean sediment 
grain size. 

Table A1. A list and description of Haralick texture features (Source: Lu & Batistella, 2005). 

Features Description Equation 

Contrast Measures local variations in the GLCM. Co = � i 𝑃𝑃i,j(i−j)2
N−1

i,j=0

 

Correlation 
Measures the joint probability occurrence of 

the specified pixel pairs. 
CC = � i 𝑃𝑃i,j �

(i −𝑀𝑀𝐸𝐸)(j −𝑀𝑀𝐸𝐸)

�VAiVAj
�

N−1

i,j=0

 

Dissimilarity 
Measures mean of the grey level distribution 

of the image. 

 

DI = � i 𝑃𝑃i,j|i − j|
N−1

i,j=0

 

 

Entropy 
Measures the lack of spatial organization in 

computational window. 
EN = � i 𝑃𝑃i,j(− ln𝑃𝑃i , j)

N−1

i,j=0

 

Homogeneity Measures closeness of the distribution of ele-
ments in the GLCM to the GLCM diagonal. 

HO = � i 
𝑃𝑃i,j

1 + (i − j)

N−1

i,j=0

 

Mean Measures the average of the grey levels. ME = � i 𝑃𝑃i,j

N−1

i,j=0

 

Second moment 
Measure of heterogeneity that has higher 

weights on differing intensity level pairs that 
deviate more from the mean. 

SM = � i 𝑃𝑃i,j2
N−1

i,j=0

 

Variance 
A measure of uniformity that gives the sum of 
squared elements in the GLCM (also known as 

uniformity). 
VA = � i 𝑃𝑃i, j(i −𝑀𝑀𝐸𝐸)2

N−1

i,j=0
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