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Abstract: Mangrove forests, as important ecological and economic resources, have suffered a loss in
the area due to natural and human activities. Monitoring the distribution of and obtaining accurate
information on mangrove species is necessary for ameliorating the damage and protecting and
restoring mangrove forests. In this study, we compared the performance of UAV Rikola hyperspectral
images, WorldView-2 (WV-2) satellite-based multispectral images, and a fusion of data from both
in the classification of mangrove species. We first used recursive feature elimination-random forest
(RFE-RF) to select the vegetation’s spectral and texture feature variables, and then implemented
random forest (RF) and support vector machine (SVM) algorithms as classifiers. The results showed
that the accuracy of the combined data was higher than that of UAV and WV-2 data; the vegetation
index features of UAV hyperspectral data and texture index of WV-2 data played dominant roles;
the overall accuracy of the RF algorithm was 95.89% with a Kappa coefficient of 0.95, which is more
accurate and efficient than SVM. The use of combined data and RF methods for the classification of
mangrove species could be useful in biomass estimation and breeding cultivation.

Keywords: mangrove species classification; hyperspectral; WorldView-2; feature selection; ma-
chine learning

1. Introduction

Ecosystems are the natural environmental conditions on which all organisms in the
natural world depend, rendering many important services and continuously maintaining
species and genetic diversity [1]. The Earth’s three major ecosystems are wetlands, forests,
and oceans, which are known as the “kidneys of the Earth,” “natural reservoirs” and “trea-
sure troves of species,” respectively. The mangrove ecosystem is one of the most important
subsystems of global wetland ecosystems and one of the most biologically rich ecosystems
on Earth, so it plays a highly important function in shallow wetland ecosystems [2,3].
Mangroves are tidal wetland woody biomes consisting of evergreen shrubs or trees with
mangrove plants growing in tropical and subtropical coastal intertidal zones, and are glob-
ally recognized as carbon stock-rich ecosystems that provide irreplaceable social, economic,
environmental, and ecological services to humans and coastal organisms [4,5]. In terms of
social and economic aspects, the mangrove is increasingly valued by decision-makers from
governments, NGOs, and the general public. Growing awareness has led to numerous eco-
tourism sites, and mangrove museums have been established to facilitate educational and
scientific research endeavors while promoting socioeconomic development. The unique
biochemical properties of mangroves enable them to produce a variety of unique natural
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products that have high medicinal value [6]. In terms of environmental and ecological as-
pects, mangroves have high primary productivity and can play multiple roles such as flood
and tide resistance, coastal erosion prevention, pollutant filtration, seawater purification,
carbon sink, ecological improvement, and biodiversity maintenance [7,8], and are known
as “natural coastal guardians,” “wave-cancelling pioneers,” and a “biological purification
sieve” [9,10]. In 2000, the total global mangrove area was estimated to be 13.77 million hm2,
accounting for 0.7% of the world’s tropical forest area, distributed in 118 countries and
regions [11]; however, according to a recent NASA study [12], the global mangrove area
decreased by more than 3300 km2, about 2% of the total mangrove area, by 2016, mainly
due to the impact of human activities. The high population pressure in coastal areas has
led to the conversion of mangroves into construction land and aquaculture ponds, one of
the major reasons for the loss of mangroves [11,13,14]. According to a report by the Global
Mangrove Alliance (a collective of international NGOs), the degradation of mangrove
forests will continue until 2030 [15]. The global decline of mangroves will be slowed by the
“Mangroves for the Future program” launched by the International Union for Conservation
of Nature (IUCN) and the United Nations Development Program. Recognizing the impor-
tance of mangrove protection, the Chinese government issued a Special Action Plan for
Mangrove Protection and Restoration (2020-2025) to organize the protection and restoration
of mangroves in five provinces/autonomous regions, one of which is Hainan Province,
in order to safeguard the service functions and social benefits provided by mangroves in
the country. As sensitive ecological indicators, mangroves require monitoring, analysis,
and species distribution mapping to help us understand the ecological changes along the
coastal zone and provide a theoretical basis for resource planning [16] and the prevention
of the invasion of exotic species.

Mangroves grow in intertidal zones, where the complex topographic conditions pose
considerable challenges to traditional forestry statistics, while the use of remote sensing
images for species classification mapping can effectively diminish the field workload of
foresters and the risk of accidents. In the 1970s, Lorenzo et al. first used Landsat images for
mangrove monitoring [17]. Since 1986, as the resolution of SPOT remote sensing images
exceeded 10 m, satellite remote sensing images have been used for mangrove monitor-
ing [18–20]; however, the accuracy of mangrove species classification is not satisfactory due
to the limitations of spectral resolution and the spatial resolution of satellite images [21].
Later, with the enhanced resolution of new sensors, the gradual development of hyperspec-
tral and radar technologies, and the widespread promotion of unmanned aircraft remote
sensing platforms, we have made breakthroughs in the species classification of mangroves.
At present, the main satellite-based sensors used in mangrove species classification studies
are the WorldView series [22–24], Pleiades series [25,26], Quickbird [27,28], Ikonos [27,29],
and Sentinel-1 [30,31]. Many scholars have been trying to improve the accuracy of man-
grove species classification by introducing new remote sensing data sources and combining
multisource remote sensing data. Chen et al. [31] and Pham et al. [32] experimentally com-
bined Sentinel-1 radar data with optical remote sensing data to overcome the influence of
cloudy and rainy weather and have obtained more accurate three-dimensional information
on the spatial structure of mangrove communities [30].

Unmanned aerial vehicle (UAV) platforms have rapidly emerged in the field of man-
grove species classification as an aid for accuracy verification [33] and the primary data
source for species classification [23,34], with the advantages of very high spatial resolution
and flexible acquisition cycles. Kuenzer et al. successfully used Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) data to improve the upper limit of mangrove classification
accuracy [35]. Cao et al. used images acquired by an unmanned aircraft with a UHD
185 hyperspectral sensor combined with Digital Surface Model (DSM) data and support
vector machine (SVM) classification algorithm to finely classify mangroves and achieve an
accuracy of 88.66% [36]. The machine learning-based approach has grown the mainstream
algorithm in the field of tree species classification, with the advantage of being able to
effectively mine and utilize detailed information such as spatial structure [37]. Franklin
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et al. applied the random forest (RF) algorithm to classify hardwood forests and achieved
an accuracy of 78% [38]. Li et al. compared RF and SVM algorithms for the classification
of mangrove species in Hong Kong based on WV-3 and LiDAR data and achieved an
accuracy of 88% [24]. Wang et al. compared decision tree (DT), RF, and SVM methods for
species classification of artificial mangroves; the object-based RF algorithm had the highest
accuracy of 82.40% [25].

In summary, the main remote sensing data sources applied to achieve good results in
mangrove species classification up to now are single data sources, with high spatial reso-
lution or high spectral resolution UAV remote sensing images combined with radar data;
however, few studies have used fused images of multisource optical remote sensing data
for mangrove species classification, especially high spatial resolution and hyperspectral
images. The use of fusion technology to combine the advantages and complementarity of
UAV hyperspectral images with WorldView-2 satellite images can significantly improve
visual interpretation, reduce uncertainties and errors, present sufficient space for data
analysis to play, and is conducive to improving the capability and accuracy of environ-
mental dynamic monitoring. The great contribution of rich spectral information of UAV
hyperspectral data to species classification of mangroves has also been confirmed, but
only a few scholars have invested in the research because high-quality data are difficult
to obtain. The fusion of UAV hyperspectral images and WorldView-2 satellite images can
make up for the lack of a blue band of UAV images and obtain remote sensing images with
high spatial resolution, which will lead to greater accuracy and wide application to species
classification of mangroves.

This study explored the capacity of UAV hyperspectral imagery, WV-2 satellite im-
agery, and the combined data of both in mangrove species classification and compared the
classification performance of two machine learning algorithms, RF and SVM. The objectives
of this study are (1) to improve the accuracy of mangrove species classification by using
WV-2 images in combination with UAV hyperspectral images; (2) to test the most favorable
spectral bands, vegetation indices, and texture features for mangrove species classification;
and (3) to evaluate the performance of RF and SVM classifiers.

2. Materials and Methods
2.1. Study Area

Hainan, as the province with the largest number of mangrove species and the richest
biodiversity in China [39], has as many as 26 species of true mangrove plants and 12 species
of semi-mangrove plants, as well as more than 40 species of mangrove-associated plants
growing in or on the forest edge and some associated plants on the landward side of the
mangrove [40]. The Qinglan Harbor Mangrove Reserve on Hainan Island was established
in 1981, is the second-largest mangrove nature reserve established in China, and belongs
to the provincial-level nature reserve in China. It is also one of the best developed and
most abundant mangrove forests in China, belonging to a typical oriental taxon with the
largest continuous distribution area and the most numerous and typical mangrove species
in China, with a relatively common mixed growth phenomenon and trees up to 15 m or
more in height. It has high research and ornamental value [41].

The study area (shown in Figure 1) is located in the southern part of Qinglan Harbor
Mangrove Reserve, with a geographical location of 110◦47′22.70′ ′–35.65′ ′E, 19◦37′33.46′ ′–
39.65′ ′N, covering an area of 3 hm2. The area has a tropical monsoon island climate, with
an average annual temperature of 23.9 ◦C and abundant rainfall. The average annual
precipitation is 1650 mm. The soil is mostly alluvial and chalky clay, the terrain is flat, and
the average tidal difference is about 0.89 m [42].
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in line with the typical oriental taxon characteristics of the distribution of mangrove spe-
cies in Hainan mangrove communities. 
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The field surveys were conducted in the southern area of Qinglan Harbor Mangrove 
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2020. The distribution of mangrove species was mapped, assisted by the use of a handheld 
Global Positioning System-Real-Time Kinematic (GPS-RTK) device (Trimble GEO 
6000XH) with a horizontal positioning accuracy of 1 cm + 1 ppm to record the precise 
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ficult to conduct tree species surveys, so the surveys were mainly conducted along paths 
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erence for the selection of training and validation samples for classification. According to 
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As shown in Table 1, with reference to the mangrove species distribution map of the 
field survey, a total of 1800 sample points were selected from the study area by visual 
interpretation, based roughly on the percentage of area in each class. To determine the 
stability of the classification model, the mangrove species categories were divided into 
training and validation samples at a ratio of 7:3, as shown in Table 1. The complex and 
inaccessible topography in the northeastern part of the study area resulted in poor uni-
formity of sample distribution, but the available samples covered all mangrove tree spe-
cies in the study area. 

  

Figure 1. Map of the study area, Hainan, and the field samples. Note: Rhizophora apiculata Blume (RB), Bruguiera sexangula
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The four dominant mangrove species in the study area are Rhizophora apiculata Blume
(RB), Bruguiera sexangula (BS), Hibiscus tiliaceus Linn. (HL), and Sonneratia caseolaris (SC),
which, mixed with coconut trees and fish vines, lead to a complex community structure, in
line with the typical oriental taxon characteristics of the distribution of mangrove species
in Hainan mangrove communities.

2.2. Field Survey and Data Collection

The field surveys were conducted in the southern area of Qinglan Harbor Mangrove
Reserve from 18–23 August 2019, 27 December 2019 to 8 January 2020, and on 23 October
2020. The distribution of mangrove species was mapped, assisted by the use of a handheld
Global Positioning System-Real-Time Kinematic (GPS-RTK) device (Trimble GEO 6000XH)
with a horizontal positioning accuracy of 1 cm + 1 ppm to record the precise location
of 73 mangrove samples. Since the interior of the study area is swampy, it is difficult to
conduct tree species surveys, so the surveys were mainly conducted along paths reached
by narrow dirt roads in the study area. To enrich the training and validation sample sets,
multiple collections were made for each tree species to ensure valid and usable samples.
The final tree species distribution information was determined to provide a reference for
the selection of training and validation samples for classification. According to the field
survey, BS is the dominant tree species in the area, SC is mainly distributed on the seaside,
and Derris trifoliata will grow around the trunks and canopies of HL, BS, and RB.

As shown in Table 1, with reference to the mangrove species distribution map of the
field survey, a total of 1800 sample points were selected from the study area by visual
interpretation, based roughly on the percentage of area in each class. To determine the
stability of the classification model, the mangrove species categories were divided into
training and validation samples at a ratio of 7:3, as shown in Table 1. The complex
and inaccessible topography in the northeastern part of the study area resulted in poor
uniformity of sample distribution, but the available samples covered all mangrove tree
species in the study area.
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Table 1. Vegetation types and their samples for image classification.

Vegetation Types
Training Testing

GPS Point
Samples Pixels Samples Pixels

Bruguiera sexangula (BS) 66 250 66 100 16
Sonneratia caseolaris (SC) 76 146 76 54 7

Hibiscus tiliaceus Linn. (HL) 54 194 54 106 9
Rhizophora apiculata Blume (RB) 51 168 51 82 18

Coconut palm (CP) 40 66 40 34 7
Impervious surface (IS) 49 150 49 50 6

Water 92 267 92 133 10
Total 428 1241 428 559 73

After the classification results were obtained, field verification was conducted again
on 23 October 2020, and the field sample data of GPS points in the study area continued to
be collected, with a total of 73 GPS points, as shown in Table 1.

2.3. Remotely Sensed Data and Preprocessing
2.3.1. UAV Hyperspectral Image

Mangroves are best observed during early spring and winter in the tropical monsoonal
island climate of Hainan, which can increase the difficulty of species classification due to
the similarity of spectral characteristics of mangroves during the peak growth period [43].
The high-resolution hyperspectral image data were acquired from 8:00 to 10:00 a.m. on
30 December 2019, during the low tide (24-38 cm) in Qinglan Harbor when cloud cover
was scarce and the vegetation was in the growing season. The DJI UAV M600Pro was
equipped with a Rikola hyperspectral camera to receive data. The flight altitude was set to
120 m and the speed was 4.5 m/s. The hyperspectral sensor can capture 45 spectral bands
with a spectral interval of 9 nm, among which bands 1-31 are visible and bands 32-45 are
near-infrared. The main parameters are provided by the manufacturer, as shown in Table 2.

Table 2. Rikola camera: specifications and selected sensor settings for this experiment.

Parameters Specification

Weight 720 g
FOV 36.5◦

Physical pixel size 5.5 µm
Focal length 9 mm

Spectral range 500-900 nm
Bands 45

FWHM 5-13 nm
Power supply LIPO battery
Data storage Flash memory

Quantized value 12 bit

Systematic error arising from the limitations of the instrument itself and the measure-
ment method is inevitable in the process of acquiring hyperspectral images with a UAV
platform, so corrections are required. Based on the characteristics of Rikola hyperspectral
images, systematic correction of hyperspectral images was carried out based on image
quality checks. Through radiometric calibration, the DN value of the original image was
converted into the reflectance of the feature, which can truly reflect the spectral properties
of the feature. Dark current correction eliminated the phenomenon of the CMOS sensor
unit causing a dark current even without light due to process defects. Lens vignetting
correction deals with the off-axis light incident at the edges producing different degrees
of attenuation due to the influence of the lens, coupled with the lens vignetting effect
caused by the unevenness of the CMOS light-sensitive unit. In addition, the hyperspectral
images were preprocessed, including band-to-band registration, atmospheric correction,
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and spectral noise reduction processing, which obtains spectral images with more refined
information and better quality, obviously improves the highly similar spectral curves of
some dominant tree species, and guarantees adequate sample selection and classification
processing in the later stages.

2.3.2. WorldView-2 Images

To ensure a high degree of consistency with the spatial distribution of mangrove
forests at the time of UAV photography, the WorldView-2 (WV-2) satellite optical image
used in this study was acquired on 8 May 2020, when the study area was at low tide
with no cloud coverage. The WV-2 image has one 0.5-m spatial resolution panchromatic
band and eight 2-m spatial resolution multispectral bands in the wavelength range of
400–1040 nm [44]. In addition to the blue, green, red, and near-infrared bands, WV-2 has
three special bands: coastal blue, yellow, and red-edge. The blue band of the WV image
can compensate for the limitations in UAV hyperspectral images. The green, yellow, and
red-edge bands are more sensitive to chlorophyll and contribute to the species classification
of mangroves [24,45].

The WV-2 images were successively processed through radiometric correction and
atmospheric correction steps [46], and the image DN values were converted to radiance
and then to top-of-atmosphere reflectance concerning the sensor specifications released
by DigitalGlobe, to remove image noise generated during transmission [45]. The image
was also geometrically corrected according to the GPS coordinates of landmark features
collected in the field at Qinglan Harbor, georeferenced to the World Geodetic System
(WGS84) 1984 datum and the Universal Transverse Mercator (UTM) zone 49 N projection,
with an error control of 2 pixels.

2.4. Feature Construction and Selection Method

The rich data from hyperspectral and multispectral images make it possible to classify
mangrove species; however, if the raw data are not extracted and preferred, the large
amount of redundant information will provoke a dimensional disaster, and thus overfitting
will occur in the image classification process. Therefore, dimensionality reduction through
techniques such as feature extraction and feature selection is critical. With the improvement
of image spectral resolution, spectral feature extraction has become a research hotspot in
the field of computer vision, and the curve features, similarity metric features, operations,
and transformation methods of spectra are gradually developed. At present, there are more
than 50 kinds of vegetation indices applied in vegetation classification research [47,48]. The
vegetation indices are indirectly related to ecological factors such as soil and water in the
environment. According to vegetation indices, we can reflect biological parameters such
as the number of photosynthetic activity products, leaf area index, and primary produc-
tivity of vegetation, and the differences of biological parameters among different kinds
of vegetation provide an entry point for the application of vegetation indices for species
classification [49]. The texture structure is characterized by the reflectance values between
image elements, which can take into account the macroscopic and microscopic structures
of the images [50]. The differences in texture features between different mangrove species
provide an important basis for target identification and classification, and the addition of
textural information can greatly improve the classification accuracy.

Numerous studies have proven that vegetation index features and texture features are
beneficial for mangrove species classification, and the performance of feature extraction
determines the effectiveness of image classification [36,51]. In this study, based on the
original spectral bands of unmanned aerial vehicle hyperspectral images and WV-2 images,
respectively, a series of processing steps was conducted: (1) Thirty-eight vegetation indices
were extracted by a mathematical transformation method, as shown in Table A1, which
enhanced the vegetation information and amplified the differences between vegetation
classes. (2) Eight texture measures for each band were calculated using a gray level
concurrence matrix (GLCM), including mean, variance, homogeneity, angular second
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moment (SM), contrast, dissimilarity, entropy, and correlation, as shown in Table A2, where
the moving windows are 3 × 3, 5 × 5, and 7 × 7, the moving step is 1, and the moving
direction is 0◦. (3) A principal component analysis was performed on the image, the
first three components with more than 90% of the information were extracted, and eight
texture measures were extracted for each component. Together with the spectral reflectance
features of the image bands, a total of 799 hyperspectral image features and 153 WV-2
image features were finally extracted, as shown in Table 3.

Table 3. Object features extracted for classification *.

Object Features UAV Hyperspectral Image WV-2 Image

Spectral bands
45 Spectral bands 8 Spectral bands

The first three bands obtained by PCA The first three bands obtained by PCA

Vegetation indices
BCRI, CRI1, CRI2, Gitelson2, MSAVI,

NDVI750, NDVI800, OSAVI2, PRI, RDVI,
REP, RG, Rre, SR750, SR890

ARVI2, BWDRVI, CCCI, CTVI, CVI, DVI75,
DVI85, DVI73, EVI, EVI2, GARI, GEMI, IVI,
LogR, NDVI75, NDVI85, NDVI83, NDVI86,

NDWI37, NDWI38, SR75, SR85, TSAVI

Textural index
contrast, correlation, dissimilarity,
entropy, homogeneity, mean, sm,

variance

contrast, correlation, dissimilarity, entropy,
homogeneity, mean, sm, variance

* See Appendix A for detailed definitions.

For feature preference, this study first eliminated features with correlations greater
than 85%, and then implemented recursive feature elimination in a random forest algorithm
(RFE-RF) to initialize the set of desired features to the entire dataset, and performed
backward sequential selection from the full set, eliminating one feature at a time with the
lowest ranking criterion score until a subset of features that are most important for the
classification is formed, which can effectively improve the stability of variable selection [52].

2.5. Classification and Validation

A pixel-based mangrove species classification and accuracy comparison uses UAV
hyperspectral images, WV-2 multispectral images, and fusion images of both. Based on
the RFE-RF algorithm for feature selection and determination of five features and the
algorithms of random forest (RF) and support vector machine (SVM), which are accurate
and efficient in the field of mangrove species classification, we classified and tuned the
model parameters. To determine the stability of the classification model, 70% of the samples
were randomly selected as training data and 30% as validation data. The overall accuracy,
Kappa, and confusion matrix were used to estimate the accuracy of the classification results.

2.5.1. Random Forest Classifier

The RF algorithm, proposed by Breiman et al. in 2001 [53], is a classifier consisting of
multiple independent decision trees for category prediction of randomly selected sample
information. In constructing decision trees, data are extracted from the training sample
set by the bootstrap sampling method, and each decision tree is composed of numerous
binary trees, which are recursively split from the root node to bifurcate the training sam-
ple set according to the principle of minimum node purity [54]. Each decision tree is a
classifier; numerous independent decision trees integrate the RF algorithm model and the
random forest votes on the classification result of each decision tree to decide the final
classification result. The RF algorithm has the advantages of being insensitive to param-
eters, being less prone to overfitting, fast training, and performing well on interspecies
classification problems.

The parameters that need to be modified in the classification modeling process of the
random forest algorithm are mtry (number of variables randomly sampled as candidates at
each split) and ntree (number of trees to grow). To reduce the chance due to single division
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of the training and validation sets and to improve the generalization ability, we used a
10-fold cross-validation method, randomly partitioning the original sample into 10 equal
size subsamples. Of the 10 subsamples, a single subsample is retained as the validation data
for testing the model, and the remaining 9 subsamples are used as training data; the cross-
validation process is then repeated 10 times. The whole process is implemented through
the Caret package (https://topepo.github.io/caret/, accessed on 12 December 2020) of
R/RStudio. In this study, the optimal ntree is 500 and mtry is 1 using the grid search
method (https://machinelearningmastery.com/tune-machine-learning-algorithms-in-r/,
accessed on 12 December 2020).

2.5.2. Support Vector Machine Classifier

Support vector machine (SVM) is a binary classification model based on statistical
learning theory, which was submitted by Vapnik et al. (1964) and received widespread
attention in the 1990s [55]. The learning strategy of the SVM algorithm is to find the optimal
hyperplane in the feature space, minimizing the intraclass interval and maximizing the
interclass interval, which can be formally understood as solving a linearly constrained
convex quadratic programming problem [56]. With the escalation of user requirements,
SVM has been gradually extended from applying only to binary classification problems
to multiclassification aspects. One of the more common methods is to construct multiple
binary classifiers and combine them in some way to achieve multiclass classification [24].
This algorithm has been widely used in hyperspectral fields due to its strong robustness
and outstanding generalization ability in the processing of high-dimensional data.

The main parameters that need to be modified by the support vector machine algo-
rithm in the classification modeling process are the kernel function, cost (regularization
parameter of the error term), and gamma (handling nonlinear classification hyperparam-
eter). Based on research experience and preliminary experimental results, it is known
that the radial basis function (RBF) has the highest accuracy when applied to mangrove
studies [57], so in this study the most generalized form of the SVM algorithm, RBF, is
used. By calling the tune function (https://www.rdocumentation.org/packages/e1071/
versions/1.7-5/topics/tune, accessed on 13 December 2020) in the e1071 package in the
R/RStudio project, the optimal cost and gamma of RBF are 64 and 1, respectively, obtained
in parallel and efficiently using the grid search method.

2.5.3. Accuracy Assessment

The verification samples were elected based on the distribution map of tree species
distribution blocks in the field survey in 2019. To balance the influence of the accuracy
component of each category on the overall accuracy, 1800 sample points were selected
according to the area ratio of each class; 70% were randomly selected for classifier mod-
eling, and 30% were randomly selected for independent accuracy verification. Due to
the complicated terrain and inaccessible factors in the northeast of the study area, the
distribution uniformity of samples was inadequate, but the existing samples covered all
the dominant tree species in the study area. By calculating the overall accuracy, Kappa
coefficient, and confusion matrix of the fine classification results of mangrove tree species,
we carried out a parallel precision evaluation and analysis.

As the point selection of the traditional precision verification method is based on visual
interpretation, there will be confusion between the single wood edge and the mixed area of
the tree species with similar characteristics. To ensure the accuracy of classification results,
73 GPS waypoints collected on 27 December 2019 and 23 October 2020 were also used for
independent validation in this study, and the confusion matrix method was adopted to
improve the accuracy of the evaluation.

https://topepo.github.io/caret/
https://machinelearningmastery.com/tune-machine-learning-algorithms-in-r/
https://www.rdocumentation.org/packages/e1071/versions/1.7-5/topics/tune
https://www.rdocumentation.org/packages/e1071/versions/1.7-5/topics/tune
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3. Results and Discussion
3.1. Feature Selection and Applicability Analysis

The 952 feature sets, consisting of UAV hyperspectral images and WV-2 images, were
created using the RFE-RF method. After several iterations, as shown in Figure 2, when the
number of variables is five, the overall accuracy reaches 95.47% and the kappa is 0.94; the
classification accuracy is improved by 6.36% compared with when there are four variables.
Considering that the redundancy of features causes problems with accuracy degradation
and overfitting, the five most important features in the set are selected to form the feature
model for classification.
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The 10 variables with the greatest power in the classification were identified by the
statistical feature importance index, as shown in Figure 3, where the top five selected
features were WV_PCA3_mean_7, H_MSAVI, WV_PCA2_contrast_7, WV_B6_entropy_5,
and H_OSAVI2. Texture features, vegetation indices, and spectral bands all performed well
in the specific classification of mangroves. In general, texture features were more important
than vegetation indices and spectral bands. The most important feature (WV_PCA3_mean_7)
was obtained by performing a principal component analysis based on the WV-2 images
and extracting the mean texture operator for the third principal component, with a 7 × 7
moving window. The most important vegetation index is the modified soil adjusted
vegetation index (MSAVI).

Correlations were estimated based on the 10 features that were preferentially selected,
as shown in Figure 4. All features had correlations lower than 70%, and the correlations of
the top five features selected for this study were lower than 50%. The low autocorrelation
property between features ensures that information is not duplicated and can effectively
avoid the overfitting phenomenon. In general, most of the features extracted from different
images have a negative or no correlation with each other, while most of the features
extracted from the same data sources have a positive correlation.
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When comparing the contributions of the two data sources to mangrove species
classification, we found that only vegetation indices performed well among the features
extracted from the UAV hyperspectral imagery, while the WV-2 satellite-based image data,
in contrast, had better performance in texture features and spectral band features. More
textural features were extracted in the study, but the contribution was relatively small,
which caused serious redundancy and reduced the efficiency of feature preference. Among
the eight texture feature operators, mean, dissimilarity, and entropy values can effectively
improve the accuracy of mangrove interspecies classification, while contrast, correlation,
homogeneity, SM, and variance had relatively poor effects. Therefore, the performance of
textural features in the classification of mangrove species is decreasing with the increase of
image spatial resolution and spectral resolution, while the role of vegetation index features
is increasing. Overall, the use of UAV hyperspectral images and WV-2 satellite-based
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multispectral images, combined with vegetation index features and texture features, is
beneficial to improve the classification of mangrove species.

Here, the classification accuracy and mean decrease accuracy (MDA), which represents
the degree of anti-perturbation in prediction accuracy, were estimated for the seven most
important features, as shown in Figure 5, and it can be seen that the classification accuracy
was higher than 80% for all categories. It is worth noting that for the top five most critical
features selected in this study, the importance is negatively correlated with the single-
category accuracy, and the MDA is positively correlated with the single-category accuracy,
indicating that, in the process of feature preference, the contribution of features to the
model construction does not depend entirely on the classification accuracy, but also takes
into account the degree of anti-perturbation of the classifier prediction accuracy, the impact
of features on classifier impurity impact, and computational speed [58,59].
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We also counted the basic spectral bands utilized for the 10 most important features
and found that the red, near-infrared, red-edge, and green bands were the most used, with
the narrowband channel being more useful than the wideband channel. The advantages
of red and near-infrared bands for species classification are widely recognized. The red
band has a longer spectral range compared to other visible bands and therefore can reflect
differences among vegetation species more intuitively through spectral reflectance. Some
studies have pointed out that red-band spectral reflectance can also indirectly reflect the
intensity of photosynthesis in leaves [60]. The near-infrared band is a sensitive indicator of
moisture content, mainly controlled by the cellular structure within the leaves [61]. The
green- and red-edge bands are highly correlated with chlorophyll-a (Chl-a) concentrations,
and for mangroves, chlorophyll concentrations are closely related to environmental factors
such as temperature, solar radiation, salinity, and water, and different mangrove species
have specific tolerances to environmental factors [60]; the variability they exhibit offers the
possibility of species classification of mangroves.

3.2. Accuracy Assessment

The accuracy of RF and SVM machine learning algorithms in mangrove species
classification results was verified using sample points confirmed by UAV images. As
shown in Table 4, the overall accuracy of the RF algorithm was 95.89% and the kappa
coefficient was 0.95, and the overall accuracy of the SVM algorithm was 95.35% and the
kappa coefficient was 0.94. Overall, the two machine learning algorithms performed well
in the classification of mangrove species.
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Table 4. Confusion matrix for mangrove classification with combining UAV and WV-2 image samples.

RF Overall Accuracy: 95.89% Kappa Coefficient: 0.95

SVM Overall Accuracy: 95.35% Kappa Coefficient: 0.94

RF
SVM

BS SC HL RB CP IS Water UA

BS 100 100 0 0 2 2 5 2 1 0 0 0 0 0 0.93 0.96
SC 0 0 54 51 1 0 1 3 2 1 0 0 0 0 0.93 0.93
HL 0 0 0 0 101 102 6 2 0 0 0 0 0 0 0.94 0.98
RB 0 0 0 0 2 2 70 73 1 0 0 0 0 0 0.96 0.97
CP 0 0 0 3 0 0 0 2 30 31 0 0 0 0 1 0.86
IS 0 0 0 0 0 0 0 0 0 0 49 43 1 0 0.98 1.00

Water 0 0 0 0 0 0 0 0 0 2 1 7 132 133 0.99 0.94
PA 1 1 1 0.94 0.95 0.96 0.85 0.89 0.88 0.91 0.98 0.86 0.99 1

As shown in Table 5, the overall accuracy of the RF algorithm was 91.78% and the
kappa coefficient was 0.90, which was 4.11% lower than the accuracy of the sample point
validation. The results of the two validation methods had high consistency, indicating
that the RF algorithm has a more far-reaching application in the classification of mangrove
species. As for RF, the overall accuracy was 84.93% and the kappa coefficient was 0.82,
which was 10.42% lower than the sample point validation accuracy. The results of the
two validation methods were very different, indicating that the SVM algorithm led to
overfitting in the process of mangrove species classification.

Table 5. Confusion matrix for mangrove classification with GPS waypoints.

RF Overall Accuracy: 91.78% Kappa Coefficient: 0.90

SVM Overall Accuracy: 84.93% Kappa Coefficient: 0.82

RF
SVM

BS SC HL RB CP IS Water UA

BS 14 12 0 0 1 0 2 1 0 1 0 0 0 0 0.82 0.86
SC 0 0 7 7 0 0 0 0 0 0 0 0 0 0 1 1
HL 1 2 0 0 8 8 0 1 1 1 0 0 0 0 0.80 0.67
RB 1 2 0 0 0 1 16 16 0 0 0 0 0 0 0.94 0.84
CP 0 0 0 0 0 0 0 0 6 5 0 0 0 0 1 1
IS 0 0 0 0 0 0 0 0 0 0 6 5 0 1 1 0.83

Water 0 0 0 0 0 0 0 0 0 0 0 1 10 9 1 0.90
PA 0.88 0.75 1 1 0.89 0.89 0.89 0.89 0.86 0.71 1 0.83 1 0.90

In the field of mangrove species classification, the RF algorithm has good mapping
and high classification accuracy, making it more worthwhile than the SVM algorithm.
In terms of individual types of classification accuracy, as shown in Figure 6, the RF’s
validation accuracy performance was stable, while the SVM accuracy for different types
of classification was more variable. The accuracy of GPS waypoint validation is generally
lower than that of sample points validation, which is closer to the actual situation. There
are extremes in the GPS waypoint verification accuracy results, which are mainly caused
by the small number of waypoints collected for some cover types. Among the four species
of mangrove, SC had the best divisibility and showed a spatial location distribution pattern
consistent with the fact that SC often grows at the border between mangroves and seawater.
Tree species with low classification accuracy in mangroves are RB, HL, and BS, mainly
because Derris trifoliata gets tangled up with the trunk and canopy of RB, HL, and BS.
As a result, training samples of different mangrove species will have less information on
Derris trifoliata, which confuses the training and validation samples of classification and
interferes with the construction of classification models, resulting in lower classification
accuracy. The canopy leaf shapes of RB and BS are similar, and the effectiveness of texture
features is diminished, leading to serious misclassification on the mixed border of RB and
BS leaves. In addition, factors such as differences in spectral information between new, old,
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and diseased leaves of mangroves can cause a reduction in the fine classification accuracy
of tree species.
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3.3. Comparison of Mangrove Mapping and Analysis of Drivers

To investigate the potential of UAV hyperspectral imagery in the field of mangrove
species classification, this study used two machine learning algorithms, RF and SVM, to
investigate the finer classification of mangroves based on integrated features, including
799 features extracted from UAV hyperspectral images and 153 features extracted from
WV-2 images.

As shown in Figure 7, the accuracy of mangrove species classification using UAV
hyperspectral imagery is significantly higher than that using WV-2 imagery, and the
accuracy of integrated UAV hyperspectral imagery and WV-2 multispectral imagery is
slightly improved compared with that of UAV hyperspectral imagery. This indicates that,
in the field of fine-grained interspecies classification, the higher the spatial resolution,
the higher the classification accuracy. As the resolution increases, the spatial correlation
between adjacent image element values of all feature classes decreases [50], which is
consistent with the findings of the image resolution on the classification accuracy of features.
In 2019, Penghua Qiu used the UAV LIDAR and WorldView-2 data from the same study
area of Qinglan Harbor Mangrove Reserve for species classification of mangroves with
an overall accuracy of 86.08% [42], which was 9.81% lower compared to the results of this
study. Different resolution optical images have great potential to be explored, and studies
that simply introduce different types of remote sensing data without trying to explore the
value of the data in depth are blind. In the field of mangrove species classification, the RF
algorithm outperformed the SVM algorithm in terms of the accuracy performance for all
three different data sources. From the independent validation results of GPS waypoints, RF
is more well-built than SVM, while the two validation results of the SVM algorithm have a
large gap and overfitting phenomenon, which is related to the large similarity of spectral
information of mangrove tree species. As shown in Figure 6, RF has a higher balance of
interspecies classification accuracy than SVM, which is more suitable for distinguishing
multiple classes, while the SVM has high recognition accuracy for SC and low recognition
accuracy for IS with poor model comprehensibility, which is more suitable for dichotomous
classification problems. Both the RF and SVM algorithms are insensitive to the recognition
of RB and CP, which is related to their large range of intraclass spectral value distribution,
which is not conducive to distinguishing them from other tree species.
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Figure 7. Comparison of mangrove classification accuracy with different data and methods.

As shown in Figure 8, based on the combined data with the highest accuracy, the
classification results of mangrove forests in the study area of Qinglan Harbor, Hainan
Province, were classified using RF and SVM methods. The figure includes a total of
seven land types, including Rhizophora apiculata Blume (RB), Bruguiera sexangula (BS),
Hibiscus tiliaceus Linn. (HL), Sonneratia caseolaris (SC), coconut palm (CP), impervious
surface (IS), and water. Comparing Figure 8a,b, we see that there are small areas of
misclassification in the classification result map of the SVM method; for example, there
is no CP distribution in the vegetation area in the west, and some areas of RB and BS are
confused with each other. The RF method has better classification enforcement than the
SVM method, which is consistent with the spatial distribution pattern of mangrove growth
in the study area. In addition, we found that the RF algorithm is insensitive to parameters
and the classification process is more efficient, while the SVM algorithm takes a long time
and is relatively less efficient in the parameter preference process.
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We also investigated the source of errors during the mangrove species classification
process. (1) When using UAV to capture images, avoid direct sunlight on mangroves
at noon as it generates a lot of noise and affects the overall quality of images; the best
periods are generally from 8:30 to 9:30 a.m. and from 3:00 to 4:00 p.m. Affected by the
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angle of sunlight, some areas of the images will be covered with shadows, making the
heterogeneity of the same tree species increase and the similarity of different types of tree
species increase, which makes the classification work more difficult. (2) Due to differences
in capture time, meteorological conditions, and spatial resolution of different data, as well
as the systematic errors of sensors, there are inconsistencies in the spatial distribution of
mangroves from different data sources in some areas, and although this study has been
carefully screened by visual interpretation during the experiment, some sample points
may still have errors corresponding to the information of multiple species. (3) In addition,
when the GPS fixation survey marked mangrove species information, the local field of view
was obscured and it was more difficult to obtain a real-time accurate global field of view
information, which could lead to misjudging the canopy mangrove species information
of some points taken vertically by remote sensing images. (4) The richness of mangrove
species in the study area, the high density of mixed species, the staggering growth and
distribution of different tree species, and some of the mangrove trees with high height and
sparse leaves often having another species of mangrove growing underneath, which greatly
reduces the purity of image pixels [62] (called the mixed pixel effect) increase the difficulty
of drawing visual distinctions between tree species, as shown by the overestimation of the
verification accuracy of classification results contrasted with the actual distribution.

4. Conclusions

In this study, we used UAV Rikola hyperspectral images and WV-2 satellite-based
multispectral images to classify mangroves in Qinglan Harbor and investigated the feasibil-
ity and limitations of different types of high-resolution sensors for vegetation classification.
The results showed that the combined data accuracy (95.89%) is higher than that of UAV
(94.21%) and WV-2 (73.59%) data individually. The vegetation index features of UAV hyper-
spectral image and texture index of satellite-based multispectral image play a prominent
role, and their source spectral bands are red, near-infrared, red-edge, and green bands. The
RF algorithm was applied to the combined data with the highest accuracy (95.89%) and
also outperformed the SVM algorithm in terms of stability and adaptability. Besides, it
was also explored that the main causes of errors were spatial misalignment of mangroves
on different spatial resolution images and the complex natural environment in the field,
resulting in impure sample information that interfered with the classifier modelling.

Human overexploitation and mismanagement of mangroves are leading to a rapid
decline in mangrove forests worldwide [63], and the feasibility and development potential
of mangrove species classification was confirmed by using high-quality data. Additionally,
based on the study of two different spatial resolution images, the object-based method
could not be implemented, but its application to UAV hyperspectral images could be
considered for in-depth exploration in the future.

Future research will explore new ideas for mangrove species classification, by contem-
plating continuously accumulating sample data, establishing a mangrove sample database,
applying deep learning algorithms to the study of the fine classification, and also conduct-
ing spatial and temporal variation analysis of mangrove species to provide suggestions for
the cultivation and protection of mangroves.
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Appendix A

Table A1. Vegetation index extracted for classification.

Index Abbreviation Formula Reference

By WV-2 Image

Atmospherically Resistant Vegetation Index 2 ARVI2 −0.18 + 1.17×
(

RNir−RRed
RNir+RRed

)
[64]

Blue-wide Dynamic Range Vegetation Index BWDRVI 0.1RNir−RBlue
0.1RNir+RBlue

[65]

Canopy Chlorophyll Content Index CCCI RNir−RRededge
RNir+RRededge

/ RNir−RRed
RNir+RRed

[66]

Corrected Transformed Vegetation Index CTVI NDVI+0.5
|NDVI+0.5|

√
|(NDVI) + 0.5| [67]

Chlorophyll vegetation index CVI RNir × RRed
RGreen

2 [68]

Differenced Vegetation Index 75 DVI75 RNir − RRed [69]

Differenced Vegetation Index 85 DVI85 RNir_B8 − RRed [69]

Differenced Vegetation Index 73 DVI73 RNir − RGreen [70]

Enhanced Vegetation Index EVI 2.5 RNir−RRed
RNir+6RRed−7.5RBlue+1 [71]

Enhanced Vegetation Index 2 EVI2 2.5 RNir−RRed
RNir+2.4RRed+1 [72]

Green atmospherically resistant vegetation index GARI RNir−(RGreen−(RBlue−RRed))
RNir−(RGreen+(RBlue−RRed))

[73]

Global Environment Monitoring Index GEMI
n(1− 0.25n)× RRed−0.125

1−RRed

n =
(2(RNir

2−RRed
2)+1.5RNir+0.5RRed)

RNir+RRed+0.5

[48]

Ideal vegetation index IVI RNir−b
a×RRed

[74]

Log Ratio LogR log
(

RNir
RRed

)
[75]

Normalized Difference Vegetation Index 75 NDVI75 RNir−RRed
RNir+RRed

[76]

Normalized Difference Vegetation Index 85 NDVI85 RNir2−RRed
RNir2+RRed

[76]

Normalized Difference Vegetation Index 86 NDVI86 RNir2−RRededge
RNir2+RRededge

[77]

Normalized Difference Vegetation Index 83 NDVI83 RNir2−RGreen
RNir2+RGreen

[78]

Normalized Difference Water Index 37 NDWI37 RGreen−RNir
RGreen+RNir

[79]

Normalized Difference Water Index 38 NDWI38 RGreen−RNir2
RGreen+RNir2

[79]

Simple Ratio 75 SR75 RNir/RRed [80]

Simple Ratio 85 SR85 RNir2/RRed [79]

Transformed Soil Adjusted Vegetation Index TSAVI s(RNir−s×RRed−a)
a×RNir+RRed−a×s+X(1+s2)

[81–83]

By UAV Hyperspectral Image

Bow Curvature Reflectance Index BCRI R550+R650
2 − R670 [84]

Carotenoid Reflectance Index 1 CRI1 1
R510
− 1

R550
[85]

Carotenoid Reflectance Index 2 CRI2 1
R510
− 1

R700
[85]

Gitelson2 Gitelson2 (R750 + R800/R695 + R740)− 1 [86]
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Table A1. Cont.

Index Abbreviation Formula Reference

Modified Soil Adjusted Vegetation Index MSAVI 0.5
(

2R800 + 1−
√
(2R800 + 1)2 − 8(R800 − R670)

)
[87,88]

Normalized Difference Vegetation Index 750 NDVI750 R750−R705
R750+R705

[77]

Normalized Difference Vegetation Index 800 NDVI800 RNir+RRed
RNir+RRed

[76]

Optimized Soil Adjusted Vegetation Index 2 OSAVI2 (1 + 0.16)× (R750 + R705)/(R750 + R705 + 0.16) [89]

Renormalized Difference Vegetation Index RDVI R800+R670√
(R800+R670)

[90]

Red Edge Position Index REP 695 + 45
(

RRe+R695
R740+R695

)
[91]

Reflectance at the inflexion point Rre (R665 + R786)/2 [91]

Red-Green Ratio Index RG R710/R540 [92]

Photochemical Reflectance Index PRI R531−R570
R531+R570

[93]

Simple Ratio 750 SR750 R750/R700 [94]

Simple Ratio 890 SR890 RNir/RRed [80]

s = the soil line slope; a = the soil line intercept; X = an adjustment factor that is set to minimize soil noise.

Table A2. Textural features extracted for classification.

Textural Features Formulation Reference

Mean µi = ∑
i

∑
j

iP[i, j] [36]

Variance ∑
i

∑
j
(i− µi)

2P[i, j] [95]

Homogeneity ∑
i

∑
j

P[i,j]
1+|i−j| [36]

Angular Second Moment ∑
i

∑
j

P[i, j]2 [51]

Contrast ∑
i

∑
j
(i− j)2P[i, j] [51]

Dissimilarity ∑
i

∑
j

P[i, j] [51]

Entropy ∑
i

∑
j

P[i, j] ln P[i, j] [96]

Correlation ∑i ∑j ijP[i,j]−µiµj
σiσj

[96]

Notes: i is the row number of the image; j is the column number of the image; P[i,j] represents the relative frequency of two neighboring
pixels. µi = ∑

i
∑
j

iP[i, j]· µj = ∑
i

∑
j

jP[i, j]· σi and σj are the standard deviation of values for i and j references, respectively.
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