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Abstract: The rapid urbanization worldwide has brought various environmental problems. The
urban heat island (UHI) phenomenon is one of the most concerning issues because of its strong
relation with daily lives. Water bodies are generally considered a vital resource to relieve the UHI.
In this context, it is critical to develop a method for measuring the cooling effect and scale of water
bodies in urban areas. In this study, West Lake and Xuanwu Lake, two famous natural inner-city lakes,
are selected as the measuring targets. The scatter plot and multiple linear regression model were
employed to detect the relationship between the distance to the lake and land surface temperature
based on Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Sentinel-
2 data. The results show that West Lake and Xuanwu Lake massively reduced the land surface
temperature within a few hundred meters (471 m for West Lake and 336 m for Xuanwu Lake) and
have potential cooling effects within thousands of meters (2900 m for West Lake and 3700 m for
Xuanwu Lake). The results provide insights for urban planners to manage tradeoffs between the
large lake design in urban areas and the cooling effect demands.

Keywords: cooling effect; distance analysis; landscape pattern; urban heat island; urban lake

1. Introduction

Due to the rapid urbanization and high-density population, various environmental
changes occurred in urban areas [1]. The urban heat island (UHI) is one of the most
significant climate changes caused by human activities [2]. UHI, firstly mentioned by
Howard [3], refers to the common phenomenon in which the temperatures in urban areas
are higher than that in the surrounding non-urbanized areas [4]. The high temperatures
caused by the UHI phenomenon not only change the local climate environment resulting
in extreme weather conditions [5], increased energy and water consumption [6,7], but
also raise the risk of human health issues [8,9]. Thus, UHI mitigation strategies should
be studied and incorporated into future city design and planning to reduce the adverse
effects.

UHI represents the temperature difference between urban and suburban areas [10].
There are mainly three ways to measure the temperature for UHI studies, including
meteorological station observation records [11,12], thermometers mounted on vehicles [13],
and remote sensing observation of the surface temperature [14-16]. Among them, the
meteorological stations provide detailed records but fail to show the spatial distribution
characteristics of the temperature on a large scale. The vehicle’s temperature records are
limited in space and biased since the readings are made on the spot where the equipment is
situated [17]. The land surface temperature (LST) derived from remote sensing observations
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provides easy access and large-scale temperature data and gradually becomes the primary
way to assess the UHI effect [18,19]. For example, Khorchani et al. explored the temporal
and spatial distributing characteristics of LST in peninsular Spain based on advanced
very high resolution radiometer (AVHRR) data [20]. Clinton and Gong used the moderate
resolution imaging spectroradiometer (MODIS) sensor to obtain global surface temperature
and surface greenness at 1 km resolution [19]. Chen et al. utilized the Landsat thematic
mapper (TM) and enhanced thematic mapper plus (ETM+) thermal infrared (TIR) data
with 120 m and 60 m spatial resolutions, respectively, for local-scale studies of UHI [21].
Satellite-derived LST measurements have been conducted primarily by MODIS [18,19,22]
and AVHRR data for large-scale regional (including national, continental, and even global)
LST studies [23]. On the other hand, Landsat data provide better resolution and less
frequent LST observations, and have been widely used in city-level studies [17].

Urbanization changes the surface temperature in cities by modifying the characteristics
of the natural surface [24]. Landscape composition and configuration are considered two
main factors in LST variation [25-28]. Of these impact factors, large water bodies in urban
areas (e.g., lakes, rivers, and streams) are regarded as an effective resource to reduce
the UHI [29]. The specific heat capacity of water bodies is more remarkable than other
materials [30]. Thus, they have a lower warming-up speed than the surrounding areas,
resulting in “cool islands” during the daytime [31]. Urban lakes play a significant role
in regional climate regulation, maintenance of ecosystem balance, and diversification of
urban derivatives [32]. Thus, it is crucial to quantitatively evaluate the cooling effects
of the urban lakes and determine their cooling scale. In previous studies, the distances-
LST scatter diagram has been widely used to qualitatively describe the cooling effects of
lakes [25,33]. However, the cooling effects of the lake can be affected by surrounding land
covers (e.g., trees, grasses, buildings and pavements) and the urban landscape patterns [11].
It is still a lack of explicit discussion on the impact of surrounding urban landscape patterns
on the urban lake cooling effect. To bridge this knowledge gap, this article proposed a
scientific method to assess the urban lake cooling effects and the potential cooling effect
scale based on multiple linear regression methods by considering the urban landscape
patterns surrounding the lakes with multi-source remote sensing images.

Here, two famous Lakes (West Lake in Hangzhou, Zhejiang province; Xuanwu Lake in
Nanjing, Jiangsu province) were selected as the targets to quantitatively evaluate the cool-
ing effect of the large natural inner-city lakes by considering their surrounding landscape
patterns. West Lake, located in Hangzhou, is among the 55 United Nations Educational,
Scientific and Cultural Organization (UNESCO) World Heritage sites in China [34]. Xu-
anwu Lake, the largest imperial garden lake in China, is located in Nanjing. As two of the
highest gross domestic product (GDP) capitals of provinces, Hangzhou and Nanjing suffer
from high temperatures during summer. Both of them are listed in the top 10 hottest cities
in China (http://www.cma.gov.cn/) (accessed on 26 January 2021). As the landmarks of
the two cities, West Lake and Xuanwu Lake are regarded as the typical inner-city lakes to
detect the cooling scale of water bodies in cities.

This study aims to quantify the cooling effect and scale of urban lakes based on
landscape patterns and provide important insights on landscape design and urban planning
in the perspective of relieving UHI intensity. To achieve the primary purpose, the study has
three sub-objectives, including (1) detect the variables affecting the LST in the surrounding
areas of the urban lake; (2) build the regression models for LST in different scales; and (3)
determine the cooling scale and the corresponding importance of lake for relieving the LST
in the neighborhoods.

2. Materials and Methods
2.1. Study Area

Hangzhou, the capital of Zhejiang province, is situated in the southern wing of the
Yangtze River Delta, with a latitude of 29°11’ N to 30°34' N and a longitude of 118°20’ E to
120°37" E) (Figure 1). Hangzhou has a subtropical monsoon climate with clearly divided
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four seasons. Hangzhou owns the natural environment that integrates rivers, lakes, and
hills. As one of the three core cities (Shanghai, Nanjing, and Hangzhou) in the Yangtze
River Delta urban agglomerations, Hangzhou boasts a population of 10.36 million and
steady economic growth of a local GDP of RMB 1.54 trillion in 2019 [35]. The world-famous
scenic spot, West Lake, lies in Hangzhou city’s main urban area, 1.4 km away from the city
center (Wulin Square). It is an oval-shaped lake covering a water area of 6.38 km?, with its
three sides surrounded by the mountains, one side by the urban area. The bottom of West
Lake is relatively flat, with an average water depth of 2.27 m.
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Figure 1. Location of the study area. (a) Map of China; (b) map of Hangzhou; (c) map of Nanjing; (d) Sentinel-2 image of

West Lake and its neighboring areas; and (e) Sentinel-2 image of Xuanwu Lake and its neighboring areas. The sentinel-2

images were displayed in true color composite (Red—Band 4; Green—Band 3; and Bule—Band 2).

As the capital of Jiangsu province, Nanjing is located at the lower reaches of the
Yangtze River (31°14’ N-32°37" N, 118°22' E-119°14’ E) (Figure 1). Nanjing is in the
monsoon climate area of the north subtropical zone, with four distinct seasons. In terms of
topographic conditions, Nanjing is connected with the vast Jianghuai (the Yellow River and
Huai River) Plain to the north and the prosperous Yangtze River Delta to the east. Owing to
its superior natural condition, Nanjing is one of the fastest urbanized cities in China. At the
end of 2019, Nanjing has a population of 8.5 million and a GDP of RMB 1.40 trillion [36].
Xuanwu Lake is 2.7 km from the city center of Nanjing (Xinjiekou), with Zijin Mountain in
the east. Xuanwu Lake is diamond-shaped, with a water area of 3.78 km? and an average
water depth of 1.14 m.

Hangzhou and Nanjing are suffering from high temperatures during summer. In 2019,
Hangzhou suffered 38 days of high temperature (>35 °C), with the highest temperature
reaching 39.4 °C. In contrast, there were 18 days of high temperature (>35 °C) in Nanjing,
with the highest temperature reaching 38.3 °C. The two cities are all in great need of
reducing the temperature in summer.



Remote Sens. 2021, 13, 1526

40f17

2.2. Data Source and Pre-Processing

The Landsat 8 OLI/TIRS images provided by the United States Geological Survey
(USGS) were employed to estimate the LST. Since the impact of the high-temperature
weather mainly occurs in summer, one cloud-free image in the summer season was selected
to capture the LST dynamics for each study area [37]. The acquisition dates of the images
covering Hangzhou and Nanjing were the 22nd of July 2020 (path/row 119/39) and
the 13th of September 2019 (path/row 120/38), respectively. Within the environment
for visualizing images (ENVI), radiometric calibration and atmospheric correction were
applied to the multispectral bands. Moreover, the thermal bands were pre-processed into
an analysis-ready radiance format using radiometric calibration.

Two Sentinel-2 Level 1C products were downloaded from the Copernicus Open
Access Hub (https:/ /scihub.copernicus.eu/) (accessed on 20 January 2021) shared by the
European Satellite Agency (ESA). The date of the selected products was close to that of the
Landsat 8 OLI/TIRS images with no clouds cover the study area (Table 1). The publicly
available ESA command-line program Sen2Cor was used to convert the top-of-atmosphere
(TOA) Level-1C tiles to the bottom-of-atmosphere (BOA) Level-2A tiles [38]. The spatial
resolution of the 13 spectral bands of Sentinel 2 varies from 10 m to 60 m. Herein, four
bands (bands 2, 3, 4, and 8) with 10 m resolution and six bands (bands 5, 6, 7, 8a, 11, and
12) with 20 m resolution were used. The 20 m bands were up-sampled to 10 m resolution
using nearest-neighbor interpolation [39]. Bands 1, 9, and 10 at 60 m spatial resolution,
dedicated to atmospheric correction and cirrus detection, were discarded [40,41].

Table 1. Information of the remote sensing data used in this study.

Study Area Platform Resolution Acquisition Data Local Time
West Lak Landsat 8 30 m 22 July 2020 10:31:30
est Lake Sentinel-2 10 m 22 July 2020 10:35:51
Landsat 8 30m 13 September 2019 10:37:38

Xuanwu Lake Sentinel-2 10 m 19 September 2019 10:45:51

2.3. Overall Workflow

This study attempted to detect the cooling effects and scales of urban lakes using
Landsat 8 OLI/TIRS and Sentinel-2 data. Herein, to accomplish this objective, the overall
workflow was designed as follows (Figure 2), with four main procedures including: (1) LST
inversion based on Landsat 8 OLI/TIRS images; (2) supervised maximum likelihood classi-
fication based on Sentinel-2 images; (3) landscape metrics measurement; and (4) multiple
regression modeling of LST based on Euclidean distance maps, landscape composition and
configuration indices, and digital elevation model (DEM).

2.4. LST Retrieval

The retrieval of LST followed the radiative transfer equation (RTE) method. The
equation used to compute the thermal infrared radiance received by the sensor (L,) is
mentioned as given [42,43]:

Ly = {eB(Ts) + (1 — 8)Latm HT+ Lotm T (1)

where ¢ is the land surface emissivity, B(Ts) is the blackbody radiance (W/(m?-sr-um)), Ts
is the LST (K), T is atmospheric transmittance and Ly, T and Lgy, | are upwelling and
downwelling atmospheric radiance (W/ (m2~sr-um)), respectively. T, Lsn T and Lagm |
can be calculated on the Atmospheric Correction Parameter Calculator.
B(Ts) is computed according to Equation (1). Subsequently, the LST is derived by
Equation (2) [44]:
K>

@
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Radiometric calibration

where K is conversion constant 774.8853 W /(m?-sr-um) and Kj is conversion constant
1321.0789 K.

The land surface emissivity of water is 0.995, and the values of buildings and soil are
obtained by the following equations [45]:

Epuilding = 09589 + 0.0860P, — 0.0671P; 3)

€s0il = 0.9625 + 0.0614P, — 0.0461P2 (4)

where Py is the vegetation proportion calculated by Equation (5) [46]:

NDVI — NDVIs,;
NDVIyeg — NDVIsy

by = )

where NDVI is the normalized difference vegetation index, NDV Is,;; is the NDVI value of
bare soil, NDV Iy, is the NDVI value of the area completely covered by vegetation. The
equation of NDVI is [47]:
NDVI = PNIR — PRed (6)
PNIR + PRed

where pn R refers to the surface reflectance of NIR band (band 5, 0.845-0.885 pum ), preq
refers to the surface reflectance of Red band (band 4, 0.630-0.680 um ).

In addition, the LST data was up-sampled to 10 m resolution by nearest-neighbor
interpolation to match the spatial resolution of Sentinel-2 data.

Atmospheric correction
1

i

Atmospheric correction |

'

Calculation of the NDVI

'

Resampling

Calculation of land
surface emissivity

Supervised maximum
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___$__

Calculation of
blackbody radiance

'
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!
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| Euclidean Distance I ’
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Figure 2. Overall workflow of this study. Green, yellow, and blue represent data, operations, and software, respectively.
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2.5. Land Cover Classification

The land cover classification was derived from the pre-processed Sentinel-2 images
using the maximum likelihood supervised classification method. The land cover classifi-
cation system developed by Cadenasso et al. [48] was adopted to classify the land cover
into five categories, namely coarse-textured vegetation (CV), fine-textured vegetation (FV),
impervious surface (IS), bare lands (BL), and water. The detailed information of these cate-
gories is shown in Table 2. The accuracy of classification was evaluated using 500 random
points located in each classified land-cover map with reference to the ground-truth data
in Google Earth. The results showed that the overall accuracies [49] of the classifications
were 91.20% for Hangzhou and 91.67% for Nanjing. The kappa coefficients were 0.878 for
Hangzhou and 0.883 for Nanjing.

Table 2. Land cover categories and their detailed information.

Category Description
CV Coarse-textured vegetation which includes forest, woodland and shrub land
FV Fine-textured vegetation which includes cropland and grassland
IS Impervious surface which includes buildings and pavements
BL Bare lands which include bare soil and bare rock

Water bodies which include natural-flowing river and lake as well as artificial

Water .
pond and reservoir

2.6. Landscape Metrics-Based Analysis

Numerous landscape metrics have arisen as a method to quantify landscape pat-
terns [50]. Herein, five commonly used class-level landscape metrics [51-54] were em-
ployed to relate the spatial variability of LST with the landscape patterns, including one
composition metric: percentage of landscape (PLAND), and four configuration metrics:
(1) Largest patch index (LPI); (2) Mean shape index (SHAPE_MN); (3) Aggregation index
(Al); and (4) Patch density (PD) (Table 3). These metrics were selected according to the fol-
lowing principles [55,56]: (1) importance in both theory and practice; (2) simplicity in both
calculation and interpretation; and (3) minimal redundancy. Fragstats Version 4.2.1 was
employed to calculate the selected metrics. The uniform tiles method was adopted to subdi-
vide the landscape into square tiles representing sub-landscapes. Bartesaghi-Koc et al. [57]
proposed that a 50 m x 50 m grid size is proper for local-scale studies if very-high res-
olution data are available. In comparison, studies employing data with coarser spatial
resolutions (>10 m) may require larger grid resolutions (>100 m). Masoudi et al. [58] and
Masoudi and Tan [59] recommended an optimal grid size of 240 x 240 m to explore the re-
lationship between LST and the spatial pattern of urban green spaces. Herein, considering
that the resolutions of LST and land cover maps are 10 m, the side length was chosen as
integer multiples of 100 m (10 x 10 pixels).

Table 3. Landscape metrics used in this study [60].

Metrics

(Abbreviation)

Equation

(Unit) Description

Percentage of landscape

(PLAND)

Largest patch index

(LPI)

Mean shape index
(SHAPE_MN)
Aggregation index

(AD)

Patch density

(PD)

The percentage of the landscape consisting of the
corresponding patches.
The percentage of the landscape comprised by the

PLAND = P, = Z51% 5 100

Lpr = @) o q00

A largest patch.
wn 025p; Mean shape index of the corresponding patches
SHAPE_MN =Y NG : within an analysis unit.

The degree of the corresponding patches’
aggregation within an analysis unit.
The ratio of the corresponding patches’ number to
the total landscape area within an analysis unit.

Al =[-8 % 100

PD = % x 10°

P; = proportion of the landscape occupied by patch type (class) i. a;; = area (m?) of patch ij. A = total landscape area (m?). p; j = perimeter
(m) of patch ij. g;; = number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. max(g;;)
= maximum number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. n; = number of
patches in the landscape of patch type (class) i.
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2.7. Statistical Analysis

The scatter diagram has been widely employed for qualitatively discussing the rela-
tionships between LST and the distance to the water bodies in previous studies [33,61].
In addition, the affecting scale was acquired by seeking the stationary point of the fitting
function of the scatter diagram [4].

Relationships between LST and multiple influencing factors (i.e., the distance to the
lakes, landscape metrics, and elevation) were quantitatively examined through the multiple
linear regression (MLR) (Equation (7)) [62].

Y =PBo+Y . BiXi+e 7)

where 7 is the number of the independent variable, By is the intercept, p; is the regression
coefficient for X;, and ¢ is the error term of the model.

To reduce the redundancy, a stepwise regression approach was adopted to identify
closely linked variables with LST from the MLR models and provide their predictive im-
portance for LST [6]. The significance levels at 0.05 and 0.1 were adopted as thresholds for
adding and removing predictor variables, respectively. Additionally, in order to get more
stable predictions, the variance inflation factor (VIF) was employed to detect multicollinear-
ity. A VIF value equal to or larger than ten means near collinearity [63], indicating that the
corresponding variables should be excluded. The remaining variables were analyzed again
by the above-mentioned regression analysis until the absence of multicollinearity amongst
selected variables.

We took 100 m as the step length and gradually added samples according to the
distance to the lake, which was defined as the nearest distance to the lake shoreline. In
other words, as the distance to the lake increased by 100 m, the samples covered by a
certain distance were added to the existing samples. The process continued until the
distance to the lake was not considered an independent variable of the stepwise regression
model, indicating the influence of the target lakes on LST can be neglected. Each variable
was pre-processed using the normalization method (Equation (8)) before the regression
analysis [64].

% Xi — Xin

X = min 8
' Xmax — Xmin ( )

where X;, Xy, and Xy,qx are the original, minimum, maximum value of a variable, respec-
tively. The regression analyses were carried out with the Statistical Package for the Social
Sciences (SPSS) Version 26.

3. Results
3.1. Spatial Distributions of Land Cover and LST

The spatial distribution of LST in Hangzhou and Nanjing were shown in Figure 3.
The LST of Hangzhou ranged from 15.37 to 57.96 °C, with an average of 37.21 °C. The
LST of Nanjing was between 28.28 and 50.72 °C, with an average of 36.45 °C. Temperature
variation over impervious surface tended to be more variable, while the water-covered
surface showed the opposite trend due to its high heat capacity. In Hangzhou, the north
and east side of West Lake, mainly occupied by built-up areas, owned the highest LST. On
the other hand, the south and west parts, dominated by CV, had lower LST. In addition,
the Qiantang River passed through the southeast of the study area showing the lowest LST.
For the case of Nanjing, Xuanwu Lake and the adjacent Zijin Mountain were the low-value
areas of LST. The Yangtze River in the northwest of the study area owned the lowest LST,
while the urban areas dominated by buildings had the highest LST.
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Figure 3. The land surface temperature (LST) maps of (a) West Lake and its neighboring areas in Hangzhou, and (b)

Xuanwu Lake and its neighboring areas in Nanjing.

Similar LST patterns were observed in Hangzhou and Nanjing despite the different
temperature conditions of the cities (Figure 4). The study areas were mainly covered
by built-up areas, coarse-textured vegetation, and water body. The high-temperature
region corresponding to the area was dominated by built-up, and the low-temperature
region corresponding to the area were covered with water and coarse-textured vegetation.
Compared with the average temperature (37.21 °C for Hangzhou and 36.45 °C for Nanjing),
impervious surface (40.25 °C for Hangzhou and 38.30 °C for Nanjing) and bare land
(38.45 °C for Hangzhou and 38.16 °C for Nanjing) had higher LST (Figure 5). In contrast,
the LST of coarse-textured vegetation (35.62 °C for Hangzhou and 35.51 °C for Nanjing),
fine-textured vegetation (35.42 °C for Hangzhou and 35.76 °C for Nanjing), and water
(28.32 °C for Hangzhou and 30.27 °C for Nanjing) fell below the average line (Figure 5).

3.2. Drivers of LST Variations in the Lakes and Their Surrounding Areas

The results of the scatter diagrams showed an increasing trend of LST in response to
the increase in distance to the lake within a certain scale (741 m for West Lake and 336 m
for Xuanwu Lake) (Figure 6). The maximum cooling effects for West Lake and Xuanwu
Lake were 4.86 °C and 4.78 °C, respectively. Additionally, the correlation analysis showed
significant positive correlations between mean LST and the distance to the lake inside a
certain scale. The Pearson correlation coefficients were 0.637 (p < 0.01) for West Lake, and
0.841 (p < 0.01) for Xuanwu Lake, respectively (Figure 6).
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Figure 4. The land cover maps of (a) West Lake and its neighboring areas in Hangzhou, and (b) Xuanwu Lake and its
neighboring areas in Nanjing (CV: coarse-textured vegetation; FV: fine-textured vegetation; IS: impervious surface; BL: bare

lands; Water: water).
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Figure 5. LST of land cover categories in (a) West Lake and its neighboring areas in Hangzhou, and (b) Xuanwu Lake and
its neighboring areas in Nanjing (CV: coarse-textured vegetation; FV: fine-textured vegetation; IS: impervious surface; BL:

bare lands; Water: water).
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Figure 6. Mean LST at different distances to (a) West Lake in Hangzhou and (b) Xuanwu Lake in Nanjing.

The scatter diagrams showed the relationships between LST and the distance to the
water bodies intuitively but not quantitatively. Based on the above-mentioned affecting
scale, multiple linear regression models were established to present the relationships
quantitatively, and the significance tests were listed in Tables 4 and 5. The models for
Hangzhou (R? > 0.81) and Nanjing (R? > 0.65) were all of desirable goodness-of-fit.

Table 4. Significance tests of the multiple linear regressions in Hangzhou.

Model R? AR? AIC F Model R? AR? AIC F

700 m 0.817 0.815 —3642.549 475.977 *** 1900 m 0.854 0.853 —12,057.291 1468.306 ***
800 m 0.820 0.819 —4197.190 425.007 *** 2000 m 0.850 0.849 —12,793.736  1519.813 ***
900 m 0.828 0.826 —4821.972 561.296 *** 2100 m 0.843 0.843 —13,502.545 1546.701 ***
1000 m 0.835 0.834 —5454.464 670.202 *** 2200 m 0.840 0.839 —14,323.481 1607.948 ***
1100 m 0.844 0.842 —6161.756 677.878 *** 2300 m 0.833 0.833 —15,061.922 1510.684 ***
1200 m 0.848 0.847 —6838.319 780.868 *** 2400 m 0.829 0.828 —15,915.979 1555.192 ***
1300 m 0.851 0.850 —7501.743 816.920 *** 2500 m 0.825 0.825 —16,762.030 1728.390 ***
1400 m 0.856 0.855 —8228.796 933.408 *** 2600 m 0.823 0.822 —17,648.922 1792.588 ***
1500 m 0.858 0.857 —8975.791  1318.902 *** 2700 m 0.820 0.820 —18,556.259 1858.858 ***
1600 m 0.858 0.857 —9772.715  1128.923 *** 2800 m 0.815 0.815 —19,416.599 1894.329 ***
1700 m 0.857 0.856 —10,546.830 1301.174 *** 2900 m 0.807 0.806 —20,228.078  1751.485 ***
1800 m 0.856 0.855 —11,318.390 1393.030 ***

*** p <0.001. R? = determinant coefficient; AR? = adjusted R2; AIC = Akaike information criterion; F = F-test.

The multiple linear regressions showed that the distance to West Lake had significantly
positive effects on LST in the range of 2900 m at the 5% significance level (Table 4 and
Figure 7a). The distance to the Xuanwu Lake was a significant influencing factor in the
range of 3700 m at the 5% significance level (Table 5 and Figure 7b).
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Table 5. Significance tests of the multiple linear regressions in Nanjing.

Model R? AR? AIC F Model R? AR? AIC F

300 m 0.664 0.661 —864.991 182.782 *** 2100 m 0.714 0.713 —9074.115  568.348 ***
400 m 0.662 0.658 —1203.617  151.728 *** 2200 m 0.718 0.717 —9736.086  620.828 ***
500 m 0.654 0.651 —1586.683 191.253 *** 2300 m 0.722 0.721 —10,431.697  629.963 ***
600 m 0.658 0.655 —1985.280  241.875 *** 2400 m 0.724 0.723 —11,123.377  725.120 ***
700 m 0.681 0.676 —2398.239 159.392 *** 2500 m 0.726 0.725 —11,801.854  778.349 ***
800 m 0.678 0.675 —2793519  233.355 *** 2600 m 0.727 0.726 —12,514.335 829.313 ***
900 m 0.690 0.687 —3208.182  207.705 *** 2700 m 0.729 0.728 —13,217.408  884.023 ***
1000 m 0.700 0.697 —3624.970  248.397 *** 2800 m 0.732 0.731 —13,957.272  949.271 ***
1100 m 0.708 0.706 —4062.281 321.778 *** 2900 m 0.737 0.737 —14,753.843 1030.338 ***
1200 m 0.718 0.715 —4504.243  269.532 *** 3000 m 0.744 0.743 —15,557.309 1120.447 ***
1300 m 0.721 0.719 —4969.837  354.215 *** 3100 m 0.748 0.747 —16,436.357 1206.056 ***
1400 m 0.726 0.724 —5491.625  369.638 *** 3200 m 0.750 0.750 —17,272.656 1281.379 ***
1500 m 0.723 0.721 —5968.423  399.837 *** 3300 m 0.752 0.752 —18,154.546 1358.456 ***
1600 m 0.717 0.715 —6443.835 424270 *** 3400 m 0.754 0.754 —19,048.449 1438.198 ***
1700 m 0.710 0.708 —6883.467  482.297 *** 3500 m 0.757 0.757 —19,956.757 1526.397 ***
1800 m 0.704 0.703 —7324.604  468.843 *** 3600 m 0.763 0.762 —20,979.320 1646.591 ***
1900 m 0.699 0.698 —7808.448  495.792 *** 3700 m 0.766 0.766 —21,943.199 1749.128 ***
2000 m 0.707 0.706 —8408.943  551.379 ***

***p <0.001. R? = determinant coefficient; AR? = adjusted R?; AIC = Akaike information criterion; F = F-test.
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Figure 7. Radar diagrams showing the standardized coefficients of the multiple linear regressions for (a) West Lake and its

neighboring areas, and (b) Xuanwu Lake and its neighboring areas. The significance levels of the coefficients are all less
than 0.05 except for DEM (sig. = 0.058) from the 700 m model in Hangzhou, FV_AI (sig. = 0.067) from the 700 m model in
Nanjing, FV_AI (sig. = 0.063) from the 900 m model in Nanjing, FV_PD (sig. = 0.062) from the 1200 m model in Nanjing and
BL_PD (sig. = 0.050) from the 1400 m model in Nanjing.

As expected, the distance to the lake in both cities was positively related to LST
regardless of the scale (Figure 7, Tables S1 and S2). Moreover, it is quite observant that
as we examined LSTs at increasingly larger spatial extents, the standardized coefficients
of distance generally had a decreasing trend, indicating that the explanatory power of
distance parameters declined. The coefficients fluctuated between 0.078 and 0.110 in the
first 1400 m around West Lake and kept decreasing in the extent of 1400 to 2900 m. For
the Xuanwu Lake, the coefficients varied from 0.064 to 0.132 in the first 1200 m from the
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shoreline and showed a decreasing trend when the distance from the lake was more than
1200 m.

Although results from the MLRs showed that the distance to the lakes is an essential
predictor of LST, the spatial configuration of impervious surface has a more significant
effect on LST. The coefficients of the PLAND of IS were maintained at a high level both
for West Lake (range from 0.811 to 0.867) and Xuanwu Lake (range from 0.639 to 0.779). In
addition, with the decrease of the coefficients of distance, the coefficients of SHAPE_MN
of IS showed higher values and tended to be stable after a certain distance (1800 m for
West Lake and 1400 m for Xuanwu Lake). The coefficient values of PD of IS were steadily
higher than that of distance after a certain distance (1500 m for West Lake and 1200 m
for Xuanwu Lake). After 1500 m from Xuanwu Lake, the Al of IS also showed the same
trend. The CV’s coefficients of SHAPE_MN (range from —0.077 to —0.036 for West Lake
and —0.121 to —0.048 for Xuanwu Lake), PD (range from —0.051 to —0.027 for West Lake
and —0.153 to —0.076 for Xuanwu Lake), and Al in Xuanwu Lake (range from —0.086 to
—0.047) were negative regardless of the scale. DEM was negatively related to LST, and its
coefficients varied greatly in the model with different scales. With the expansion of the
spatial extent, the coefficients of DEM decreased first and then increased, and bottomed
out at —0.150 in the model with a spatial extent of 1500 m for West Lake. On the scale of
600 m around Xuanwu Lake, DEM was not selected as the models’ variable, indicating that
topography was not the main factor affecting LST. The first five models (600 m to 1100 m)
that considered DEM as a dependent variable saw a dramatic fall in the coefficients of DEM,
to a low of —0.204 in the model of 1100 m. Moreover, the coefficients of DEM dwindled to
—0.231, after the rise to —0.152 in the extent of 1100 m to 3700 m.

4. Discussion

West Lake and Xuanwu Lake, located in the central areas of Hangzhou and Nanjing,
showed a significant reduction of the LST in the surrounding areas up to a certain distance
(741 m for West Lake and 336 m for Xuanwu Lake), demonstrating the ability of urban lakes
in cooling the environment. Within the scale, the maximum cooling effects for West Lake
and Xuanwu Lake were 4.86 and 4.78 °C, respectively. The cooling effect occurs when the
thermal energy absorbed by the water is converted from sensible heating to latent heating
with the production of water vapor [61]. Moreover, due to the high thermal capacity, the
lakes own a lower temperature than the impervious surface during the daytime, which
provides a higher pressure gradient for convective heat transfer [65]. Horizontal cooler air
is generated above the lake and transported to the neighboring environment by the wind.
The intensity of the processes decreases with the increasing distance to the lake, leading to
the limited influence of the lakes on LST.

The ability of water bodies to adjust surrounding temperatures is determined both by
the distance and its interactions with the surrounding environment [31]. However, most of
the studies one-sidedly considered the distance to the water bodies, with little discussion
on the integrated dynamics between the two features. Moyer and Hawkins [12] assessed
the cooling effect of a fairly large river using urban temperature sensors deployed near the
river. They reported that the UHI decreased by 0.6 °C to 0.3 °C for every 1000 m increase
in distance from the river, depending on the season. Wu and Zhang [25] revealed that the
horizontal cooling distance of Suzhou Bay could reach 800 m, and the maximum cooling
effect was 3.02 °C. Cheval et al. [66] detected that the temperature regularly increases with
the distance from the lake shoreline. Compared with these studies, our work underscored
the necessity of considering the influence of its surrounding landscape patterns when
quantifying the effects of the distance to the lakes on LST. In fact, most of the studies only
focused on the scatter diagrams of LST to determine the cooling scale [4,33,61]. In contrast,
after confirming the turning point from scatter diagrams, we continuously conducted a
step-by-step multiple linear regression to detect the cooling potential of the two lakes
on a much larger scale. The affecting scale obtained by seeking the stationary point of
the fitting function of the scatter diagram was considered to be the region where the
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urban lakes massively lower the LST. The scale obtained by the multiple linear regression
considering the influence of landscape patterns was deemed as the region where the urban
lakes showed a significant capacity in cooling the environment. Although this study is
conducted for West Lake and Xuanwu Lake, the general analysis procedure is flexible and
can be extended to the case studies of urban lakes in other cities.

The regression results showed that although Xuanwu Lake was smaller in size, the
maximum cooling scale could reach 3700 m, which was much larger than West Lake
(2900 m). The cooling effect difference results from the surrounding landscape patterns,
topography, and wind conditions (including wind directions and wind speed). It is demon-
strated in Figure 8 that the PD of CV and the SHAPE_MN of IS around Xuanwu Lake were
obviously higher than those of West Lake. High-density of trees and shrubs around the lake
was conducive to forming a solid local circulation. The small and scattered architectural
composition was instrumental in the formation of effective urban ventilation corridors [67],
resulting in the expansion of the cooling range. In addition, large and dense buildings
lead to significant heat effects [68,69]. To maximize the cooling potential of urban lakes,
urban planners are suggested to arrange more trees and shrubs in the area around the
lake and control the concentration of buildings. Meanwhile, West Lake is neighbored by
mountains and is strongly impacted by a mountain valley breeze. Hence, the valley breeze
in the northeast direction prevails in West Lake during the day [70], leading to the limited
cooling effect on the urban area on the east side. Xuanwu Lake is mainly affected by east
and southeast winds [71], which helps transport cooler air from the lake surface to the
urban area.
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Figure 8. Mean (a) patch density (PD), and (b) SHAPE_MN at different distances to the lakes.

Furthermore, as a famous tourist spot, West Lake, which ranked No.1 in the 2018 China
National Scenic Spot Popularity Index Ranking, received 833,700 tourists only one day on
3 October 2018 [72]. The overloaded West Lake tourism was also considered a contribution
to the emergence of heat islands in West Lake and its neighboring areas. Previous studies
have shown the significant cooling effects of urban greenspace on LST [73-75]. Nonetheless,
the PLAND of CV, which corresponds closely to the LST [76-78], was not considered as
a predictor variable in the linear regression models. This is because a large number of
samples in the study were composed of residential buildings and the greening around the
buildings, resulting in a significant negative correlation between the PLAND of IS and CV
(r=—0.738 and —0.670 in Hangzhou and Nanjing, respectively, p < 0.01). The VIF values of
partial variables were much more significant than 10 when the PLAND of IS and CV were
both considered as independent variables, indicating the existence of multicollinearity.
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In order to get satisfactory results in model accuracy and applicability, the problem of
multicollinearity was eliminated by excluding the factor, the PLAND of CV.

Several limitations of this work should be addressed for future research avenues. First,
the influence of the inherent properties of lakes (e.g., the size, shape, and water volume) on
their cooling effect is not considered due to the limited number of lakes. Moreover, it is
found that the relationship between landscape metrics and LST varies with the change of
grid size. In this context, multi-scale analysis is needed in further studies to explore the
cooling effects of urban lakes fully. Finally, this study was conducted in two cities with
similar climatic conditions. The results may differ for other cities with a different climate.
Thus, future studies involving other urban lakes with different climatic conditions are
expected.

5. Conclusions

This study applied a distance—LST scatter diagram and multiple linear regression
method to detect the cooling effect and scale of urban lakes based on Landsat 8 OLI/TIRS
and Sentinel-2 data. Taking two famous city inner lakes, West Lake and Xuanwu Lake, as
the study sites, the cooling effect and the potential cooling scale of large inner-city lakes
were quantitatively analyzed. Meanwhile, the landscape patterns in the surrounding areas
of the urban lake were considered as independent variables to detect the relationship in
different scales. The whole research flow provides a complete procedure to detect the
maximum cooling distance of a large cooling resource and can be applied not only to
lakes but also to other specific complete cooling resources such as a park, a river, and a
wetland. The results show that West Lake and Xuanwu Lake massively reduced the land
surface temperature of surrounding areas within a certain distance (471 m for West Lake
and 336 m for Xuanwu Lake) and had potential cooling effects on a larger scale (2900 m for
West Lake and 3700 m for Xuanwu Lake). The results proved that the turning point in the
temperature diagram could not reflect the cooling scale, and the exact cooling scale could
be much larger. In addition, from the comparative study between Hangzhou and Nanjing,
we detect the phenomenon that the surrounding landscape composition and configuration
could strongly affect the maximum cooling scale. In detail, the high density of trees and
shrubs, together with small and scattered buildings, could contribute to the extension of
the cooling scale of inner lakes. However, to completely show the influencing factors for
the cooling intensity and scale, future studies are suggested to consider more samples
and consider the size and shape of lakes. In general, this research expands our scientific
understanding of urban lakes’ cooling effects, especially the potential cooling scale. These
findings provide insights for urban planners to arrange the landscape of surrounding areas
of large inner-city lakes to pursuit better environmental outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13081526/s1, Table S1: The coefficients of the multiple linear stepwise regression models
at different scales for the West Lake. The bold and italic rows are standardized coefficients, Table
S2: The coefficients of the multiple linear stepwise regression models at different scales for Xuanwu
Lake. The bold and italic rows are standardized coefficients.
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