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Abstract: In recent years, research in the space community has shown a growing interest in Artificial
Intelligence (AI), mostly driven by systems miniaturization and commercial competition. In particular,
the application of Deep Learning (DL) techniques on board Earth Observation (EO) satellites might
lead to numerous advantages in terms of mitigation of downlink bandwidth constraints, costs, and
increment of the satellite autonomy. In this framework, the CloudScout project, funded by the
European Space Agency (ESA), represents the first time in-orbit demonstration of a Convolutional
Neural Network (CNN) applied to hyperspectral images for cloud detection. The first instance of
this use case has been done with an INTEL Myriad 2 VPU on board a CubeSat optimized for low
cost, size, and power efficiency. Nevertheless, this solution introduces multiple drawbacks due to its
design not specifically being for the space environment, thus limiting its applicability to short-lifetime
Low Earth Orbit (LEO) applications. The current work provides a benchmark between the Myriad
2 and our custom hardware accelerator designed for Field Programmable Gate Arrays (FPGAs).
The metrics used for comparison include inference time, power consumption, space qualification,
and components. The obtained results show that the FPGA-based solution is characterized by a
reduced inference time, and a higher possibility of customization, but at the cost of greater power
consumption and a longer Time to Market. As a conclusion, the proposed approach might extend
the potential market of DL-based solutions to long-term LEO or interplanetary exploration missions
through deployment on space-qualified FPGAs, with a limited cost in energy efficiency.

Keywords: CNN; FPGA; on-the-edge; space; hardware accelerators; image processing

1. Introduction

In recent years, research in the space community has shown a growing interest in the
application of Artificial Intelligence (AI), and in particular Deep Learning (DL), on board
spacecrafts in view of its potential advantages [1–5]. One main reason is due to the high
potential demonstrated by Deep Neural Network (DNN) models for many different space
applications, such as object-detection [3] and recognition, image scene classification [6,7],
super-resolution [8], agricultural-crop detection [9], and change detection [10], outper-
forming classical approaches both in terms of performance and time to design. Thanks
to this capability, DNNs might be applied on board Earth Observation (EO) satellites for
applications such as fire detection or oil-spill detection, requiring the minimization of
processing and transmission latency and the impact of the consequent damages [2].

The deployment of DNNs on board spacecraft might also mitigate the problem of the
increasing number of sensor data that must be downloaded to ground [1,5,11]. Indeed, less
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usable data, like cloud-covered images, can be identified, tagged, pre-filtered, discarded,
or selectively compressed [2,3]. In this regard, the use of aboard DNNs might extend the
acquisition of images in areas of the planet such as deserts or oceans (which are usually
scanned at lower priority to save bandwidth), enabling the detection of specific targets
(e.g., detection of assets, vessels or random/sparse events as oil leaks).

One of the main research open points involves the choice of hardware accelerators
for DNNs, which are computationally intensive and memory-hungry algorithms [3,12,13].
Their deployment on board spacecrafts requires finding acceptable design trade-offs for the
reduced power and memory budget of SmallSats like CubeSat [2], where power generation
and heat dissipation are stringent design issues.

The first DNN implementations have been software-based, involving Graphics Pro-
cessing Units (GPUs), or Central Processing Units (CPUs). The high consumption of these
devices is a problem even for data centers, meaning that their employment on board would
be feasible for very small networks only (e.g., single input networks for sensor failure
detection [14]). The broad use of DNNs for commercial applications led to the realization
of Commercial Off-The-Shelf (COTS) hardware accelerators for these algorithms, such
as Myriad 2 Visual Processing Unit (VPU) [15], Coral Tensor Processing Unit (TPU) Dev
Board [16], and Nvidia Jetson Nano GPU [17]. These devices feature high energy efficiency
and remarkable performance, cost, and mass trade-offs [4]. Furthermore, they exploit open-
source tools that highly speed up the deployment of the model, reducing the development
time and costs with an acceptable level of reliability due to the wide diffusion in various
fields (automotive, health, etc.), and the large open developer community. Owing to this,
and thanks to their reconfigurability, the use of COTS hardware accelerators might lead to
a significant reduction of mission costs and design in the future [4].

Currently, however, the usability of COTS in space is limited because none of them is
fully suitable to the space environment, mainly due to radiation tolerance concerns [2,18].
In particular, Single Event Effects (SEEs) are caused by charged particles impacting elec-
tronic devices, leading to soft errors such as Single Event Upsets (SEUs) and Single Event
Transients (SETs) or permanent damages in the case of Single Event Latch-ups (SELs). Fur-
thermore, a limited Total Ionizing Dose (TID) figure bounds devices’ reliability in space for
long-term missions, confining their use for short-term Low Earth Orbit (LEO) applications.
For Geostationary Earth Orbit (GEO) and Medium Earth Orbit (MEO) or long-lasting LEO
missions, space-qualified devices are generally preferred because of their high reliability
and long-term traceability and support [18].

Space-qualified devices generally lag behind compared to their terrestrial counter-
parts because of their longer lifespan, older technology nodes, and their design typically
more oriented to high dependability than performances. Because of this, space-qualified
devices generally feature far worse performance/mass/cost trade-offs compared to other
COTS [2,18].

In this scenario, Field Programmable Gate Arrays (FPGAs) are a good alternative for
the acceleration of Neural Networks for on-the-edge space applications. FPGAs have al-
ways been used for prototyping purposes in any new digital technology. In the defense and
space industry, they have been increasingly used in place of traditional Application Specific
Integrated Circuits (ASICs) due to the low number of manufactured units for electronic
equipment and faster Time to Market, remaining competitive in terms of performance with
respect to alternative solutions [18].

FPGAs are promising given their high portability, which permits the same design
to be exploited for devices having different performance/radiation resistance trade-offs.
An additional benefit is the flexibility in their configuration, which can be exploited in
applications involving DL. For example, networks can be re-trained and improved during
a mission, or multiple networks can be employed and adapted to customer needs.

Neural Networks for FPGAs have been typically complex to implement due to the high
degree of manual optimization required to fully implement the network in programmable
logic. Current developments in Design Tools from FPGA vendors, coupled with the
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advent of Systems-on-a-Chip (SoCs) that combine the power of multicore-processing with
hardware accelerators, have enabled users to infer DNNs on FPGAs suitable for space (e.g.,
RTG4 [19], Kintex XQRKU060 [20]).

In this work, we present an FPGA-based hardware accelerator for the CloudScout
Deep Neural Network [3]. This network was developed in the framework of the Cloud-
Scout project [21], led by the Dutch company Cosine Measurement systems [22] and
funded by the European Space Agency (ESA). The aim of this project was to realize a
Convolutional Neural Network (CNN) for on board cloud detection of satellite hyper-
spectral images. In this way, cloud-covered images can be discarded to relax downlink
bandwidth requirements.

On the satellite, the inference of the CNN is accelerated by the Myriad 2 VPU [15],
a COTS device that demonstrated high performance, low power consumption, and an
acceptable resistance to radiation despite its COTS nature, which makes it usable for
non-mission-critical applications [15].

The proposed FPGA-based accelerator (devised in the framework of the TETRAMAX
H2020 European project [23]) is characterized through a custom benchmark. Resulting
metrics are compared with the ones of the flying Myriad 2 solution. Despite the specific
case study, this comparison aims to be extendable to generic space applications. The main
contributions of this article are summarized below:

• Realization of a portable FPGA-based accelerator, enabling the use of DNNs for
missions having different requirements;

• Custom scheduling and storage techniques for efficient use of the on-chip resources;
• Innovative computations scheduling for timing and power performance improvement

(zero-latency max pooling operations);
• Benchmark between FPGA-based and COTS-based solutions for space applications.

The remainder of the article is structured as follows. Section 2 consists of a brief
survey of the use of FPGA devices to accelerate CNN algorithms. In Section 3, an overview
of the CloudScout CNN model is given. Section 4 describes the proposed hardware
architecture, while its implementation and characterization on a Zynq Ultrascale+ ZCU106
Evaluation Platform [24] are presented in Section 5. Implementation results for a Xilinx
Kintex Ultrascale XQRKU060 are presented as well. Finally, in Section 6, the benchmark
between the VPU-based and FPGA-based solutions is given, with conclusions drawn in
Section 7.

2. FPGA Accelerators: State of the Art

FPGA-based hardware accelerators for CNNs are typically complex to implement
due to the high degree of manual optimization required to fully implement the network in
programmable logic, as stated in the previous section. In the literature, it is possible to find
several strategies and architectures of FPGA-based accelerators, and they belong to three
main classes that are briefly described below.

• Single Processing Unit architecture:
In the Single Processing Unit (PU) architecture, the input image and input feature
maps are read from an external memory and temporarily stored into an on-chip
buffer waiting to be processed. Tiling [25–27] or the use of additional caches [28] are
some of the techniques to reduce the amount of data to store using FPGA resources.
Filters of the network can be stored either on-chip or off-chip FPGA. The single PU
shall be designed to compute the operations of all the layers composing the network,
thus constituting the main challenge for this kind of architecture. The advantage is
a reduced resource exploitation, while the drawback is linked to the external data
transfers that lead to increased latency and power consumption. Several hardware
accelerators proposed in the literature follow this approach [29–31].

• Streamline architecture:
This consists of a cascade of several blocks, one per layer of the network, as described
for the accelerators proposed in [32,33]. Each block is composed of an input buffer,
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a scheduler, and a PU. This constitutes an overhead in terms of hardware resources,
making it a suitable approach for relatively small models only. The main advantage is
the reduced number of needed access to the external memory (only the input image
shall be read), drastically reducing latency and power consumption [34,35]. Further-
more, this architecture allows exploiting pipelining, increasing system throughput
since several layers can operate simultaneously. An alternative solution is exploiting
FPGA reconfigurability and implementing various architectures, each responsible
for processing a different part of the CNN [36]. This approach allows optimizing
the architecture of specific layers at the price of an increased latency due to the
reconfiguration process.

• Multiple Shared Processing Units architecture:
An intermediate solution between the previously described architectures consists in
exploiting several PUs shared by layers with similar computation requirements, as
proposed in [37]. This kind of architecture leads to better utilization of hardware and
an increment of throughput compared to the solution using a single PU, but with the
disadvantage of a reduced portability since the association of the PUs to the processed
layers is dependent on the specific model.

3. The CloudScout Case Study

The CloudScout project targets the development of the very first CNN-based algorithm
to fly on board a satellite [21]. The CNN is exploited to perform cloud-detection by
processing the hyperspectral images produced by the novel HyperScout-2 sensor on board
the Phisat-1 6U CubeSat launched in September 2020 [38,39]. The algorithm classifies
cloud-covered images and clear ones intending to discard unusable data and, thus, reduce
the downlink bandwidth of the satellite [3]. At the current state of the project, the inference
is computed by the Myriad 2 VPU [15], but this work aims to present an FPGA-based
solution that can overcome some of the drawbacks linked to other COTS devices.

In this section, the original CloudScout CNN model is first described. Second, we give
a brief description of the quantization process applied to shrink model complexity before
the accelerator design.

The CloudScout model is a binary classifier that takes 512× 512× 3 images as input
and classifies them as “cloudy” if more than 70% of the image surface is covered by clouds.
The model was developed using an iterative method in the Keras Python [40] environment
and then trained by using a dataset of 21,546 hyperspectral images synthesized by Sinergise
Ltd, Ljubljana, Slovenia [41] starting from Sentinel-2 images [3]. The achieved accuracy for
the model is 92.3% on a test dataset composed of 10,766 images. Figure 1 shows the model
structure.

Figure 1. CloudScout Model Architecture.

The Feature Extraction level is composed of ten convolutional layers, characterized by
the absence of bias and squared filters. The first layer is characterized by a 5 × 5 kernel
with a 2 × 2 max-pooling. It is then followed by three triplets of convolutional layers: each
triplet exploits a sequence of kernels of 3 × 3, 1 × 1, 3 × 3, and finally applies 2 × 2 max
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pooling. The following Decision level consists of a cascade of two Fully Connected (FC)
layers, used to provide the final binary output: cloudy/not-cloudy.

For more details about the CloudScout CNN model, please refer to [3].
The CloudScout model was originally quantized through the NCSKD tool [42] apply-

ing 16-bits floating-point representation, which is the only one allowed by the Myriad 2.
The hyper-parameters used for training can be found in [3].

For what concerns the FPGA-based accelerator, the network was further quantized to
reduce the model complexity before proceeding to the hardware accelerator design. This
process was necessary since the CloudScout model’s total memory footprint (204 Mbit) far
exceeds the available storage resources on most commercial FPGA devices.

More specifically, we applied a customized backpropagation algorithm that runs
during the training phase of the model, reduces the memory footprint by minimizing the
representation bits, and optimizes computational resource exploitation by using a fixed
point representation. This was achieved by properly tuning the loss function used in [3] by
adding a contribution depending on the representation and truncation bits of the network
to be minimized. The quantized model was trained by using the RMSprop optimizer with
learning rate 0.001 and early-stopping to avoid over-fitting. In particular, we used batch
size 32 on the training set and batch size 8 on the validation set.

The performed quantization provided the following set of values for each layer:

• b f ilter: representation bits for the filter elements;
• bin: representation bits for the input elements. This value is calculated by truncating

and saturating the previous layer output by, respectively, btr and bsat bits:

bin | layer = q+1 = (bout − btr − bsat) | layer = q (1)

The truncation bits btr and filter bits b f ilter are a direct result of the quantization
algorithm, while the saturation bits bsat derive from a process of fine-tuning that considers
the maximum values at all the points of the network for the entire dataset.

The obtained results are summarized in Table 1.

Table 1. Network quantization bits.

b f ilter bin bout btr bsat

Layer 0 2 5 17 4 7
Layer 1 3 6 19 4 8
Layer 2 4 7 17 4 6
Layer 3 3 7 22 4 10
Layer 4 3 8 22 3 9
Layer 5 4 10 21 3 7
Layer 6 3 11 27 3 11
Layer 7 3 13 28 2 11
Layer 8 2 15 27 3 9
Layer 9 3 15 32 3 7

FC 1 2 22 32 2 9
FC 2 2 21 29 9 4

As a result, our quantization process allowed shrinking the total memory footprint
from 204 Mbit to 107 Mb (48% reduction), with a negligible accuracy drop of 0.3%.

4. Our FPGA-Based Hardware Accelerator

This section presents in detail our FPGA-based hardware accelerator, whose block
scheme is shown in Figure 2. In first place, we give an overview of the design.
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Figure 2. CloudScout Hardware Accelerator architecture.

Despite the quantization applied, the memory footprint of the network (approximately
107 Mbit) is larger than the available on-chip memory for most commercial FPGAs. For
this reason, an external Double Data Rate (DDR) Synchronous Dynamic Random Access
Memory (SDRAM) was integrated into the design to store the whole feature maps produced
by convolutional layers during inference, as described for the Single Processing Unit
architecture in Section 2. The accelerator and the DDR memory communicate through an
Advanced eXtendible Interface (AXI) bus [43].

The elaboration of the input image is performed layer by layer sequentially. Due to
memory constraints, only a few rows of the currently executed feature map are stored at
a time in the on-chip Custom Cache. The latter is a memory block capable of pre-loading
new data tiles from the external memory while the current set of rows is being processed,
thus reducing computational stops due to off-chip data transfers. The Shared Convolutional
Layer (SCL) is the processing engine, a flexible computational unit that can be tuned on the
basis of specific layer parameters to efficiently exploit the implemented hardware resources.
Filters are fully stored on the on-chip Filter memory using a custom order that optimizes
the memory footprint. Max Pooling layers have been designed as a pipeline stage cascaded
to the SCL block. This makes their impact negligible on the total inference time and on
the required hardware resources. The outputs are then assembled by the Output Bridge to
fully exploit the AXI bus capability. After the computation of the last convolution, FC layers
directly compute the final output of the accelerator.

In the following subsections, more details about the main implemented blocks are
given, putting the focus on the trade-off choices and the optimizations applied. The
conventions used for convolutional operations are listed below:

• Hq: height of the q-th input feature map;
• Wq: width of the q-th input feature map;
• Chinq : number of input channels for the q-th layer;
• Choutq : number of output channels for the q-th layer;
• Fq: q-th layer filter size on both dimensions, considering the presence of square-shaped

filters only;
• Pq: q-th layer pooling grid size on both dimensions, considering the presence of

square-shaped grids only.

4.1. Custom Cache

The Custom Cache is the block responsible for storing tiles of the feature maps, which
are entirely saved on the external memory. In particular, only a few rows of the currently
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computed feature map are loaded from the external memory into the cache through the
AXI bus.

The logic inside the Custom Cache block handles writing operations so that the cache
is continuously loaded with a new row as soon as the oldest ones have been completely ex-
ploited.

The cache can be filled even while the accelerator is performing computations. In this
way, the accelerator needs to stop only when the AXI did not load enough elements for the
convolution to continue.

The cache is characterized by three parameters: Cwidth, Cdepth, Nco. The word length
Cwidth matches the length of the AXI bus packets. The memory depth Cdepth is given by
evaluating the minimum storage resources needed by each layer to start computing. The
worst case among layers is, thus, selected. Once Cdepth is fixed, the number of words read
in parallel per clock cycle, Nco, should be sized not to exceed the available FPGA on-chip
memory resources. Indeed, the memory footprint can be approximately estimated as

M f p = Cwidth · Cdepth · Nco. (2)

Figure 3 shows a simple scheme explaining the cache loading strategy.

Figure 3. Custom cache scheduling example.

4.2. Shared Convolutional Layer

The SCL is the processing unit shown in Figure 4. It is composed of a collection of Nmac
Multiply and Accumulate (MAC) blocks that perform product and sum operations between
input elements extracted from the Custom Cache and filters provided by the Filter Memory.
At every iteration, all MACs are fed with the same Nco input elements belonging to one
input channel, but each MAC elaborates filters of different output channels. Once a channel-
in swipe has been completed, Nmac output elements of different output channels are ready.
Increasing Nmac value enhances the level of parallelism of the accelerator, speeding up the
inference time at the cost of more hardware resources exploited.

After computing an output element, the accelerator shifts the filter position and
proceeds to the next channel-in swipe, elaborating columns first and then rows. This
scheduling algorithm is the best in terms of memory occupation as illustrated in [28]. Every
computed output is finally processed to perform truncation and saturation as specified in
Table 1.

The time needed to complete a channel-in swipe depends on the Nco parameter, which
is smaller than Chinq × Fq × Fq (i.e., number of elements for a complete channel-in swipe)
due to the memory constraints mentioned above.

Apart from the standard operating mode, proper scheduling of MAC operations has
been implemented to handle the following cases:

• Chout > Nmac: once the first channel-in swipe ends, only Nmac elements are ready.
Thus, before shifting the filter position for the next column, additional channel-in
swipes should be computed to elaborate all the output channels;
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• Fq · Fq > Nco: more than one clock cycle should be spent to read the necessary input
elements belonging to the same input channel;

• Fq = 1: in the case of 1x1 filters, every MAC can boost operation by elaborating
Pci parallel channel-in in one clock cycle (Pci ≤ Nco). This optimization results in a
performance speedup.

Equation (3) shows how to calculate the amount of needed clock cycles to complete
the convolution within a specific layer.

Nckq =



Chinq
d(Fq ·Fq)/Ncoe if Fq = 5

Chinq
Pci
· Choutq

Nmac
if Fq = 1

Chinq
Nco/(Fq ·Fq)

· Choutq
Nmac

if Fq = 3

(3)

The total number of clock cycles spent by the accelerator on performing convolutional
operations is then:

Ctime = ∑
q

Hq+1 ·Wq+1 · Nckq (4)

Figure 4. Shared Convolutional Layer schematic.

4.3. Filter Memory

The Filter Memory has the task of storing the convolutional filters. All the filters are
stored exploiting on-chip resources, and they do not have to be loaded from the external
memory. Every single MAC is fed with a distinct memory that contains the filters needed
by that unit only.

Every clock cycle, Nco elements from all the Nmac memories should be read to guaran-
tee correct MAC functionality. The word length, Fwidth, can be chosen to save the entire Nco
elements as long as the filters’ quantization bits allow it.

Figure 5 shows how Fwidth has been designed for 5 × 5, 3 × 3, and 1 × 1 filters in
order to minimize the memory footprint for our network and make all filters fit the FPGA
available resources.
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Figure 5. Filter Memory storage strategies.

The depth of each memory, Fdepth, is chosen to be high enough so that it can contain all
the elements required to perform all convolutions assigned to a specific MAC. The memory
footprint of the filter memory can be calculated as in Equation (5):

Ff p = Fwidth · Fdepth · Nmac (5)

4.4. Max Pooling

The Max Pooling block performs max pooling and global max pooling operations
whenever they are needed. This unit elaborates the SCL results in the pipeline in order to
minimize elaboration time. A proper SCL output generation scheduling has been designed
to achieve this purpose. In particular, if max pooling should be performed on Pq · Pq grids,
the SCL outputs are generated according to the grid order rather than making iterations
along all elements from the same row. In this way, the Max Pooling block directly provides
the maximum value among the consequent Pq · Pq elements received, with no need to wait
for the SCL to elaborate and store Chinq ×Wq input elements. This optimization provides
better performance and power consumption at the cost of little logic, when compared to
other solutions in the literature, such as [44], where pooling operations are applied to the
entire input layer only once all the elements are computed.

Figure 6 reports an example for the study case Pq = 2.

Figure 6. Standard scheduling versus optimized scheduling for Pq = 2.

5. Implementation Results and Experimental Measurement

The design proposed in Section 4 is based on a versatile VHDL code that makes the
accelerator configurable to fit different target FPGAs or to meet different design constraints.
Indeed, it is possible to configure the accelerator parameters (Nmac, Pci, Nco, Cwidth, Fwidth)
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in order to act on the exploited hardware resources and find a good trade-off between
timing and power performance.

In our case study, we chose the configuration in Table 2 with the purpose to minimize
the inference time, at the cost of hardware resources and power consumption.

Table 2. Parameters for the proposed implementations.

Nmac Bwidth Cwidth Cdepth Nco Fwidth Fdepth Pci

64 64 64 24,192 9 36 973 4

The hardware accelerator was first integrated within the system in Figure 7 (described
in Section 5.1) and implemented on a Zynq Ultrascale+ ZCU106 Development Board,
hosting a XCZU7EV-2ffvc1156 FPGA. Second, the only accelerator was implemented
on a rad-hard Xilinx Kintex Ultrascale XQRKU060, which is functionally and electrically
equivalent to the next generation of Xilinx space-qualified devices [20]. The implementation
results for this device are presented in Section 5.2.

Figure 7. CloudScout characterization system.

5.1. Zynq Ultrascale + ZCU106 System

The system shown in Figure 7 was used to evaluate accelerator performance in terms
of inference time and power consumption.

The Multiple Processor System-on-Chip (MPSoC) of the Zynq Ultrascale+ family
consists of two parts: Programmable Logic (PL) and Processing System (PS). The PS is used
to control the CloudScout accelerator implemented on the hardware resources of the PL.
More specifically, the PS includes a 64-bit quad-core Arm Cortex-A53, which runs a C code
to load the input images to the Micron MT40A256M16GE-075E DDR4 memory hosted on
the board. After this operation, the CPU generates a start signal, so that the accelerator
can begin with convolutional computations. At the end of the inference, the accelerator
generates an interrupt signal for the processor. When the latter is acknowledged by the PS,
the software application shows by Universal Asynchronous Receiver-Transmitter (UART)
serial terminal the result of the inference and the measured value for the inference time.

The PS and the accelerator communicate via an AXI bus. The PS Master—Accelerator
Slave interface is used to control the state of the accelerator. The Accelerator Master—PS
Slave interface is used to transfer data from the accelerator to the external DDR memory,
exploiting the controller integrated into the PS. The accelerator AXI Master is equipped
with asynchronous First-In-First-Out (FIFO) memories so that the bus operating clock
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frequency can differ from the accelerator’s one, allowing a reduction of off-chip data
transfer overhead times. The maximum clock frequency for the accelerator and the AXI
bus are facc = 115.4 MHz, faxi = 200 MHz, respectively. Multiple inferences were correctly
executed using the described system. Figure 8 shows some examples of processed images
and respective inference results in terms of a confidence score. The procedures to calculate
the confidence score and pre-process data are described in [3]. It is important to remember
that a certain image is considered “cloudy” only if at least 70% of its pixels are covered
by clouds.

Figure 8. Examples of accelerator outputs. Input images are derived by Copernicus Open Access
Hub [45].

The inference time was measured using an internal counter that is triggered by the
start signal (generated by the CPU) and stopped at the end of the inference. The average
value obtained was 141.68 ms.

The inference time estimated by applying Equation (4) was 119.54 ms. The variation
of 22.14 ms between the two results can be assigned to the overhead introduced by the
AXI interface used in the testing system. Power measures were done applying methods
described in [24,46]: data were collected through the INA226 power monitors hosted on
the ZCU106 for the various power rails via software and compared with current measures
logged during inference via the Digital PowerTool software from Maxim Integrated.

The average power consumption of Ptot = 3.4 W was measured for the entire system
and with the specified clock frequencies. The average power consumption measured for
the only accelerator (PL side of the target FPGA) consists in Pacc = 1.65 W.

These values can be compared with the estimations obtained from the Xilinx Power
Estimator (XPE) tool (with default settings), which gives 5.33 W for the entire system and
2.53 W for the accelerator only. The comparison shows that the XPE estimation is oversized,
with a variation of 36.2% and 34.8%, respectively.

Table 3 summarizes the obtained characterizing parameters, with the addition of Ein f
being the energy spent per inference.
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Table 3. Measured results summary for XCZU7EV system implementation.

facc [MHz] faxi [MHz] Tin f [ms] Ptot [W] Ein f [J]

115.4 200 141.68 3.4 0.48

For what concerns hardware resources, Table 4 shows implementation results for the
XCZU7EV FPGA.

Table 4. Zynq Ultrascale+ XCZU7EV Resource occupation for the entire system.

Resources Available Used %

LUTs 230,400 53,188 23.09
Flip-Flops 460,800 17,454 3.79
LUTRAM 101,760 760 0.75
BlockRAM 312 68 21.79
UltraRAM 96 54 56.25

DSP 1728 1163 67.3

UltraRAM blocks are exploited for the realization of the Custom Cache, while Block-
RAMs are used to store the filters of the network and to implement the AXI FIFOs. Most
DSPs are deployed for implementing MAC modules in the SCL and in the Fully-Connected
layers. In particular, each DSP corresponds to a multiplier [13] (e.g., Nco = 9 DSPs used for
each MAC in the SCL).

5.2. Kintex Ultrascale KU060 Implementation

The accelerator presented in Section 4 can be seen as a first step toward the design
of a space-qualified hardware accelerator for rad-hard FPGAs. As an example, we also
implemented our design on a Kintex Ultrascale XQRKU060 FPGA [20], which represents
the next generation of Xilinx space-qualified devices.

The maximum clock frequencies for this implementation were facc = 52.08 MHz,
faxi = 161.3 MHz. The inference time was estimated through Equation (4) and equal to
Tin f = 264.72 ms. The XQRKU060 has worse timing performance with respect to the design
implemented on the ZCU106 board because it belongs to an older FPGA family (Ultrascale
vs. UltraScale+). For the Kintex implementation, power consumption was estimated
through the XPE tool and equal to Pacc = 1.6 W. It must be noted that this value is only
the power consumed by the accelerator. In other words, this does not consider the power
consumed by the DDR memory or by an eventual CPU for system control.

Table 5 summarizes the obtained characterizing parameters. As previously mentioned,
the inference time and power consumption are estimations given by the design tools.

Table 5. Results summary for XQRKU060 accelerator implementation.

facc [MHz] faxi [MHz] Tin f [ms] Pacc [W]

52.1 161.3 264.7 1.6

Table 6 shows the summary for the exploited hardware resources on this device.

Table 6. Kintex Ultrascale XQRKU060 Resource occupation for the hardware accelerator.

Resources Available Used %

LUTs 331,680 48,973 14.77
Flip-Flops 663,360 12,675 1.91
BlockRAM 1080 455 42.13

DSP 2760 1175 42.57
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6. Benchmark: FPGA and Myriad2

This section aims to offer a portrait of the advantages and disadvantages of using a
COTS embedded solution or an FPGA-based solution for the acceleration of AI on board
satellites, focusing on available technology and design techniques. FPGAs and Myriad 2
are compared with regard to the following metrics:

• Technology radiation tolerance, which is the capability of a device to be immune to the
effects of the space radiation environment;

• Space-oriented Design, meant as the application of specific architectures, techniques or
communication protocols to enforce the system radiation tolerance;

• Costs of the devices;
• Design flexibility, which refers to the possibility of implementing different features

and algorithms on a target device or the possibility of implementing the design on
different devices;

• Developing time, which is the time necessary to develop a ready-to-fly system;
• Inference time, which is the time that elapses between when input data are provided

and when the final output is produced;
• Power consumption, a significant parameter for on the edge systems because their

available power budget is usually limited.

6.1. Space-Oriented Technology

High reliability is a key factor in the selection of components for space applications
since the harsh nature of the space environment is a cause of possible hazards and sys-
tem failures.

Current technology trends for COTS devices, such as increased clock frequencies,
reduced feature sizes, and reduced supply and threshold voltages, harm the fault tolerance
of the circuit. Due to the constant shrink in the transistor dimensions, faults that once
were considered negligible are now significant enough to cause upsets that can perturb the
integrated circuit operation [47,48].

In this scenario, rad-hard FPGAs constitute a valid candidate since they manage to
combine high performance with enhanced radiation tolerance [2,18,48].

To better understand the benefits of a space-qualified FPGA, Table 7 reports the
TID and SEL immunity values for some rad-hard FPGAs including RTG4 [19], BRAVE
Large [49] and Kintex XQRKU060 [20]. Results of the de-risking radiation test campaign
carried out at CERN on the Myriad-2 VPU are also given [2].

Table 7. Radiation performance for Myriad 2 and rad-hard FPGAs.

Device TID (Krad) SEL Immunity (LET)

Myriad 2 VPU 49 8.8 (MeV · cm2·mg−1)
NanoeXplore BRAVE Large 100 60 (MeV · cm2·mg−1)

Xilinx Kintex XQRKU060 100–120 80 (MeV · cm2·mg−1)
Microsemi RTG4 160 103 (MeV · cm2·mg−1)

The European Cooperation for Space Standardization (ECSS) indicates that a device
can be considered SEL-immune if it does not show any effect for a Linear Energy Transfer
(LET) up to 60 MeV · cm2· mg−1 [50]. Thus, all the FPGAs indicated in Table 7 can be
considered SEL-immune, differently from Myriad 2 [51,52]. Rad-hard FPGAs also support
a TID two to three times greater. This does not constitute an advantage for LEO missions
since the typical TID per year in these orbits is in the range of the Krad [53], and EO
missions can last from 1 to 2 years for small satellites like CubeSat and up to 7 years for
higher-profile satellites such as Sentinel-2 [54]).

6.2. Space-Oriented Design

FPGAs allow developing electronic designs completely oriented towards space appli-
cations. Apart from technology, FPGAs feature the advantage of a customizable design,
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which can be equipped with redundant structures to enhance reliability and robustness
by design. For example, Error Detection And Correction (EDAC) techniques can be ex-
ploited to secure the transmission of data from/to RAM memories [55], and Triple Modular
Redundancy (TMR) can mitigate SEU effects for combinational logic [56].

Another advantage about FPGAs’ flexibility concerns quantization. Indeed, the pos-
sibility of minimizing the number of representation bits for data within the model helps
to reduce the design area when compared to solutions like the Myriad 2, where there is
no degree of choice. This is an advantage because the SEU probability is proportional to
the area of the implemented circuit and because unused resources on the FPGA can be
exploited for redundancy, as previously discussed.

Thanks to FPGA programmable logic, it is also possible to interface hardware accel-
erators with space-design communication protocols, according to design requirements,
such as the well-established SpaceWire [57] or the newest high-speed interfaces SpaceFi-
bre [58,59], RapidIO [60], and TTEthernet [61]. These standards implement Fault Detection
Isolation and Recovery (FDIR) mechanisms to identify and re-send data packets corrupted
by incident radiation during the transmission process, without any data loss. Furthermore,
SpFi and RapidIO support multi-lane links, which means that each communication link is
composed of several lanes working in parallel. The multi-lane feature makes the communi-
cation system intrinsically redundant, increasing system robustness and reliability: in case
of one or more lane failures, the system can continue to transmit and receive data.

The Myriad 2 communicates with the Hyperscout-2 back-end electronics through an
Ethernet communication interface [39], which does not implement any of the mentioned
techniques to mitigate SEU effects [56] and thus is not ideal for the space environment.
Moreover, the Myriad2 requires exploiting the OpenVino [62] or the previous NCSDK [42]
environments to be programmed. These Application Program Interfaces (APIs) are based
on Windows, Linux, or other Operative Systems, which are not optimal for space ap-
plications. Operative Systems such as Real-Time Executive for Multiprocessor Systems
(RTEMS) [63] are generally preferred since they are verified to operate in space.

6.3. Costs, Design Flexibility, and Developing Time

Rad-hard devices are designed to properly work in the harsh space environment and
have to respect strict requirements (not only in terms of radiation tolerance) to provide
robust and reliable platforms. For example, space-qualified hardware must work in a
wide range of temperature (in LEO it goes from −65 ◦C to +125 ◦C [64]), dissipate heat in
absence of convection, be resistant to strong vibrations [65] (especially during the launch),
and resist pressure changes that can lead to disruptive discharging mechanisms [66]. Thus,
the design of a new space-oriented device requires a long and complex validation process,
and available solutions are limited in number and generally exploited for many years. The
complex design process and the small market volume determine a very high cost for space
electronics with respect to COTS-embedded solutions, and for these reasons, COTS can be
preferred for short and low-cost missions with relaxed constraints in terms of robustness
and reliability.

Nevertheless, FPGAs can be chosen for their flexibility, allowing algorithms and
functionalities to be implemented that may not be included in COTS devices. For instance,
Myriad-2 programmability is limited (in terms of implementable models) when using open-
source versions of OpenVino or NCSDK. The FPGA design flexibility has the disadvantage
of a higher developing time with respect to a plug-and-play solution such as the Myriad 2,
thus causing a higher non-recurrent cost. Indeed, the FPGA design flow consists of various
phases, such as coding, functional simulation, synthesis and implementation, and system
validation. On the other hand, the software tools exploited for COTS let the designer
deal with the first and last phases only. This is often a reason for industries to choose
software-programmable COTS to reduce the Time to Market of their products.
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6.4. Inference Time and Power Consumption

Non-space-oriented devices generally have better performance in terms of timing
and power consumption than rad-hard devices because they can exploit state-of-the-
art manufacturing processes (Myriad 2: 28 nm, RTG4: 65 nm) and do not implement
additional protection logic such as TMR and EDAC, which can slow down the maximum
clock frequency of the digital circuit.

For these reasons, a hardware accelerator designed for FPGAs should compensate
these differences through a deep exploration of the trade-offs between timing, power, and
hardware resources.

As previously discussed (Section 5), in our case study, we chose values for the config-
urable parameters of the accelerator with the purpose to minimize the inference time, at
the cost of hardware resources and power consumption.

The obtained inference times for the two FPGA implementations of the accelerator
(141.68 ms measured for the Ultrascale+ ZCU106 and 264.7 ms estimated for the Kintex
Ultrascale KU060) are smaller than the one achieved with the Myriad 2 device (346 ms).
This demonstrates that an FPGA solution can be truly competitive for what concerns timing
performance when accelerating CNNs on the edge.

Moreover, the difference in timing performance could be more deeply enhanced by
properly customizing accelerator parameters. In fact, by choosing values that correspond
to a greater parallelization (e.g., greater Nmac, Pci, or Nco), the FPGA accelerators would
have an even smaller inference time, at the cost of more hardware resources and greater
power consumption.

For what concerns power consumption, it is a particularly relevant metric for small
and micro satellites [67] with a limited power budget. The power measures and estimations
made for our FPGA accelerators (referring to Tables 3 and 5) show that the Myriad 2
solution is better in this sense. Indeed, Myriad 2 consumes an average power of 1.8 W
during inference. To reduce FPGA accelerator power consumption, it would be needed to
minimize its degree of parallelization, naturally at the cost of slower inference times.

Nevertheless, for certain tasks, the energy spent per inference Ein f can become a more
interesting metric of comparison. From this point of view, the reduced inference time
characterizing our FPGA implementations brings a strong advantage. Taking into account
the measured values for inference time and average total power, Ein f is calculated as:

Ein f = Ptot · Tin f (6)

We obtain Ein f = 0.63 J for the Myriad 2 and Ein f = 0.48 J for the ZCU106 system.
AI space applications can be divided into two categories:

• Online tasks: tasks with a high duty cycle, meaning that the hardware accelerator
continuously computes inferences with reduced idle states;

• Offline tasks: tasks with a reduced duty cycle. For offline tasks, the accelerator might
rest in idle state for a longer portion of its working period.

The power measurements and estimations made for our FPGA accelerators show that
the Myriad-2 solution is convenient for offline tasks since the Myriad 2 has an average
consumption of 1.8 W for the CloudScout inference, while it consumes few mW in its idle
state. On the other hand, FPGAs have greater static power consumption and can be more
suitable for online tasks, for which the accelerator is mostly used in its active state.

All discussed data are summarized in Table 8 for a clearer comparison in terms of ac-
celerator clock frequency ( facc), inference time (Tin f ), accelerator power consumption (Pacc),
system total power consumption (Ptot), and energy spent per inference (Ein f ). It is important
to remember that Tin f and Pacc values for the XQRKU060 device were only estimated.
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Table 8. Results summary for XCZU7EV, XQRKU060, and Myriad-2 VPU.

XCZU7EV XQRKU060 Myriad2 VPU

facc [MHz] 115.4 52.6 1000
Tin f [ms] 141.68 264.7 346
Pacc [W] 1.65 1.6 -
Ptot [W] 3.4 - 1.8
Ein f [J] 0.48 - 0.63

7. Conclusions

This work aims to offer a comparison between FPGAs and other COTS devices when
they are chosen to host DL algorithms for space applications. The study case taken into
consideration was CloudScout: a project funded by ESA that created the very first CNN-
based algorithm to fly on board a satellite for the cloud-detection task. The inference of
the CNN is currently being executed by the Myriad 2 VPU by Movidius Intel, showing
good timing performance and reduced power consumption. Nevertheless, this device is
not designed for space, and it is not based on a radiation-tolerant technology. Furthermore,
it is not customizable when considering the options of equipping it with custom features
(i.e., space-oriented communication protocol, operative system, redundancy structures,
etc.) to enhance reliability and robustness. For these reasons, it is reasonable to assume
that Myriad 2 could be used in brief LEO missions only.

To overcome the limits imposed by Myriad 2, we designed an FPGA-based hard-
ware accelerator for the CloudScout application and made a comparison between the
two solutions.

As a first step, a custom quantization process was applied to the CloudScout CNN to
shrink model complexity and make it feasible with FPGA resources. This process led to a
48% memory footprint reduction, with a negligible loss in accuracy.

The VHDL design of the hardware accelerator was completed by considering various
trade-offs between performance and hardware resources, but keeping it configurable
through a set of parameters.

The accelerator was tested by integrating it into a CPU-controlled system designed
through the Xilinx Vivado Design Suite and implemented on the Zynq Ultrascale+ ZCU106
Development Board, extracting the main accelerator metrics. The inference time achieved
with the FPGA-based solutions showed a 2.4× speed-up when compared to the Myriad 2
VPU, but at the cost of 1.8 times higher power consumption and a longer developing time.
The result shows an advantage in choosing the FPGA design since the energy spent per
inference is reduced by 24%.

The accelerator was also implemented on a space-grade Kintex Ultrascale XQRKU060
FPGA as a first step toward the employment on rad-hard devices of our design.

In conclusion, our results show that FPGAs are a valid alternative when accelerating
DL algorithms. In particular, FPGA’s configurability, flexibility, and radiation-hardness
ensure considerable benefits for space applications, such as CloudScout, in terms of orbit
distance, duration, and mission-critical requirements.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
API Application Programming Interface
ASIC Application Specific Integrated Circuit
AXI Advanced eXtendible Interface
CNN Convolutional Neural Network
COTS Commercial Off the Shelf
CPU Central Processing Unit
DDR Double Data Rate
DL Deep Learning
DNN Deep Neural Network
ECSS European Cooperation for Space Standardization
EDAC Error Detection And Correction
EO Earth Observation
ESA European Space Agency
FC Fully-Connected
FDIR Fault Detection Isolation and Recovery
FIFO First In First Out
FPGA Field Programmable Gate Array
GEO Geostationary Earth Orbit
GPU Graphics Processing Unit
LEO Low Earth Orbit
LET Linear Energy Transfer
MAC Multiply and Accumulate
MEO Medium Earth Orbit
MPSoC Multiple Processor System-on-Chip
NCS Neural Compute Stick
PS Processing System
PL Programmable Logic
PU Processing Unit
RTEMS Real-Time Executive for Multiprocessor Systems
SCL Shared Convolutional Layer
SDRAM Synchronous Dynamic Random Access Memory
SEE Single Event Effect
SEL Single Event Latch-up
SET Single Event Transient
SEU Single Event Upset
SoC System-on-a-Chip
TID Total Ionizing Dose
TMR Triple Modular Redundancy
TOPS Tera Operations Per Second
TPU Tensor Product Unit
UART Universal Asynchronous Receiver-Transmitter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VPU Visual Processing Unit
XPE Xilinx Power Estimator
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