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Abstract: Accurate burned area information is needed to assess the impacts of wildfires on people,
communities, and natural ecosystems. Various burned area detection methods have been devel-
oped using satellite remote sensing measurements with wide coverage and frequent revisits. Our
study aims to expound on the capability of deep learning (DL) models for automatically mapping
burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation
network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML)
algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two
different local climate zones. The validation results show that the DL algorithms outperform the ML
methods in two of the three cases with the compact burned scars, while ML methods seem to be more
suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet
exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous
Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one
compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring
the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among
DL models and can preserve the high accuracy. The results demonstrated that DL models can make
full use of contextual information and capture spatial details in multiple scales from fire-sensitive
spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide
automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but
also have potential to be used for onboard processing in the next Earth observation satellites.

Keywords: Sentinel-2; Landsat-8; burned area mapping; deep learning; semantic segmentation;
machine learning

1. Introduction

Wildfires are widely recognized as one of the most critical ecosystem disturbances,
as they not only result in the significant loss of human lives and properties, but also
affect biodiversity and the carbon cycle [1]. Accurate and timely mapping of burned
areas is, therefore, needed for the assessment of economic losses caused by the wildfires,
managing post-fire hazards such as landslides or mudflows, and planning of remediation
and revegetation efforts. Historically, ground-based estimates were used to collect burned
area information [2]. With the launch of Earth observation satellites, remote sensing has
become a more efficient alternative to monitor wildfire extent due to its timely coverage of
fire occurrences regionally and globally [3,4].

Over the past decades, coarse-resolution satellite sensors such as the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) have been used to identify the burned areas
globally based on the thermal emission of burned vegetation [4]. For instance, some
MODIS monthly burned area products, such as MCD64A1 [5] at 500 m resolution and
FireCCI51 [6] at 250 m resolution, are currently available online, e.g., Google Earth Engine
(GEE) platform. However, these burned area products often miss small burned areas that
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account for a significant proportion of the total burned area [7]. Therefore, it is desirable
to evaluate effective methods for accurate burned area mapping using medium-to-high
resolution satellite images.

Open access to Landsat-8 and Sentinel-2 satellite data with a global median average
revisit at 2.9 days provides an excellent opportunity for mapping burned areas in near-
real-time (NRT) [8]. Various algorithms have been developed using Sentinel-2 and/or
Landsat data, but most of the studies require a pre-fire image, dense time-series data, or an
empirical threshold [9-11]. To address the main challenge of estimating burn scar from a
single post-fire scene, the objective of this study is to investigate DL models for burned area
mapping in two climate zones in comparison to other commonly used classical methods.

2. Related Studies

Sensors like Sentinel-2 and Landsat-8 have multispectral channels in the visible/near-
infrared (NIR) and short-wave infrared (SWIR) that are sensitive to fire disturbance. Re-
moval or alteration of leaf structure and canopy cover vegetation caused by wildfire
changes the land vegetated surface on the ground even to soil exposure in some extreme
events. The amount of radiation reflectance from these changes can be represented as a
function of the spectral wavelength [12]. For instance, more radiation in NIR is absorbed
by fire-disturbed areas than unburned ones, while burned areas would reflect more radi-
ation in the visible and SWIR bands [13]. Therefore, many well-known spectral indices
(covering the visible/NIR, the NIR/short SWIR, and the short SWIR /long SWIR spectral
spaces) have been proposed for burned area detection, e.g., MIRBI, EVI, NDVI, BAIM, NBR,
NBR2, and BAIS2 [7,14-20]. These indices can be further differentially normalized by the
corresponding bitemporal pair (i.e., pre-fire and post-fire scenes) to enhance burned area
discrimination (e.g., ANBR as a typical index), which additionally requires the cloud-free
pre-fire satellite imagery.

Index thresholding is commonly used for burned area mapping, and the threshold val-
ues are often set empirically depending on visual interpretation, biome types, and tree cover
percentages [21]. On the other hand, automated methods on indices such as OTSU [22]
might have difficulties determining an optimal threshold for indices when the distributions
of scene intensity and land cover are complex. Recently, an automatic thresholding chain
was proposed for NRT burned area mapping at a national scale using Sentinel-2 data based
on the dNDVI and RANBR with mapping unit 1 hectare (ha) [23]. However, these bitempo-
ral indices increase preprocessing time and limit future applications, especially for the next
Earth observation satellite with onboard data processing and limited storage for previous
scenes. Some automated methods based on spectral signatures require retraining when
applied to diverse landscapes despite tuning thresholds to local conditions [24]. Therefore,
the nonparametric machine learning (ML) algorithms have received much attention for
their better performance in burned area detection than traditional threshold-based methods
using spectral indices [25].

As ML algorithms depend on the distribution of the training data without any as-
sumptions, automated burned area mapping becomes achievable. Various ML methods
have been widely used in wildfire science including random forests (RF), Support Vector
Machines (SVM), Artificial Neural Networks (ANN), decision trees, and MaxEnt [25].
Furthermore, dense harmonic time-series of Landsat data were used to identify burned
areas [26,27]. An automated burned area mapping algorithm using paired Sentinel-2 im-
ages was introduced in [28], with an SVM for an initial pixel-based classification and a
multiple spectral-spatial classification approach for smoothing the final burned area delin-
eation. Moreover, a global burned area mapping approach was implemented using RF and
a seed-growing approach based on time-series Landsat-8 images and GEE [29].

Automated burned area mapping with a uni-temporal post-fire image is promising
but relatively challenging because of spectrally similar effects to burned areas caused
by unrelated phenomena and disturbances such as shadows, agricultural harvesting,
or plowing in the absence of ancillary information [10,30,31]. Various attempts have been
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made to map burned areas using a post-fire image. For example, logistic regression (LR)
was applied to a single post-fire Landsat-5 Thematic Mapper (TM) image for burned land
mapping [30]. Mitrakis et al. [32] compared a variety of ML algorithms including ANN,
SVM, and Ada Boost Classifier (AdaBoost) for burned-area mapping in the Mediterranean
region with one post-fire Landsat-5 TM image and found that all methods displayed similar
accuracy. Likewise, Mallinis and Koutsias [33] compared 10 classification methods and
concluded that the variance imposed by the methods is less than the variance imposed
by factors differentiated locally in the study sites. Further, Pu and Gong [34] used LR
to calculate probabilities of burned scars from a single post-fire Landsat 7 ETM+ image
with acceptable overall accuracy. Stroppiana et al. [35] proposed a (semi)-automated
multicriteria method for burned area mapping from uni-temporal Landsat TM images in
the Mediterranean environment. This soft aggregation approach could reduce omission
errors less than 3% but resulted in high commission errors of about 21%.

Recent studies demonstrated that deep learning (DL) algorithms have the capacity
to automatically capture object features at multiple scales without the requirement for an
extra user input but with a few specific hyperparameters [36]. Semantic segmentation
architectures with convolutional neural networks (CNNs) have unique characteristics
to extract the contextual information in multiple scales and then label each pixel of an
image [37]. It is now playing a significant role in many image analysis tasks ranging from
autonomous vehicles, human—computer interaction, robotics, medical research, precision
farming, and so on [37—43]. For remote sensing, semantic segmentation algorithms have
recently been applied to 2D satellite images and even 3D scenes [44,45]. For instance, auto-
matic extraction of snow cover from high spatial resolution optical images was proposed
using DL on a small dataset [46]. A fully convolutional networks model trained on very
high resolution (VHR) optical satellite imagery was transferred to Sentinel-2 and SAR data
in slum mapping [47]. CloudNet was presented to classify cloud and haze from Sentinel-2
imagery based on deep residual learning, semantic image segmentation, and the concept
of atrous convolution [48]. A revised U-Net network structure named DeepUNet was
explored for pixel-level sea-land segmentation with images collected from Google Earth
and handicraft labeled ground truth images [49]. A similar U-Net architecture with residual
units was employed for road area extraction with relatively high accuracy [50]. A Mask
Region-Based CNN(R-CNN) model was applied to automatically mapping applications
such as ice-wedge polygons [41,42] and archaeological sites [43] with high-resolution or
VHR remote sensing imagery.

As such, there exist opportunities to employ DL-based models in burned-area de-
tection, particularly in cases involving large multivariate datasets [25]. Recently, a DL
approach achieved competitive results with low spatial resolution observations (0.01° spa-
tial resolution grid) for mapping and dating of burned areas [51]. Langford et al. [52] took
a weight selection strategy to tackle the imbalanced classification in deep neural networks
training for binary wildfire classification across Alaska with MODIS variables. Concerning
the medium- and high-resolution satellite images, an implicit Radar Convolutional Burn
Index was proposed based on multitemporal Sentinel-1 SAR data and InSAR technique
for mapping the burned areas under a convolutional network-based classification frame-
work [53]. Sentinel-1 SAR backscatter was further proved effective to detect burned areas
with a CNN-based DL framework [54]. Bermudez et al. [55] used a conditional Generative
Adversarial Network to synthesize missing remote sensed optical data from Sentinel-1 SAR
data for a region with the presence of burned area. Recently, de Bem et al. [56] analyzed the
performance of deep convolutional autoencoders (U-Net and ResUnet) using bitemporal
image pair of the Landsat scenes and recommended the sampling window size of 256 by
256 pixels in DL model training.

Using uni-temporal Sentinel-2 imagery, Knopp et al. [57] proposed an automatic
processing chain for burned area segmentation based on U-Net. It successfully reaches high
overall accuracy, but lacks the test on transferability of the Sentinel-2 trained model to other
sensor data. Due to the large proportion of coarse perimeters as reference data, the network
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in [57] attempts to create homogeneous burned area delineation with false positives therein.
In addition, more DL-based models need to be involved in comprehensive evaluation along
with other ML approaches in different landscapes. Considering the spectral consistency
between the multispectral Sentinel-2 and Landsat-8 data [58], it implies the potential
to make use of transferability and generalization of DL-based models to map burned
areas with cross-sensor multispectral data. In our study, several semantic segmentation
networks in different classes [37] are compared, including the widely used U-Net [59],
region proposal-based CNN architectures like Fast-SCNN [60], increase the resolution of
the feature-based DeepLabv3+ [61], and state-of-art enhancement of feature-based high-
resolution networks (HRNet) [62].

The overall objective of this study is to specifically explore the capabilities of DL-based
models for mapping burned areas in various landscapes including the Mediterranean
regions and the boreal forests in Sweden. The specific aims are to address the following
limitations of the previous studies by using state-of-the-art DL techniques:

(1) A poor generalization of spectral indices in heterogeneous regions.

(2) Additional pre-fire image acquisitions for bitemporal indices.

(3) Omission errors caused by uni-temporal indices.

(4) Lack of a more detailed quantitative comparison between different kinds of algorithms.
(5) Lack of a further investigation about the cross-sensor dataset.

3. Study Areas and Data Characteristics
3.1. Study Areas

Figure 1 provides an overview of the training and testing study sites highlighting
the different biome types. The Mediterranean forests, woodlands, and scrubs dominates
the vegetation in Portugal, Spain (a) and Greece (d). In Figure 1a, four large wildfire
events—two in Portugal (P1 in Leiria District and P4 in Castelo Branco) and two in Spain
(P2 in Donana and P3 in Encinedo)—are selected as training sites for models (see Table 1
for details). Historically, the Mediterranean Basin is extremely vulnerable to wildfires,
frequently happening in the summer period (between June and September). For instance,
the Castelo Branco fire covers approximately 9646 ha near two villages with 1471 people
affected among the total of 15,596 living nearby.

Table 1. Description of the study sites and the training (P1-P6) and testing (T1-T3) sites. S2: Sentinel-2; L8: Landsat-8. REF:
reference. POST Date: Post-fire acquisition dates. res.: Resolution.

Width x
. Burned POST POST s

Country Sites Event Date End Date Area (ha) REF Date Date (52) Date (L8) Height in

20 m Res.
P1 Portugal Leiria District 2017-06-17  2017-06-24 45,135 2017-06-24  2017-07-04 * 2240 x 2022
P2 Spain Donana 2017-06-24  2017-06-30 8446 2017-08-08  2017-07-01 * 1120 x 1037
P3 Spain Encinedo 2017-08-22  2017-09-01 9934 2017-10-10  2017-09-02 * 1247 x 550
P4 Portugal Castelo Branco 2019-07-20  2019-07-23 9646 2019-07-24  2019-08-03 * 1204 x 849
P5 Canada Elephant Hill 2017-07-06  2017-09-20 191,865 2018-05-14  2017-10-03 * 3839 x 4933

P6 Sweden Enskogen 2018-07-14  2018-07-18 8980 2018-08-07  2018-10-07 * 816 x 861
T1 Greece Corinthia 2020-07-22  2020-07-26 3282 2020-07-28  2020-07-29  2020-08-23 476 x 544
T2 Sweden Fagelsjo-Lillasen ~ 2018-07-13 ~ 2018-07-27 3906 2018-07-27  2018-09-02  2018-10-16 409 x 409
T3 Sweden Trangslet 2018-07-12  2018-07-27 3136 2018-07-27  2018-10-05  2018-10-07 421 x 385

In addition, one large Elephant Hill fire (P5 in Figure 1b) in BC, Canada, is added as a
training site to the temperate conifer forests biome. Started on 6 July 2017, the Elephant
Hill fire was the largest wildfire in BC during the record-breaking wildfire season in 2017,
causing nearly 191,865 ha of land to be burned (see Table 1 for details). The other boreal
conifer region of interest is central Sweden in Figure 1c. Due to the extreme and long-
lasting drought in forests and windy weather in summer 2018, Sweden suffered many
large wildfires, with more than 25,000 ha burned and almost 3 million cubic meters of
wood destroyed. One large fire in Enskogen is added for training (P6 in Figure 1c). Three
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fire events are selected for independent testing, including two small boreal forests fires in
Fagelsjo-Lillasen and Trangslet (T2 and T3 in Figure 1c) and one wildfire near Corinthia on
the Peloponnesian peninsula in Greece (T1 in Figure 1d).
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Figure 1. Political map (a-d) showing the biome types [63] in regions or countries such as Portugal, Spain, British Columbia
in Canada, Sweden, and Greece. Fire events used for training of the burned area mapping methods are marked with points
from P1 to P6, while events for independent testing are marked with points of T1-T3. These 3 testing study areas are
displayed in false color composites of Sentinel-2 B12, BSA, and B11 bands at the bottom, respectively; burned areas appear
in dark red. (T1) Study area in Corinthia, Greece; (T2) study area in Fagelsjo-Lillasen, Sweden; and (T3) study area near

Trangslet, Sweden.
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3.2. Data Characteristics
3.2.1. Sentinel-2 and Landsat-8 Data Collection

The European Space Agency (ESA) launched twin satellites Sentinel-2A and Sentinel-
2B in June 2015 and in March 2017, respectively. They carry the Multispectral Imager (MSI)
that gives continuity to high-resolution optical observations over global terrestrial surfaces.
These sensors sample 13 spectral bands of pixel size ranging from 10 to 60 meters: Blue (B2),
Green (B3), Red (B4), and NIR (B8) at 10 m; red edge bands (B5-B7), narrow NIR (B8A),
and SWIRs (B11 and B12) at 20 m; and coastal aerosol (B1), water vapor (B9), and cirrus
band (B10) at 60 m spatial resolution. Launched on 11 February 2013, Landsat-8 provides a
two-sensor payload: the Operational Land Imager (OLI) and the Thermal Infrared Sensor
with a 16-day revisit time [64]. Spectral channels consist of coastal aerosol (B1), Blue (B2),
Green (B3), Red (B4), NIR (B5), SWIR1 (B6), SWIR2 (B7), and cirrus (B9) with a 30 m spatial
resolution, two thermal infrared wavelengths at 100 m resolution, and a panchromatic
band (B8) in 15 m resolution.

Although Sentinel-2 MSI has several similar spectral wavelengths with Landsat 8
OLI two Sentinel-2 satellites can provide higher temporal resolution together (5 days vs.
16 days) and higher spatial resolution (10/20 vs. 30 m) than Landsat-8 OLI. The multi-
spectral scenes of Sentinel-2 MSI L1C TOA and Landsat-8 OLI TOA in this study were
downloaded from GEE datasets (i.e., Image Collection “COPERNICUS/S2” and “LAND-
SAT/LC08/C01/T1_TOA”, respectively). The data collection process included date fil-
tering, bounds filtering to the regions of interest, and subsets clipping. All images were
resampled into 20 m using the nearest neighbor resampling method. The acquisition dates
and image size of post-event Sentinel-2 and Landsat-8 images used in this study are listed
in Table 1.

3.2.2. Reference Data

Copernicus Emergency Management Service (EMS) provides us with delineation prod-
ucts and grading products (https:/ /emergency.copernicus.eu/mapping/list-of-activations-
rapid, accessed on 9 April 2021) as precise annotation masks for corresponding training
and testing images. These products have been used as reference data in burned area
detection or burn severity estimation in previous studies [16,18,23,33,57,65,66]. Most EMS
delineation or grading maps are derived from VHR post-fire images using WorldView-2
and/or SPOT6/7 with 1.5-2.0 m resolution under approximately 0% cloud coverage. For
instance, the data source of post-fire images used for test sites is SPOT6/7 with 1.5 m
ground sampling distance as presented in Table 2. Based on these VHR images, a semi-
automatic strategy helps deliver the EMS thematic layer through visual interpretation
(https:/ /emergency.copernicus.eu/mapping/ems/detection-methods, accessed on 9 April
2021). This approach is common for the analysis of forest fires based on optical satellite
data to identify and classify the burned areas in product delivery. Although we aim to map
the extent of burned areas in this study, the burn severity provided by EMS grading maps
also helps us analyze the characteristics of spatial heterogeneity of the fire scar.

The burned area masks of fire events in Spain and Portugal are directly derived from
EMS products whose Activation ID numbers are EMSR207 (Leiria District), EMSR209
(Donana), EMSR227 (Encinedo), and EMSR372 (Castelo Branco), respectively. Moreover,
the EMSR447, EMSR298_05, and EMSR298_03 products provide the reference data for the
test sites in Corinthia, Fagelsjo-Lillasen, and Trangslet, respectively. Differently, for the
Elephant Hill and Enskogen fires, their dNBR images, calculated from cloud-free pre-fire
and post-fire Sentinel-2 images, were empirically thresholded to elaborate the precise
ground truth mask within the official perimeters from the Copernicus EMS (EMSR298_01)
and BC Wildfire Service (K20637) [67] as de Bem et al. [56] did. Furthermore, we manually
refined all the burned area annotations based on visual analysis of VHR post-event optical
images (i.e., Google Earth Map).

Some reference dates in Table 1 are later than those of the post-fire image acquisition
dates (e.g., one month for the Spanish fire and 7 months for the Canadian fire). For Sweden,
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the EMS reference dates are earlier than post-fire image acquisition dates (e.g., 2 months for
Enskogen, 1 month for Fagelsjo-Lilldsen, and 2 months for Trangslet). One reason for this
is the different data sources of the reference images and post-fire images. The acquisition of
Sentinel-2 or Landsat-8 testing images depends on the cloud coverage, while the delivery
of reference products mainly relies on the available VHR images and interpretation time.
On the other hand, the reference data acquisition would be earlier or later depending
on the official emergency applications (rapid activation or grading severity mapping).
The Elephant Hill Fire has the official perimeters after the fire event but it would not affect
the quality of burned area perimeters due to the slow regrowth of boreal forests. The time
gap between multispectral images and reference data has little influence on the detection
of burned area extent in this study, especially for boreal forest fires in Sweden and Canada.
However, it would be important to use the images with as little time gap as possible to
ensure the reliability of the burn severity accuracy assessment.

Table 2. Test sites characteristics. PRE IMG.: Pre-fire Image. POST IMG.: Post-fire Image. GSD: Ground Sampling Distance.

n.d.: NOT Detected.

PRE IMG. Source POST IMG. Source
Event EMSR ID Tran. (km) Pop. (No.) Ele. (m) (GSD) (GSD)
Corinthia 447 54.4 1501 369 to0718.3 SPOT6 (1.5 m) SPOT7 (1.5 m)
Fagelsjo-Lillasen 298_05 443 n.d. 435.0 to 597.9 Sentinel 2A /B (10 m) SPOT6/7 (1.5 m)
Tréngslet 298_03 10.1 n.d. 526.9 to 698.7 Sentinel 2A /B (10 m) SPOT6/7 (1.5 m)
Event Re(sl'.g)n d. Forests (ha) Het(.hA:)grlc. Perm. Crops (ha) Shrubs/Herb. (ha) In. Wetlands (ha)
Corinthia 14.3 1373.6 329.7 647.5 920.4 nd.
Fagelsjo-Lillasen n.d. 2661.0 n.d. n.d. 985.8 240.1
Trangslet n.d. 1301.2 n.d. n.d. 1085.3 749.8

3.2.3. Test Sites Characteristics

In EMS reports, land use is specified in the grading maps, which refers to the official
Copernicus EMS definition (https://emergency.copernicus.eu/mapping/ems/domains,
accessed on 9 April 2021) according to Corine Land Cover (CLC) [68]. The first subtable
in Table 2 reports the transportation affected by fire in length (km) including primary
road, secondary road, local road and cart track, the number of inhabitants (population)
affected by fire, and the digital elevation range (meter). The second subtable reports the
land use affected by the fire in ha, for residential/industrial areas (residential buildings,
non-residential farm buildings, and other buildings not elsewhere classified), forests,
heterogeneous agricultural areas, permanent croplands, shrubs or herbaceous vegetation
areas, and inland wetlands areas.

The Corinthia fire consists of the various heterogeneous landscapes with crops, agri-
cultural areas, forests, and shrubs, while the two Swedish fire sites mainly consist of forests,
shrubs, and wetlands. Except for the land use, other artificial impacts and locations of
residence are different in these test sites. For example, the Corinthia fire affected more
than 1500 people nearby and damaged 14.3 ha of residential or industrial areas, while the
Swedish fire did no damage to the residence. Interestingly, the fire in Corinthia has various
elevations and hill shade which might result in fluctuating mountain slope. In contrast,
Swedish fires are located in relatively flat regions with rolling hills. From the EMSR447
grading map of the Corinthia fire, over 98.9% burned areas are destroyed or damaged,
while the Fagelsjo-Lilldsen fire has over 10% burned areas (395.5 ha) that are possibly
damaged (i.e., with low burn severity).

3.2.4. Spectral Feature Selection

Spectral bands play different roles in burned area discrimination. A previous study
concluded that Sentinel-2 NIR (B8 and B8A), red-edge (B5-B7), and SWIR bands (B11
and B12) are most sensitive to the change in spectral reflectance caused by fire [17]. Fire


https://emergency.copernicus.eu/mapping/ems/domains

Remote Sens. 2021, 13, 1509

8 of 29

scar would cause a decrease in NIR and might result in an increase in SWIRs depending
on the ecosystem. Therefore, SWIR and NIR bands are widely used for index like NBR
and NBR2 in wildfire science [69]. For Sentinel-2 MSI channels, BSA at 20 m resolution
is a more suitable NIR band for vegetation monitoring applications than B8 due to a
narrower spectral width [70]. Furthermore, Sentinel-2 MSI B8A rather than B8 has similar
characteristics to Landsat-8 OLI NIR band (B5) [71]. To facilitate the potential transferring
to Landsat-8 data, the combination of bands B8A, B11, and B12 becomes the most suitable
input channels for model training.

To further comprehensively support our assumption, the feature selection approaches
including AdaBoost [72] and Light Gradient Boosting Machine (LightGBM) [73] were
performed on the Castelo Branco Fire dataset for ranking the spectral feature importance
(cf. Appendix A). Three out of 10 bands of Sentinel-2 stood out, as expected, namely, B12,
B11, and B8A, as the three most important features on the burned area target. Knopp
et al. [57] assessed the accuracy for different band combinations of Sentinel-2 data as input
for U-Net to support the channel selection. It was demonstrated that only blue, green,
and red channels as input data result in worse outcomes. If B8 and two SWIRs bands are
additionally involved, the kappa coefficient of the burned area mapping would increase
from 0.75 to 0.90 in comparison with three visible channels as input.

Although Sentinel-2 imagery contains 10 bands, supporting the design of distinct
architectures, our DL models take as input a 3-channel (in a color composite: B12, B11,
and B8A) image patch, where we replace the B8 in [57] with B8A as one of input channels.
One benefit of choosing the most representative three bands is that more channel input
will increase the computing operations dramatically and limit the future application in
some DL models where only three channels are restricted. A three-channel input can be
visualized easily and saved as standard image format (e.g., PNG or JPEG) for the web-
based application of graphical user interface. The other advantage is that these three bands
match the corresponding B7, B6, and B5 of Landsat 8 imagery in the spectrum with high
transferability, allowing further cross-sensor application. Abundant Sentinel-2 data can be
used to train the DL-based model which can be transferred directly to Landsat-8 data so
that we do not need to train a separate model for the Landsat-8 image.

4. Methods

Figure 2 provides an overview of the experimental design of this research. The feature
maps extracted from representative layers are visualized in a proper way for each DL
model. To evaluate the performance of DL-based models in burned area mapping, several
typical supervised ML methods and traditional NBR-based thresholding approaches are
carried out as comparisons. These comparison experiments contribute to the selection of
the method suitable for detection of burned areas for specific landscapes.

As shown in Figure 3, a fully automatic workflow for burned area mapping using
uni-temporal Sentinel-2 and Landsat-8 multispectral data is demonstrated in comparison.
Training data from Sentinel-2 are used to train the DL model (U-Net, HRNet, Fast-SCNN,
and DeepLabv3+) after data augmentation. Trained DL models are then used to inference
the testing data in an end-to-end processing scheme. On the other hand, feature vectors of
spectral characteristics are sorted out to train the ML estimators (i.e., LightGBM, RF, and k-
Nearest Neighbors (KNN)) separately to get the predictive models for future estimation.
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Figure 3. Basic workflow to automatically map burned areas with available multispectral data i.e., Sentinel-2 (52) and

Landsat-8 (L8) using deep learning (DL) and machine learning (ML) methods, respectively.

4.1. Threshold-Based Approaches

NBR has been widely used in fire-related research in a uni-temporal way as in

Equation (1):

NBR =

NIR — SWIR

NIR + SWIR

)
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where NIR and SWIR are the reflectance of BSA and B12 for Sentinel-2 data (in accordance
with B5 and B7 for Landsat-8 data), respectively. One drawback using NBR-based methods
is that the common false positives like water body have to be removed manually. The fur-
ther bitemporal difference (i.e., ANBR) can be computed to highlight the burned areas as
Equation (2).

dANBR = NBRyre — NBRpost 2)

where pre and post denote the pre-fire and post-fire images, respectively. A dNBR index
between —0.1 and 0.1 indicates that few changes over time interval are accounted for [74].
If there exists fire disturbance between the pre and post images, dNBR might have a
bimodal distribution which usually needs a further thresholding process (in an empirical
or automatic way) to filter out burned areas pixels. The empirical thresholding approach
is used to generate reference data for training images of Elephant Hill and Enskogen as
described in Section 3.2.2.

Nobuyuki Otsu [22] proposed a classical threshold selection method for the gray
image in an automatic way to define the threshold in a bimodal distribution of NBR, which
has been used for burned area mapping [75,76]. In this study, the performance of the
OTSU method is compared with ML-based and DL-based methods. Specifically, the pixel
values less than the NBR thresholds (empirical or OTSU-based) are clustered as burned
area pixels.

4.2. ML-Based Approaches

To select suitable ML methods, the commonly used ML algorithms were compared for
the classification of burned areas based on the PyCaret implementation [77] with standard
parameters; 100,000 pixel data sampled from training imageries with feature vectors of B12,
B11, and B8A were fed as estimator inputs. The ratio between the pixel amounts of the
burned areas and unburned areas is around two-thirds in the whole training data. Seventy
percent of samples were used for training based on a 10-fold cross-validation approach [78],
while 30% were used for validation to assess the performance of the various ML methods.
The comprehensive results can be found in Table Al. LightGBM, KNN, and RF performed
better than others, thus were selected (Note: the top two methods are both boosting-based
approaches so the first one is selected.).

The LightGBM is a new gradient boosting framework that employs tree-based learning
algorithms. Different from traditional boosting tools applied to fire-related work (e.g.,
XGBoost [79], AdaBoost [32], and LogitBoost [32]) that use pre-sort-based algorithms,
LightGBM is a histogram-based algorithm, which buckets continuous feature (attribute)
values into discrete bins. This speeds up training and reduces memory usage. We consider
the Gradient Boosting Decision Tree boosting method with 170 iterations, 60 leaves, and 0.1
as a learning rate.

KNN is a data classification algorithm based on the premise that similar data exist
in close proximity to each other according to some metric [80]. It has been used for
burned area mapping in France [81], fire occurrence prediction [82], and wildfire damage
assessment [83]. The parameters used in the experiments are 49 neighbors, Minkowski
metric, and uniform weight.

RF is one of the most popular classifiers within the remote sensing community, vig-
orously handling dimensionality and multicollinearity in high data [84,85]. Ramo and
Chuvieco [86] developed a global burned area mapping algorithm with MODIS data based
on the RF classifier. Ramo et al. [87] evaluated the ability of four algorithms, including RF,
SVM, Neural Networks, and a decision tree algorithm, for classifying burned areas at a
global scale using MODIS data. It was shown that RF offered the best performance. The
RF method consists of an ensemble of individual decision trees and is more robust than
single classifiers. Each tree employs a set of decision rules to spit out a class prediction.
The ensemble votes are used to determine the final model’s prediction. A larger number
of trees can help the generalization error converge [88]. In this study, we consider the
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maximum depth as 5, 150 trees in the forest, and 5 as the minimum number of instances
in leaves.

4.3. DL-Based Approaches

Semantic segmentation can be categorized into several classes according to the com-
mon concept that underlays their architectures [37]. The architecture would usually deter-
mine the network’s performance. In general, combining the low-resolution feature with
larger receptive fields and the high-resolution feature with smaller receptive fields can
help extract contextual information. To compare the ability of different DL architectures for
burned area mapping, we evaluate four typical models among popular categories: HRNet,
U-Net, Fast-SCNN, and DeepLabv3+.

4.3.1. U-Net

Upsampling/deconvolution-based methods are dominant approaches to extract fea-
ture maps based on stacked convolutional layers, ReLu layers, and pooling layers [37].
The U-Net connects low-level details and high-level information, achieving better per-
formance than classical ML classification methods [49,59]. Recent papers [56,57] mostly
employed U-Net series architecture for burned area mapping with multispectral imagery.
The U-Net structure applied here is shown in Figure 4, which is adapted from [59]. The en-
coder part could extract the features at different scales using five convolutional blocks from
input data. In each convolutional block, there exist two 3 x 3 convolutions with ReLu acti-
vation layers. The output is followed by batch normalization and a max-pooling operation
to downsample the feature maps. Therefore, the size of feature maps is divided by 4 after
the convolutional block, while the number of feature channels will be doubled. Through
the other five blocks in the decoder part, these feature maps are upsampled to the input
size. Each block has 2 x 2 transpose convolution, a concatenation of feature maps from the
corresponding encoder part, and two 3 x 3 convolutions with ReLu activation and batch
normalization, with the feature maps in A-D after bilinear interpolation (bilinear_interp),
respectively. The final layer additionally hasa 1 x 1 convolution to calculate the probability
for burned area prediction.

3 6464 64+64 64 64 1
» Convolution 3x3 > Convolution 1x1
¥YMax Pooling 2x2 ..., » Skip connection
AUp Sampling 2x2 [] Block copied
> >i» >
bl s
128+128 64 ¢

bilinear_interp_0

bilinear_interp_1
bilinear_interp_2

bilinear_interp_3

ﬂ 1

¥ 256 256 256+256 128
512 512 5124512 256 QN

7 SaEeE B »I
A
-)- by
512 512

Figure 4. The U-Net structure used in this study, adapted from the original architecture in [59].

4.3.2. HRNet

As a typical enhancement of feature-based methods, state-of-the-art HRNet maintains
stronger high-resolution representations through high-to-low resolution parallel convolu-
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tions [62]. According to the semantic segmentation results on PASCAL-context [89] and
LIP [90], HRNet outperforms DeepLabv3+ and U-Net++ with lighter computation cost and
fewer parameters [62].

There are four stages in HRNet to connect the high-to-low resolution convolutions
in parallel, whose final Stage 4 is mainly illustrated in Figure 5. It comprises a horizontal
multi-resolution parallel convolution and a crossing multi-resolution fusion. The multi-
resolution parallel convolution is adapted from the group convolution that conducts a
regular convolution over a subset clipped from input channels in various spatial resolu-
tions separately. The multi-resolution fusion resembles the fully connected multi-branch
convolutions. The input and output channels are both divided into several subsets along
with the stages deepening. The four output representations are mixed from four reso-
lutions using a 1 x 1 convolution followed by a classifier with softmax loss to obtain
the segmentation maps. Furthermore, these maps are upsampled into the size same as
the original input image using bilinear interpolation. Four outputs representations from
low to high resolutions are named bilinear_interp_33, bilinear_interp_32, bilinear_interp_31,
and relu_152, respectively.

Stage 4 A:relu_152

B: bilinear_

contl | “uson e
interp_32

D: bilinear.

interp_33

Figure 5. The HRNet framework, adapted from the original architecture in [62].

4.3.3. Fast-SCNN

In addition, one of the feature encoder-based methods is Fast-SCNN [60], a real-
time semantic segmentation model, which extracts multiple low-level resolution features

simultaneously, making it suitable on embedded devices offline. As Figure 6 demonstrated,
Fast-SCNN has four parts (details can be found in [60]):

(1) A learning to downsample module with a standard convolutional layer (Conv2D)
and two depthwise separable convolutional layers (DSConv). The output of feature
maps is named relu_4 in A.

(2) A coarse global feature extractor to capture the contextual information for segmen-
tation using a bottleneck block that employs the depthwise separable convolution.
It can reduce the number of parameters to train floating-point operations. The end
of the extractor is a pyramid pooling module that aims to aggregate the different-
region-based context. The context information from the extractor part is given in
relu_6 before the fusion operation.

(3) A feature fusion module with simple addition of the features with high-level and
low-level representations (relu_7 in C).

(4) A standard classifier consists of two DSConv (relu_11 in D), one Conv2D to boost the
accuracy, and a softmax layer to get the segmentation results.

4.3.4. DeepLabv3+

The last one is the DeepLabv3+ model, an increased resolution feature-based
method [61]. A fully connected Conditional Random Field on the final layer of DeepLabv3+
improved localization performance both quantitatively and qualitatively. We mainly in-
troduce the DeepLabv3+ framework in Figure 7 (more details can be referred to in [61]).
Multi-scale contextual information is extracted by atrous convolution at an arbitrary reso-
lution in the encoder module. In the decoder module, first, the features from the encoder
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atrous convolution (relu_8 in A) are bilinearly upsampled by 4 and then concatenated with
low-level features (relu_9 in B) from the backbone with the same resolution after the 1x1
convolution to obtain the multi-level feature fusion (relu_10 in C). Further, a few 3 x 3
convolutions are applied to refine the features (relu_12 in D). They are upsampled by a
factor of 4 in a simple bilinear way.
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Figure 7. The DeepLabv3+ framework, adapted from the original architecture in [61].

4.3.5. Data Augmentation

Training images were cropped into patch tiles of 256 x 256 pixels randomly to raise
the volume of this dataset and to reduce classification problems around edges. There
is a total of 1837 training patches and 197 validation patches. Data augmentation was
employed to enhance the data set and avoid overfitting as listed in Table 3. We adopted
step-scaling resize between 0.7 and 1.2 with step 0.1; flip operation with a probability of 0.5;
mirror operation with a probability of 0.5; and additional operations including rotation,
area crop, aspect, and color jitter (brightness, saturation, and contrast with a probability of
0.2) on the input images. These augmented images were standardly normalized between 0
and 1 by removing the mean and scaling to unit variance.
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Table 3. Data augmentation operations.

Methods Parameters Define
min scale factor = 0.7; Resize image with a random scale
SCALING max scale factor = 1.2; within maximum and minimum in a
step = 0.1 fixed step.

Flip (horizontally and vertically) the
FLIP ratio=0.5 input data randomly with a given
probability (i.e., ratio).

Rotate the image by angle between

ROTATION 0°-75 0°and 75°
AREA min = 0.2 A crop of random size of the original
size.
ASPECT min = 0.2 A random aspect ratio of the original
aspect ratio.
brightness jitter ratio = 0.5; Randomly change the brightness,
COLOR JITTER saturation jitter ratio = 0.5; contrast, saturation of an image with
contrast jitter ratio=0.5 a given probability.

4.4. Accuracy Assessment

For model validation and accuracy assessment, overall accuracy (OA) and the mean
intersection over union (mloU) of two classes (unburned pixels and burned pixels) are used
to measure the comprehensive performance of various methods, see Equations (3) and (4)
(fp = false positive, tp = true positive, tn = true negative, fn = false negative in confusion
matrix). The Cohens’ kappa coefficient [91], commission errors (Ce), and omission errors
(Oe) are used to assess the performance of testing process, see Equations (5) and (6).

OA = tp+t?z?:—j€z+fn ©)
IoU = tpﬂfizﬂ[p 4)
Ce = ﬁ ®)

Oe = th:Lnfn ©)

To compensate for the shortcomings of kappa in map comparison, allocation dis-
agreement (AD) and quantity disagreement (QD) [92] are also evaluated in this study. AD
denotes the proportion of the disagreement (i.e., error) associated with pixels in the wrong
spatial location, as Equation (5) in [92]. QD means the proportion of the disagreement
associated with the amount classified, presented by Equation (3) in [92]. Overall, the sum of
OA, AD, and QD should be equal to 1. The way to interpret these two indexes is that if AD
is high but QD is low, then this reveals that the area classified is correct but the locations
classified are incorrect; conversely, if AD is low but QD is high, then this represents that
the locations classified are correct but the amounts of pixels classified are incorrect.

5. Results

The capabilities of DL-based models for burned area mapping with Sentinel-2 and
Landsat-8 data are presented and analyzed in the following sections, subject to the DL
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network evaluation and quantitative assessment in comparison with ML-based models
and threshold-based approaches.

5.1. DL Network Evaluation
5.1.1. Test Results and Analysis

DL models were trained on an Nvidia Tesla V100 GPU using the Adam optimizer [93]
and a batch size of eight patches. The training speed is illustrated in Figure 8a. The HRNet
has an average lower speed (5.8 step/s) with a total of 4 h and 48 min in the training of
400 epochs, but other DL models take approximately 2 h and 30 min. All models use
a polynomial decay learning rate policy with a gradual warmup strategy [94] based on
the PaddlePaddle backend DL framework (https://github.com/PaddlePaddle/Paddle,
accessed on 9 April 2021). The initial learning rate (0.000005) increases to the final learning
rate (0.001) after 2000 warmup steps (one of the super parameters) and then decreases to the
initial learning rate gradually when the training process ends with a total of 91,600 steps.

Train/Speed Train/Loss
[
[ 2
c
o
S
lU
r/N\—\ wv
2x10°  4x10¢ 6x10*  8x10¢ 1x10° 2x10°  4x10¢ 6x10*  8x10¢ 1x108
Number of Steps Number of Steps
(a) Training speed (b) Steps vs Loss
Evaluate/ mloU Evaluate/ OA

‘ i — ® U-Net
ﬁ ® HRNet
‘ ® DeepLabv3+
. ® Fast-SCNN
2x10¢  4x10° 6x10¢  8x10° 1x10° 2x10¢  4x10° 6x10°  8x10° 1x10°
Number of Steps Number of Steps
(c) Steps vs mIoU (d) Steps vs OA

Figure 8. The training and evaluation process of DL networks used in this study. OA: overall accuracy. mloU: mean

intersection over union.

The loss is a summation of the errors produced by each batch in training or validation
sets, which indicates how properly or badly a trained model performs after each iteration of
optimization. A weighted sparse softmax cross-entropy loss function [95] is employed to
track the performance in the training stage. It particularly picks the weights according to the
current labels and applies them as batch weights, and then combines the calculation of the
softmax operation and the cross-entropy loss function [96] to provide a more numerically
stable gradient. The respective curves with motion average of the training loss are presented
in Figure 8b. It can be observed that the training loss stably decreases with an increase
in training steps. All networks show convergence towards zero with some minimal jitter


https://github.com/PaddlePaddle/Paddle

Remote Sens. 2021, 13, 1509

16 of 29

between 0.01 and 0.05. U-Net reaches a low loss value much faster than the other models
but seems to cause quick overfitting, whereas the HRNet seems to converge reasonably.

We evaluated the segmentation accuracy of DL models on the test dataset in every 50
epochs. The accuracy curves are shown in Figure 8c,d, where HRNet in green obtains the
highest mIoU after the training of 200 epochs rapidly, and the accuracy of U-Net increases
gradually and peaks in 350th epochs. The other two models (DeepLabv3+ and Fast-SCNN)
represent a fluctuation in curves during training, and they achieve a high value in the
250th epoch. With an increase in the number of training epochs, the accuracy of the DL
network decreases after some epochs and even the training loss continues decreasing in
Figure 8b, and therefore we selected the trained models (parameters and weights) with the
best accuracy rather than the final model to avoid overfitting.

5.1.2. Feature Analysis

The test images are input into the trained DL models with an arbitrary size, and then
features extracted from a few representative layers can be visualized. The visualization
results with Sentinel-2 and Landsat-8 images as input for each test fire event are listed
in Figure 9. Four outputs of feature maps are marked with A-D in each DL architecture
in Section 4.3. The features selected in each DL model can reflect different levels of
semantic information from low to high. The deep convolution layers during the encoder
branch gradually extract the low-resolution representations (or high-level features) such
as contour features and hotspot distribution caused by burned areas. The decoder branch
with upsampling subnetwork aims to recover high-resolution representations (i.e., precise
segmentation) such as burned confidence, accurate burned delineation, and unburned
areas around burned areas. Note that not all the features can be visualized well or can be
understood intuitively, so here we select the most important feature in some typical layers
(upsampling layer or ReLu activation layer) in the feature visualization results, which are
normal phenomena in the DL field.

Regarding the U-Net in Figure 9, the first bilinear_interp_0 is the name of the feature
outputs from the bilinear upsampling layer after the convolution layer with 512 filters at
the end of the encoder branch. It perceives a high-level representation that contains general
characteristics regarding the semantic information of the input image. Therefore, we
observed the heatmap from one typical feature matrix that implies the general distribution
of burned areas. Similarly, the bilinear_interp_1 of the decoder branch fuses the low-level
spatial features from the encoder branch, and one of its feature maps showed the contour
features (i.e., fire delineation) of burned areas for each fire event. One feature channel of
the further bilinear_interp_2 indicates the inner burned areas independently. Finally, the last
one of the upsampling layer (i.e., bilinear_interp_3) provides us with reliable visualization
results close to the burned area segmentation, even reflecting the burned severity to some
extent that needs to be investigated in the future study.

HRNet contains multi-resolution group convolution with four outputs as presented
in Figure 5. We visualized these four representations from low resolution to high reso-
lution in Figure 9. The bilinear_interp_33 denotes the output features of low-resolution
subsets. It learns the low-resolution representations successfully with the raw spatial
distribution of possible burned areas in Figure 9. Furthermore, one of the feature maps in
the bilinear_interp_32 output shows an obvious highlight in the unburned regions, which
conversely facilitate the unburned area segmentation. This group convolution could cap-
ture mid-level representations. In parallel, high-resolution representations are maintained
through the whole process (i.e., bilinear_interp_31 and relu_152). The repeatedly conducting
multi-scale fusions across parallel convolutions connects high-to-low resolution convo-
lutions. Therefore, it can be observed that one feature of relu_152 can capture burned
areas with more high-resolution details, compared to one of the feature maps from the
bilinear_interp_31 outputs.
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Figure 9. The feature maps of DL models.
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Fast-SCNN learns the features through downsampling, and its output in relu_4 pre-
serves some semantic information but lacks the contextual relationship, due to the missing
of high-level features with large receptive fields. Then, the global feature extractors produce
the feature maps in the ReLu activation layer (i.e., relu_6). However, it fails to learn the
high-level features, as Figure 9 showed. Therefore, the feature maps in relu_7 have similar
representations to relu_4. As a real-time semantic segmentation model, Fast-SCNN is more
suitable for embedded devices with low memory and power. DeepLabv3+ shows better
visualization results in low-level feature extraction from the relu_9 activation layer than
that of relu_4 in the Fast-SCNN model. In addition, its high-level features in the relu_§8
passing ASPP module also look more reasonable than the relu_6 of Fast-SCNN. Therefore,
the combination of low-level and high-level features produces contextual information.
On the other hand, one of the features in the final ReLu activation layer (relu_12) represents
obvious burned areas but with some overestimation.

Overall, HRNet shows more promising visualization results, while U-Net looks at
overfitting in the training process taking the feature maps of from bilinear_interp_2 output
as an example. Fast-SCNN performs the worst among the four DL models due to poor
representations from low resolution to high resolution. DeepLabv3+ has reasonable results,
but they are not so precise to some extent.

5.2. Burned Area Mapping with Sentinel-2 Data
5.2.1. Corinthia Fire

Table 4 summarizes a quantitative comparison of different methods for burned area
detection in Corinthia area (Mediterranean forests). DL algorithms (except for Fast-SCNN)
generally outperform ML-based models. U-Net results in significantly better metrics than
LightGBM: mlIoU is 0.04 higher and the kappa coefficient is 0.06 higher.

Table 4. Testing accuracies of burned area detection for the Corinthia fire with Sentinel-2 data. The
lowest omission errors (Oe), commission errors (Ce), alllocation disagreement (AD), and quantity
disagreement (QD) and the highest mIoU and Kappa in each model group are highlighted in bold.

Corinthia

Model Oe (%) Ce (%) AD (%) QD (%) mloU Kappa
U-Net 7.71 4.35 3.38 1.41 0.90 0.90
HRNet 4.43 7.98 3.57 1.55 0.90 0.89
Fast-SCNN 17.05 5.53 3.90 4.90 0.83 0.81
DeepLabv3+ 9.56 5.00 3.83 1.93 0.89 0.88
LightGBM 17.00 1.38 0.93 6.37 0.86 0.84
KNN 18.93 1.33 0.88 7.17 0.84 0.83
RF 19.58 1.88 1.24 7.26 0.83 0.82
NBRojsu 20.12 3.57 2.38 6.90 0.82 0.80
NBRe 29.87 0.79 0.45 11.79 0.76 0.73

HRNet and U-Net display similar results, with higher kappa and mloU values than
Fast-SCNN and DeepLabv3+. On the other hand, the U-Net model provides a good balance
between AD and QD, indicating that it classifies large amounts of pixels and locations
correctly. The overall performance of U-Net shows high agreement with recent literature
in [57], whose U-Net could reach kappa of 0.86 for mapping Mediterranean forest fires in
Pantelleria, Italy, with uni-temporal Sentinel-2 data, but resulted in a poor balance between
commission errors (23%) and omission errors (3%).

U-Net reconstructs more accurate delineations around the mountain valleys as it
learned the features about hillshade in convolution feature maps as Figure 9 showed. The
HRNet model produces lower omission errors (false negative) but higher commission
errors (false positive) than U-Net, as presented in Figure 10. The highest omission errors
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observed by using the Fast-SCNN are mostly related to the underestimation of burned

areas in complex terrain surfaces in the northern valleys.
y
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Figure 10. Burned area detection results using various methods with Sentinel-2 data.

The pixel-based ML classification methods seem to systematically underestimate the
burned area within the fire perimeter as Figure 10 presented, resulting in higher omission
error (see Table 4). These phenomena are in agreement with the classification results with
uni-temporal Landsat TM imagery on three Mediterranean test sites [28]. Within the three
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ML methods in our study, LigthGBM has higher mloU than RF and KNN. The low kappa
is mainly related to high omission errors in the northern regions. Moreover, several false
positives outside of the perimeters are mainly related to the croplands, as they show very
similar spectral behavior to burned areas. Automated threshold-based methods (NBRys;,)
yield lower accuracy than all DL and ML methods with huge omission errors due to
relatively strict thresholds being applied. In general, NBR-based methods result in false
negatives and false positives that occur in the burned class and unburned class, respectively
(see Figure 10).

5.2.2. Fagelsjo-Lillasen Fire and Triangslet Fire

Table 5 demonstrates a quantitative algorithm comparison for burned area detection
in Fagelsjo-Lilldsen and Trangslet with Boreal conifer trees. Each DL algorithm significantly
outperforms the ML methods and NBR-based approaches for the Fagelsjo-Lilldsen fire.
Interestingly, Fast-SCNN results in the best metrics: mIoU is 0.81 and the kappa value is
0.79 as it can highlight most low burned severity areas (covered over 10% burned areas
from EMSR 298_05 grading map), which are greatly underestimated by other DL models
and ML methods as shown in Figure 10. Fast-SCNN also keeps the lowest omission errors
but the largest commission errors among all methods due to the compact consistency of
the burned area delineation in mapping burned areas. ML methods would misclassify the
shoreside soils as burned areas due to their similar spectral behaviors to burned areas.

Table 5. Testing accuracies of burned area detection for Fagelsjo-Lillasen and Trangslet fires with
Sentinel-2 data. The lowest errors (Oe and Ce) and the highest accuracy (mlIoU and Kappa) in each
model group are highlighted in bold.

Sites Fagelsjo-Lillasen Trangslet
Model Oe (%)  Ce (%) mloU Kappa Oe (%) Ce (%) mloU  Kappa
U-Net 20.91 4.26 0.77 0.75 10.36 12.61 0.82 0.80
HRNet 22.10 4.78 0.76 0.73 5.33 13.91 0.84 0.82
Fast-SCNN 11.82 8.47 0.81 0.79 2.99 20.24 0.79 0.77
DeepLabv3+  26.32 4.16 0.73 0.69 8.63 12.66 0.83 0.81
LightGBM 4441 3.56 0.60 0.52 6.95 6.04 0.89 0.89
KNN 46.58 3.73 0.58 0.50 7.54 5.74 0.89 0.88
RF 40.71 3.99 0.63 0.56 6.37 7.35 0.89 0.88
NBRysuy 34.92 5.17 0.66 0.60 25.94 2.81 0.77 0.74
NBRe 65.03 0.73 0.47 0.34 8.59 7.31 0.87 0.86

Different from the Fagelsjo-Lillasen fire, the Trangslet fire caused the disperse heteroge-
neous burned areas due to several wetlands within the study areas rather than homogeneous
land cover. DL models tend to consider the connectivity between different burned area patches
based on the convolutional feature extraction in low-resolution. Regarding the Trangslet fire,
the dispersed burned areas mislead the general contextual information extraction of DL mod-
els. A similar conclusion also applies to the work in [57]. Most of the commission errors are
located over the unburned parches close to the perimeters that are related with the wetland
and bare soils in Figure 11. Importantly, all ML methods surpass all DL methods greatly
with a kappa value of approximately 0.88. Every ML method represents similar visual results
in Figure 10, which can inevitably misclassify the burned areas in the subset with wetland
and bare soils. The empirical NBR-based thresholding method can reach a high accuracy in
detecting Triangslet fire (kappa over 0.86).
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Figure 11. Analysis of commission errors in detecting Tréngslet fire. (a) the cropped VHR image
subset in 2021 with the reference polygons in red; (b) the cropped subset of U-Net burned area
detection result from Figure 10.

5.3. Transferring Phase with Landsat-8 Data

DL and ML models trained with Sentinel-2 data are then transferred to the corre-
sponding Landsat-8 images on the same test sites so that we could assess the prediction
performance and similarity with identical references. The performance evaluation with
Landsat-8 data in Table 6 keeps the same tendency as Sentinel-2 data. DL models outper-
form other methods in Corinthia and Fagelsjo-Lillasen fires, whereas ML methods (i.e.,
LightGBM) perform best in the Trangslet fire. The accuracy of HRNet dominates all DL
models in the three test sites with Landsat-8 data, rather than U-Net and Fast-SCNN in
Tables 4 and 5, respectively.

Table 6. Testing results with Landsat-8 data. The lowest errors (Oe and Ce) and the highest Kappa in each model group are

highlighted in bold.
Sites Corinthia Fagelsjo-Lillasen Tringslet
Model Oe (%) Ce (%) Kappa Oe (%) Ce (%) Kappa Oe (%) Ce (%) Kappa
U-Net 16.24 2.30 0.85 21.85 4.74 0.73 8.45 12.12 0.82
HRNet 14.17 4.08 0.85 12.62 9.19 0.78 5.63 13.23 0.83
Fast-SCNN 20.39 3.68 0.80 10.92 10.92 0.77 2.64 20.05 0.77
DeepLabv3+ 20.50 2.13 0.81 40.31 2.87 0.57 12.51 10.68 0.80
LightGBM 21.57 1.09 0.75 54.66 3.20 0.43 10.05 6.53 0.86
KNN 29.07 1.01 0.74 56.46 3.56 0.41 10.84 6.15 0.85
RF 28.86 1.14 0.74 49.07 3.32 0.48 9.21 7.52 0.85
NBRotsy 22.53 4.24 0.78 49.05 6.42 0.46 25.94 3.47 0.74
NBRey, 38.92 0.46 0.65 72.16 1.62 0.26 8.62 9.47 0.84

DL models indicate good generalization ability in cross-sensor satellite images with
acceptable accuracy as listed in Table 6. The performance of ML models seems to be
unstable. Interestingly, the segmentation accuracies of DL models (except Fast-SCNN)
are increased at the Trangslet site. On the other hand, the classification accuracies of ML
methods decrease greatly in Corinthia and Fagelsjo-Lilldsen, even though they still perform
well in the Tréngslet fire with kappa over 0.85. In detail, kappa values decrease by 0.04
(HRNet) and 0.09 (LightGBM) in comparison to Table 4 for the Corinthia fire. Regarding
the Fagelsjo-Lillasen fire, it only sees a slight decrease of 0.02 in kappa values using the Fast-
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SCNN model while RF drops from 0.56 to 0.48. Finally, for the Trangslet fire, LightGBM
has a small decrease of 0.03 in kappa, while HRNet conversely shows a little improvement
in kappa from 0.82 to 0.83. The reason might be that the commission errors caused by the
Landsat-8 data are lower than the Sentinel-2 data.

Compared to other methods for mapping burned areas from Landsat-8, our results
for the Corinthia fire reached a comparative accuracy with the results in [97], which used a
two-phase algorithm (i.e., spectral-temporal rule and region-growing) to balance omission
and commission errors (11.1% and 16.5%, respectively) with a kappa value of 0.85 for a
wildfire in Portugal. HRNet in our study also reaches a kappa of approximately 0.85 but
much lower commission errors (4.08%).

From the graphical results in Figure A2, DL models show more robust segmentation
on burned areas with accurate delineation for the large burned patch in the Corinthia
and Fagelsjo-Lillasen fires. Due to the abundant lightly burned areas, ML methods fail
to highlight the burned areas in Fagelsjo-Lillasen, while DL models like HRNet and Fast-
SCNN could still depict the perimeters of burned areas. On the other hand, disperse
burned patches in Trangslet also affect the performance of DL with high commission errors
due to their similar contextual connectivity in the spatial domain.

6. Discussion

Test results have shown that DL models achieve acceptable performance in mapping
burned areas. They make full use of the background-foreground context in single-date
imagery and capture the object features in multiple scales, making discrimination of the
burned area possible. DL models can successfully keep a strong feature representation
within neighboring burned pixels. Overall, DL models show good results on the compact
Mediterranean mountain forests and Swedish boreal forests, while ML methods can obtain
more accurate results in the dispersed Swedish site.

Although U-Net and Fast-SCNN perform best with Sentinel-2 data in the testing sites
of the Corinthia fire and Féagelsjo-Lilldsen fire, respectively, HRNet stands out with higher
mloU and kappa than other methods when the testing data are from Landsat-8. In other
words, all DL models need to be treated with some caution as their selection may depend
on the data source, what landscapes and terrain the study areas are located in, and what
kinds of biomass was burned.

ML methods employ pixel-wise classification that might lack spatial contextual in-
formation. They would produce some commission errors outside perimeters and huge
omission errors within delineations, leading to the lack of balance between the commission
and omission errors. Using a uni-temporal image, NBR can reach good performance in
some specific sites (e.g., Trangslet fire) but is not recommended to map burned areas on a
large scale with various landscapes. ML methods show similar results, and their perfor-
mance is deeply affected by variance imposed by local study sites rather than the selection
of methods as reported in [33]. Moreover, the parameters of ML methods in this study can
be further optimized to improve the accuracy to some extent.

On the other hand, the bitemporal index, namely, dNBR, requires the pre-fire cloud-
free image; thus, it was expected to perform better than NBR but was somewhat unexpected
to be worse if using OTSU-based automated method, taking the fire in Corinthia as an
example (NBRysy, in Table 4 vs. dNBRyy, in Table 7). That might be caused by the
sub-optimal threshold computed using the OTSU approach (see the Figure 12¢). Not
surprisingly, empirically thresholding dNBR in Table 7 can obtain a similar kappa value
(0.90) to the U-Net model in Table 4. These comparative experiments might imply that
some DL models based on one uni-temporal post-event image could reach the same high
accuracy as bitemporal index. However, we aim to avoid the usage of bitemporal images
and manual assistance, as the advantages of automated algorithms are easy to deploy in
practice, widely used, and without any human intervention.

The pretrained DL models on Sentinel-2 were successfully transferred to map the
burned area on Landsat-8 data with acceptable accuracy. We relate this observation to the
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fact that DL network (e.g., HRNet) has a high level of generalization on multi-scale repre-
sentative features to keep consistency between Sentinel-2 and Landsat-8 data. By fusing
available multispectral data, DL models show promise for use in future NRT applications.

Table 7. ANBR-based results with Sentinel-2 data in Corinthia.

AD (%) QD (%) OA mloU Kappa
dNBRtsy 0.33 11.99 0.88 0.76 0.73
dNBR,, 2.18 2.51 0.95 0.91 0.90
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Figure 12. Burned area mapping results of Corinthia using the threshold-based methods on dNBR
with Sentinel-2 data. Two thresholds are determined by human intervention and OTSU automated
approaches, respectively, as shown in the (c) histogram map. (a) The NBR map to threshold the
burned area of the Corinthia fire in Figure 10. (b) dNBR map that is binarized to get the burned areas
of dNBR,;; (d) and dNBR;s;, (e) by empirical and automatic approaches, respectively.

7. Conclusions

In this study, a series of experiments is conducted to evaluate the capabilities of several
DL models for mapping burned areas with uni-temporal Sentinel-2 and Landsat-8 images.
These DL approaches achieve acceptable performance in comparison to ML algorithms and
NBR-based methods, especially when the burned areas are compact. It can be observed that
the DL network model tends to increase the mapping accuracy and thematic consistency
of the final burned area delineation due to the fusion of multi-scale features rather than a
pixel-based classification. This research highlights that DL models have several advantages:
(i) automated mapping with high overall accuracy without the need for a pre-fire cloud-free
image or the use of fixed or empirical thresholds and (ii) cross-sensor ability to detect the
burned area in the various biomes.

From an operational viewpoint, although the present results show a very promising
potential using DL models for burned area mapping, surely further study is needed towards
the extension of creating larger data sets in more diverse fire-disturbed regions around
the globe. An important direction of future work would be a specific investigation of the
hybrid approaches to fuse DL and ML methods to improve the accuracy. Furthermore,
fusion of optical and SAR imagery could be explored to improve burned area mapping.



Remote Sens. 2021, 13, 1509

24 of 29

Author Contributions: Conceptualization, X.H. and Y.B.; data acquisition, X.H.; experimental design
and investigation, X.H., Y.B. and A.N.; methodology, X.H.; writing—original draft preparation, X.H.
and Y.B.; writing—review and editing, X.H., Y.B. and A.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by KTH Digital Futures, grant number VF-2020-0260, entitled
“EOAI4GlobalChange: Earth Observation Big Data and Deep Learning for Global Environmental
Change Monitoring”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This research is part of the project “EO-AI4GlobalChange” funded by KTH
Digital Futures. Xikun Hu was funded by the China Scholarship Council (CSC). Xikun Hu acknowl-
edged the financial and technical support from FOSS4G and ECMWF for the 2019 EO Data Challenge
Copernicus Award. We acknowledge the use of data from Sentinel-2 operated by the Copernicus
Programme and Landsat-8 data by NASA. Xikun Hu also thank Maryam Rahnemoonfar for her
comments and suggestions that help to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Feature Selection on Sentinel-2 Spectral Bands

Feature selection aims at reducing the dataset dimensionality by removing irrelevant
and redundant attributes while keeping important ones. It reduces the risk of overfitting
caused by a lack of model generalization [87]. AdaBoost and LightGBM are used to rank
the score of importance for each spectral feature. B12, B11, and B8A shared the top three
places in Figure AT.
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Figure Al. Spectral feature importance based on AdaBoost and LightGBM on Sentinel-2 data of
Castelo Branco fire.

Appendix B. Comparision Results of ML Algorithms

The equations of the precision, recall, and F1 score are given as followed:

. . tp
Precision = ———— (A1)
tp+fp
__tr
Recall = i+ (A2)

2 x Precision x Recall
Fl score = Precision + Recall (A3)
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Table Al. Preliminary evaluation of ML methods on burned area classification.

Model OA Recall  Precion F1 Kappa
Light Gradient Boosting Machine 0.9664 0.9011 0.9201 0.9105 0.8898
Gradient Boosting Classifier 0.9656 0.8955 0.9209 0.908 0.8868
K Neighbors Classifier 0.9638 0.8933 0.9136 0.9033 0.881
Random Forest Classifier 0.9633 0.8911 0.9132 0.902 0.8794
Extra Trees Classifier 0.9619 0.8875 0.9093 0.8982 0.8748
Ada Boost Classifier 0.9603 0.8617 0.9239 0.8917 0.8674
Quadratic Discriminant Analysis 0.9567 0.8481 0.9173 0.8813 0.8549
Logistic Regression 0.9538 0.8213 0.9266 0.8707 0.8427
Decision Tree Classifier 0.9484 0.8621 0.865 0.8636 0.8317
SVM - Linear Kernel 0.9476 0.7791 0.9338 0.849 0,8176
Linear Discriminant Analysis 0.9456 0.7827 0.9183 0.8451 0.8124
Ridge Classifier 0.9415 0.7424 0.9355 0.8278 0,7931
Naive Bayes 0.9379 0.6934 0.9705 0.8088 0.773

Appendix C. Burned Area Mapping Results with Landsat-8 Data
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Figure A2. Burned area detection results with Landsat-8 data.
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