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Abstract: Unmanned aerial vehicle-based multispectral imagery including five spectral bands (blue,
green, red, red-edge, and near-infrared) for a rice field in the ripening stage was used to develop
regression models for predicting the rice yield and protein content and to select the most suitable
regression analysis method for the year-invariant model: partial least squares regression, ridge
regression, and artificial neural network (ANN). The regression models developed with six vegetation
indices (green normalization difference vegetation index (GNDVI), normalization difference red-edge
index (NDRE), chlorophyll index red edge (CIrededge), difference NIR/Green green difference
vegetation index (GDVI), green-red NDVI (GRNDVI), and medium resolution imaging spectrometer
terrestrial chlorophyll index (MTCI)), calculated from the spectral bands, were applied to single years
(2018, 2019, and 2020) and multiple years (2018 + 2019, 2018 + 2020, 2019 + 2020, and all years). The
regression models were cross-validated through mutual prediction against the vegetation indices
in nonoverlapping years, and the prediction errors were evaluated via root mean squared error of
prediction (RMSEP). The ANN model was reproducible, with low and sustained prediction errors
of 24.2 kg/1000 m2 ≤ RMSEP ≤ 59.1 kg/1000 m2 in rice yield and 0.14% ≤ RMSEP ≤ 0.28% in
rice-protein content in all single-year and multiple-year analyses. When the importance of each
vegetation index of the regression models was evaluated, only the ANN model showed the same
ranking in the vegetation index of the first (MTCI in both rice yield and protein content) and second
importance (CIrededge in rice yield and GRNDVI in rice-protein content). Overall, this means that
the ANN model has the highest potential for developing a year-invariant model with stable RMSEP
and consistent variable ranking.

Keywords: multispectral imagery; mutual prediction; regression model; rice-protein content; rice yield

1. Introduction

Crop modeling, which is a method of obtaining quantitative knowledge of how crops
grow by interacting with the environment, is a useful tool for predicting the yield and
quality to help with crop management [1,2]. Developed crop models include climatic
variables such as the temperature, precipitation, and length of day [3]. However, crop
models are only applicable to normal patterns of the given climatic conditions, and all
other conditions are assumed optimal [1]. Therefore, crop models cannot provide realistic
predictions of the crop yield or quality. Remote sensing (RS) technology has been combined
with spectroscopy for nondestructive monitoring of the crop yield and quality under actual
environmental conditions [4]. Spectral reflectance data containing visible, red-edge, and
near-infrared (NIR) spectral bands have tried to managing agriculture over a wide area [5]
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by helping predict the growth status [6]. This technology is expected to play a key role in
integrated crop management systems [7].

Rice (Oryza sativa L.) is a major carbohydrate source for meeting energy and nutrient
needs, and consumption is steadily increasing globally [8]. It is an essential crop, especially
in Asia, and its successful annual production has significant implications for the global
community [9]. Properties such as the color, flavor, and composition of the rice depend
on the variety, storage conditions, and amylose content. Interactions among proteins, the
breakdown products of lipid oxidation, and starch change the cell walls and proteins,
which affect the rice quality [10]. The rice quality is improved by reducing protein content
and amylose [11], which form by nitrogen uptake during the vegetative growth period,
especially in the grain filling stage.

To recognize a specific rice field, a spatially precise RS system is required rather than a
conventional spectrometer [12]. Spectral imagery combines spectrometry and imaging, and
it has been used to observe specific spatial variations [13]. Spectral imagery can be used to
assess the crop growth in individual areas while excluding external disturbances [14]. It
can be used to develop a crop model that includes various parameters, such as the biomass,
crop quality, and physiological active substances of the crop, with a comprehensive range
of crop–canopy attributes [15].

Regression models have been developed to predict crop parameters during the culti-
vation period [16]. Simple, multiple, and multivariate linear regression analyses have been
used with RS spectral data for agricultural applications. Simple linear regression (SLR) has
been used with satellite spectral imagery to predict rice yields where the yield is the depen-
dent variable and the vegetation index (VI) is the independent variable [17]. Multiple linear
regression (MLR) and partial least squares regression (PLSR) have been used with airborne
and satellite spectral imagery to predict the protein and nitrogen contents of rice [18,19].
Unmanned aerial vehicles (UAVs) are suitable for precise monitoring of crop parameters
with a high spatial resolution by flying at low altitudes, and they are advantageous for
acquiring time series data with unconstrained scheduling [20]. The multispectral imagery
acquired by UAVs has been used for developing linear regression models by combining VIs
for predicting the rice yield or biomass depending on time series [21]. Various approaches
have been attempted to predict rice yield by labeling pixels in the ear region using K-means
clustering on RGB imagery as well as spectral imagery [22]. In the prediction of rice-protein
content, which requires more spectroscopy than morphology, some studies have suggested
that green normalization difference VI (GNDVI) calculated from NIR and green is the most
advantageous [23,24].

Recently, machine learning (ML) has been used to predict rice parameters with a high
level of accuracy [25]. Among studies using ML with spectral imagery acquired by UAVs,
linear ML-based ridge regression (RR) was used to predict the nitrogen content of rice in a
single year [26]. Additionally, a nonlinear ML-based artificial neural network (ANN) was
used to predict the moisture content of rice to reduce economic losses regarding the yield,
quality, and drying cost at harvest time in a single year [27]. Among the various regression
methods for the prediction of rice parameters, it is important to select a regression method
that can be developed as a year-invariant model. The potential of developing a year-
invariant model must be verified through cross-validation for different years via the
collection of multiyear data [28]. However, although the model is based on multiyear
data, changes in the environmental conditions at various fields may make it difficult to
reproduce the model [18]. Therefore, cumulative climate data during growth periods in
each year may be required as input variables besides the spectral imagery to realize a
year-invariant model [29]. In addition, incorporating three-dimensional (3D) technology
may have a positive effect on predicting rice growth grown under various environmental
conditions. A study showed the possibility of predicting the crop yields depending on
different space-times using a 3D-convolution neural network in RGB imagery acquired by
UAV [30].
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The objective of this study was to develop a regression model for predicting the
rice yield and protein content and to select the most suitable regression analysis method
for the year-invariant model. UAV-based multispectral imagery data for rice canopies at
the ripening stage were collected in 2018, 2019, and 2020. Different types of regression
models were developed for single years (2018, 2019, and 2020) and multiyears (2018 + 2019,
2018 + 2020, 2019 + 2020, and all years): PLSR (linear regression), RR (ML-based linear
regression), and ANN (ML-based nonlinear regression). The regression models were
evaluated by comparing the prediction performances for the rice yield and protein content.
The reproducibility was verified via cross-validation of the regression models for single-
and multi-year analyses in nonoverlapping years through mutual prediction. Finally, the
regression model with the highest potential for the year-invariant model was selected.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Field Site and History

The experiment was conducted in a rice field of the Agricultural Research and Ex-
tension Services in Jinju-si, Gyeongsangnam-do, Republic of Korea for a 3 year period
(2018–2020), as shown in Figure 1. The rice-field area was 1550 m2. The primary soil type
of the rice field was sandy loam, and the rice cultivar was Yeonghojinmi. This is a high-
quality cultivar artificially derived from crossing the high-quality Hitomebre with Junam,
which has high disease resistance. Yeonghojinmi is a mid-late maturing ecotype that is
mainly cultivated in the southern part of the Republic of Korea [31]. Rice seedlings were
mechanically transplanted at a density of 30 × 14 cm. Table 1 presents the rice-cultivation
schedule, which includes seedling management, water management, fertilizer prescription,
and harvest time. The fertilizer prescription was divided into six levels of nitrogen (N)
fertilization: 0, 5, 7, 9, 11, and 17 kg/1000 m2. Additionally, each level received 4.5 kg/
1000 m2 of phosphorous (P) and 5.7 kg/1000 m2 of potassium (K) for all years. N fertiliza-
tion was applied three times at a ratio of 50%, 20%, and 30%, corresponding to the basal
dressing before seedling transplantation, topdressing in the tillering stage, and topdressing
in the panicle initiation stage. All P fertilization was applied to the basal dressing, and K
fertilization was applied at a ratio of 70%, 0%, and 30%. The climatic conditions, such as the
growing degree days (GDD) and accumulated sunlight hours (ASH), were collected from
a weather station located in the Agricultural Research and Extension Services. The GDD
and ASH were 1046 ◦C and 884 h, respectively, for 2018; 1118 ◦C and 873 h, respectively,
for 2019; and 1108 ◦C and 790 h, respectively, for 2020. The multispectral images were
acquired at midday on 4 October 2018; 1 October 2019; and 5 October 2020. Immediately
after image acquisition, sampling was performed three times in 2018 and four times in 2019
and 2020, depending on each nitrogen treatment.

Table 1. Rice-cultivation schedule and climatic conditions each year.

All Years

Soaking seeds 4 May
Pre-germination of seeds 6 May

Draining rice field 8 May
Sowing seeds 13 May

Irrigation of rice field 23 May
Basal dressing 31 May

Transplanting rice seedlings 6 June
Spraying herbicide 10 June

Topdressing in tillering stage 17 June
Topdressing in panicle initiation stage 30 July
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Table 1. Cont.

2018 2019 2020

Unmanned aerial vehicles (UAV)-based
multispectral remote sensing (RS) 4 October 1 October 5 October

Harvest 18 October 17 October 17 October
Growing degree day (◦C) 1046 1118 1108

Accumulated daylight hours (h) 884 873 790
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Figure 1. Location of rice field and layout of plots with different nitrogen fertilization treatments.

2.1.2. Measurement of the Rice Yield and Protein Content

To measure the rice yield and protein content, 100 and 15 rice plants were respectively
sampled from each N fertilization treatment field just before harvest (18 October 2018;
17 October 2019; and 17 October 2020). The rice yield was measured by multiplying the
number of rice ears per square meter (N), percent ripened grain (PRG), and unit seed
weight (SW):

Rice yield
(

kg/1000 m2
)
= N × PRG (%)× SW (g)× 1000

(
m2

)
÷ 1000 (1)

The protein content of the polished rice was measured with a rice taste analyzer
(Infratec 1241, FOSS Tecator, Hoganas, Sweden).

2.2. Acquisition of Multispectral Images

Multispectral images were acquired with a Red-edge-M (Micasense, Inc., Seattle, WA,
USA) mounted on UAVs: a 3DR Solo (3D Robotics, Berkeley, CA, USA) in 2018 and a M600
(DJI Technology Co., Ltd., Shenzhen, China) in 2019 and 2020. The 3DR Solo and M600 are
quadcopters weighing 1.5 and 9.1 kg, respectively, with dimensions of 0.26 m × 0.26 m ×
0.25 m and 1.67 m × 1.52 m × 0.76 m, respectively. The flight plan software for the UAVs
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were Mission Planner (ArduPilot Dev Team, New York, NY, USA) for the 3DR Solo and DJI
Pilot (DJI Technology Co., Ltd., China) for the M600. Red-edge-M was equipped with a
sunshine sensor to correct the reflectance data for each spectral image depending on the
sunlight conditions at the time of image capture. The multispectral image and sunshine
sensors were configured to measure the reflectance of the central wavelength ± full width
at half maximum for five spectral bands: blue (475 ± 32 nm), green (560 ± 27 nm), red
(668 ± 14 nm), red-edge (717 ± 12 nm), and NIR (842 ± 57 nm). The image sensor provided
12 bits/pixel images of each spectral band geotagged with the GPS information and pitch,
roll, and yaw information from the inertial measurement unit sensor.

Because different UAVs were used each year, the flight conditions varied. For the 3DR
Solo used in 2018, the spatial resolution, flight speed, front overlap rate, and side overlap
rate were about 1.4 cm at an altitude of 20 m, 2 m/s, 80%, and 80%, respectively. For the
M600 used in 2019 and 2020, these were about 3.5 cm at an altitude of 50 m, 3 m/s, 70%,
and 70%, respectively. Multiple spectral images per flight were acquired under different
flight conditions. The multispectral images were acquired 10–16 days (4 October 2018;
1 October 2019; and 5 October 2020) before harvest.

2.3. Image Processing and Analysis

The geotagged images were mosaicked with geometric and radiometric correction in
Pix4d Mapper Pro (Pix4d S.A., Prilly, Switzerland). The mosaicked multispectral images
were converted into GNDVI images with the equation in Table 2. The reflectance of the rice
canopy area for each spectral image was extracted at each sampling position based on the
optimal threshold value for minimizing the effects of water and soil from the GNDVI image.

2.4. Regression Analysis
2.4.1. Partial Least Squares Regression

PLSR is a multivariate linear regression method where the least squares method is
applied to linear combinations of independent and dependent variables to derive latent
variables (LVs) with high covariance. In other words, PLSR proceeds in the direction
that describes both dependent and independent variables. PLSR establishes the optimal
LVs that maximize the explained variance in the dependent variable from independent
variables and that minimize the predicted residual sum of squares (RSS) and mean square
error (MSE) [32].

2.4.2. Ridge Regression

RR is a regularized linear regression method that limits the regression coefficient
while minimizing RSS and MSE. The advantage of RR over the least squares method
is the tradeoff between the bias and variance [33]. If RR is set to a penalty of zero, it
simply produces an unbiased least squares predictor, and the variance for the predictor is
large. Increasing the penalty decreases the RR coefficient, which causes a slight bias but
sharply decreases the variance and MSE. Above a certain penalty, the decrease in variance
with increasing penalty slows down, and the bias significantly increases as the coefficient
approaches zero [34]. In other words, the penalty determines the strength of the constraint.
As the penalty increases, the flexibility of RR decreases, which decreases the variance but
increases the bias.

2.4.3. Artificial Neural Network

ANN is a type of ML that mimics the central nervous system. The perceptron is a
simple ANN algorithm that receives multiple signals, such as independent variables, and
outputs one signal [35]:

f (x) =
{

1 wx + b > 0
0 otherwise

(2)
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The weight, w, acts like neurons in the brain transferring information through electrical
signals. Each input signal is an independent variable that is given a unique w. When the
sum of the signals exceeds a predetermined threshold in the activation function, the output
is 1; otherwise, the output is 0 or −1. The bias, b, determines the strength of the perceptron
activation. However, a perceptron cannot solve nonlinear problems [36]. This difficulty
can be overcome by constructing an ANN, which stacks perceptron layers. The ANN
comprises an input layer, a hidden layer, and an output layer. The hidden layer (i.e., black
box) can produce the optimal predictor by learning the input and output.

2.5. Development of the Regression Models and Mutual Prediction

PLSR-, RR-, and ANN-based prediction models for the rice yield and protein content
were developed with six VIs (green normalization difference vegetation index (GNDVI),
normalization difference red-edge index (NDRE), chlorophyll index red edge (CIred-
edge), difference NIR/Green green difference vegetation index (GDVI), green-red NDVI
(GRNDVI), and medium resolution imaging spectrometer terrestrial chlorophyll index
(MTCI)) in Table 2 in Python (Python Software Foundation, USA), as shown in Figure 2.
The model performances for single-year data (2018, 2019, and 2020) and multiyear data
(2018 + 2019, 2018 + 2020, 2019 + 2020, and all years) were evaluated according to the
coefficient of determination (R2), root-mean-square error (RMSE), and relative error (RE).
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Table 2. Vegetation indices calculated from the reflectances of five spectral bands of rice canopies
extracted from multispectral images.

Vegetation Index Equation Reference

Green normalization difference vegetation index (GNDVI) ρNIR−ρG
ρNIR+ρG

[37]
Normalization difference red-edge index (NDRE) ρNIR−ρRE

ρNIR+ρRE
[38]

Chlorophyll index red edge (CIrededge) ρNIR
ρRE

− 1 [39]
Difference NIR/Green green difference vegetation index (GDVI) ρNIR − ρG [40]

Green-red NDVI (GRNDVI) ρNIR−(ρG+ρR)
ρNIR+(ρG+ρR)

[41]

Medium resolution imaging spectrometer terrestrial chlorophyll index (MTCI) ρNIR−ρRe
ρRE+ρR

[42]

The grid search method was used to identify the best LVs for PLSR, penalty for RR,
and epoch for ANN that minimized the MSE. This means that the model exhibited the
best performance with the selected tuning parameters. The ANN structure comprised
five neurons matching the number of spectral bands as independent variables in a single
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hidden layer; this was based on the results of a previous study showing that a single hidden
layer is sufficient for predicting the rice-protein content [43]. A rectified linear unit was
used to overcome the vanishing gradient problem of sigmoids and serve as the activity
function for the ANN [44]. The prediction performances of PLSR, RR, and ANN for the
rice yield and protein content were evaluated.

The regression models were cross-validated for single- and multi-year data in nonover-
lapping years through mutual prediction, as shown in Figure 2. Cross-validation was used
to verify that the model could predict the rice yield and protein content in nonoverlapping
years and was evaluated according to the RMSE of prediction (RMSEP) and RE calculated
from the 1:1 reference line. Finally, by evaluating the impact of each input VI, the regression
model with the highest potential for the year-invariant model was selected.

3. Results
3.1. Rice Reflectance Curves Depending on Nitrogen Fertilization Treatment

Figure 3 shows the average reflectance for each spectral band depending on the
amount of N fertilization for each year. Similar to the yield and protein content results, the
NIR reflectance reflected the order of the N fertilizer amount. This indirectly means that
NIR may be sensitive to N, which affects rice yield and protein content [45,46].
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3.2. Effect of the Nitrogen Fertilization Treatment and Development of Regression Models on the
Rice Yield and Protein Content
3.2.1. Rice Yield

Table 3 presents the results of a two-sample t-test with mean and standard deviation
(Std) between rice yields depending on the N fertilization treatment in each year. In 2018,
the yields did not show significant differences between those obtained via N fertilization
treatments of 5, 7, 9, and 11 kg/1000 m2. Except for this result, the rice yield increased sig-
nificantly depending on the amount of fertilizer applied for all years. For all N fertilization
treatments, there was no difference between the rice yields in 2018 and 2020. However, the
rice yield was higher in 2019 than in the other years.

Table 3. Two-sample t-test among rice yields depending on the nitrogen fertilization treatment for
each year.

Nitrogen Treatment 2018 (18 *) 2019 (24) 2020 (24)

0 kg/1000 m2 419 ± 5.14a ** 465 ± 18.7a 415 ± 18.5a
5 kg/1000 m2 449 ± 9.86b 527 ± 10.3b 433 ± 9.43ab
7 kg/1000 m2 458 ± 15.0b 546 ± 12.1b 466 ± 22.7b
9 kg/1000 m2 482 ± 19.0b 591 ± 16.8c 490 ± 24.4c
11 kg/1000 m2 492 ± 29.9bc 625 ± 7.85d 508 ± 11.9c
17 kg/1000 m2 534 ± 7.29c 683 ± 16.7e 547 ± 5.58d
All treatment 472 ± 39.9A 573 ± 71.9B 476 ± 47.5A

* Total number of the rice sampling. ** Two-sample t-test at significance level (p-value < 0.05).

Table 4 presents the predicted rice yields with PLSR, RR, and ANN using single-year
and multiyear spectral data. The following tuning parameters were selected: 1–4 LVs
for PLSR, a penalty of 0.001 for RR, and 844–2372 epochs for ANN. Among the single-
year and multiyear analyses in all regression methods, the year combinations of 2019,
2018 + 2019, 2019 + 2020, and all years achieved R2 ≥ 0.86. This high performance was
attributed to the common inclusion of the 2019 data, which included a wider range of rice
yield levels (440–720 kg/1000 m2) than other years. The combinations 2018, 2020, and
2018 + 2020 included the 2018 and 2020 data with a relatively small range of rice yields
(380–560 kg/1000 m2). These year combinations yielded R2 ≥ 0.71, RMSE ≤ 29.0 kg/
1000 m2, and RE ≤ 5.68%. Among all single-year and multiyear regression methods, PLSR
provided the best prediction performance with R2 ≥ 0.78, RMSE ≤ 22.1 kg/1000 m2, and
RE ≤ 4.21%. RR (R2 ≥ 0.77, RMSE ≤ 22.3 kg/1000 m2, and RE ≤ 4.25%) provided similar
prediction performance with PLSR and better than ANN (R2 ≥ 0.71, RMSE ≤ 24.4 kg/
1000 m2, and RE ≤ 5.14%).

Table 4. Performance of partial least squares regression (PLSR), ridge regression (RR), and artificial
neural network (ANN) models in the prediction of rice yield in single- and multi-year analyses.

R2 RMSE (kg/1000 m2) RE (%)

2018
PLSR (1) * 0.84 15.3 3.24
RR (0.001) 0.83 15.7 3.32

ANN (2209) 0.82 20.1 4.25

2019
PLSR (2) 0.91 21.3 3.72

RR (0.001) 0.91 21.4 3.74
ANN (2372) 0.89 20.1 3.51

2020
PLSR (1) 0.82 18.9 3.97

RR (0.001) 0.82 19.0 3.99
ANN (2341) 0.76 20.2 4.24
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Table 4. Cont.

R2 RMSE (kg/1000 m2) RE (%)

2018 + 2019
PLSR (3) 0.93 19.8 3.74

RR (0.001) 0.93 20.3 3.83
ANN (2132) 0.88 28.8 5.44

2018 + 2020
PLSR (3) 0.78 18.9 3.98

RR (0.001) 0.77 18.9 3.98
ANN (960) 0.71 24.4 5.14

2019 + 2020
PLSR (1) 0.91 22.1 4.21

RR (0.001) 0.91 22.3 4.25
ANN (1173) 0.88 26.2 4.99

All years
PLSR (4) 0.91 20.9 4.09

RR (0.001) 0.91 21.1 4.13
ANN (844) 0.86 29.0 5.68

* Latent variable in PLSR, penalty in RR, and epochs in ANN used to develop the model with optimum performance.

3.2.2. Rice-Protein Content

Table 5 presents the results of a two-sample t-test with mean and Std between protein
contents depending on the N fertilization treatment in each year. For all years, the protein
content was either similar under adjacent N fertilization treatment conditions or increased
with an increase in the amount of N fertilizer. For all N fertilization treatments, the protein
content varied by year. The protein content was highest in 2019, followed by 2020 and 2018.
These results show that both the yield and protein content increased with N fertilization.
This indicates that applying N fertilization is important for producing high-quality rice
with an adequate yield [47].

Table 5. Two-sample t-test among protein contents depending on the nitrogen fertilization treatment
for each year.

Nitrogen Treatment 2018 (30 *) 2019 (24) 2020 (24)

0 kg/1000 m2 5.34 ± 0.10a ** 6.20 ± 0.16ab 5.85 ± 0.09a
5 kg/1000 m2 5.32 ± 0.07a 6.18 ± 0.08a 5.83 ± 0.15ab
7 kg/1000 m2 5.44 ± 0.14ab 6.35 ± 0.05b 5.88 ± 0.08ab
9 kg/1000 m2 5.52 ± 0.04bc 6.43 ± 0.15bc 6.03 ± 0.08bc
11 kg/1000 m2 5.66 ± 0.12c 6.65 ± 0.21cd 6.08 ± 0.08c
17 kg/1000 m2 6.02 ± 0.07d 6.93 ± 0.15d 6.25 ± 0.05d
All treatment 5.55 ± 0.26A 6.45 ± 0.30B 5.98 ± 0.18C

* Total number of the rice sampling. ** Two-sample t-test at significance level (p-value < 0.05).

Table 6 presents the rice-protein contents predicted by PLSR, RR, and ANN based on
single-year and multiyear spectral data. The tuning parameters were set as follows: 1–3 LVs
for PLSR, a penalty of 0.001 for RR, and 549–2141 epochs for ANN. As stated in Table 5, the
protein content was lowest in 2018, intermediate in 2020, and highest in 2019. The linearity
was higher in the multiyear regression methods than in the single-year methods because the
multiyear analyses merged the different levels of protein content data. Among the single-
year and multiyear regression methods, PLSR achieved the highest R2 ≥ 0.75 for both
single-year and multiyear data, and the errors were RMSE ≤ 0.13% and RE ≤ 2.18%. RR
(R2 ≥ 0.74, RMSE ≤ 0.13%, and RE ≤ 2.18%) had similar prediction performance to PLSR.
ANN provided the lowest prediction performance with R2 ≥ 0.71, RMSE ≤ 0.16%, and
RE ≤ 2.88%, except for 2020 (R2 = 0.57, RMSE = 0.14%, and RE = 2.34%). The 2020 model
showed the lowest linearity, but similar errors in other years. Therefore, it is necessary for
the evaluation of the 2020 model to be made through mutual prediction results. Commonly,
the prediction model performance for rice yield and protein content was in the order of
PLSR, RR, and ANN.
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Table 6. Performance of PLSR, RR, and ANN models in the prediction of rice-protein content in
single- and multiple-year analyses.

R2 RMSE (%) RE (%)

2018
PLSR (3) * 0.78 0.11 1.98
RR (0.001) 0.77 0.11 1.98

ANN (1514) 0.71 0.16 2.88

2019
PLSR (3) 0.87 0.10 1.55

RR (0.001) 0.84 0.11 1.70
ANN (2141) 0.80 0.15 2.32

2020
PLSR (1) 0.75 0.08 1.34

RR (0.001) 0.74 0.08 1.34
ANN (2091) 0.57 0.14 2.34

2018 + 2019
PLSR (3) 0.94 0.13 2.18

RR (0.001) 0.94 0.13 2.18
ANN (711) 0.91 0.16 2.69

2018 + 2020
PLSR (2) 0.86 0.11 1.92

RR (0.001) 0.86 0.11 19.2
ANN (1140) 0.80 0.13 2.26

2019 + 2020
PLSR (1) 0.90 0.10 1.61

RR (0.001) 0.89 0.11 1.77
ANN (882) 0.85 0.14 2.25

All years
PLSR (3) 0.93 0.12 2.01

RR (0.001) 0.93 0.12 2.01
ANN (549) 0.87 0.16 2.68

* Latent variable in PLSR, penalty in RR, and epochs in ANN used to develop the model with the opti-
mum performance.

3.3. Mutual Prediction
3.3.1. Rice Yield

Table 7 presents the results for the rice yield using PLSR, RR, and ANN models.
The prediction performance of each model with single-year and multiyear data was
cross-validated against VIs from nonoverlapping years in terms of the RMSEP and RE.
Although the PLSR and RR models showed higher prediction performance than the
ANN model (see Table 4), the ANN models obtained the lowest mean RMSEPs in the
nonoverlapping years 2018 and 2020 (mean RMSEP = 38.5 kg/1000 m2 in 2018, mean
RMSEP = 29.3 kg/1000 m2 in 2020). The PLSR models gave the lowest mean RMSEP in
2019 (mean RMSEP = 41.6 kg/1000 m2). In all single-year and multiyear analyses, the Stds
of the RMSEPs were lower in the ANN model (Std RMSEP = 5.61, 10.6, and 4.25 kg/
1000 m2 in 2018, 2019, and 2020, respectively) than in the PLSR and RR models (Std RM-
SEP ≥ 14.2, ≥ 14.5, and ≥ 8.62 kg/1000 m2 in 2018, 2019, and 2020, respectively). The
ANN model, which is an ML-based nonlinear regression, delivered more stable RMSEPs
(24.2 kg/1000 m2 ≤ RMSEP ≤ 59.1 kg/1000 m2) than the other models (23.7 kg/1000 m2 ≤
RMSEP ≤ 83.3 kg/1000 m2) in all single-years and multiyears. The RMSEPs may differ
in single-year and multiyear depending on the importance ranking of each VI used in the
regression model [48].

Figure 4 plots the mutual rice-yield prediction results of the PLSR and ANN mod-
els based on single-year and multiyear data. Note that the predicted and actual results
match along the 1:1 line. As shown in Figure 4a, the 2018 PLSR model over-predicted
the 2019 and 2020 rice yields (RMSEP ≤ 71.5 kg/1000 m2). The 2018 ANN model also
over-predicted the rice yields (RMSEP ≤ 59.1 kg/1000 m2), but to a lesser extent than the
PLSR method (Figure 4b). In contrast, the 2019 PLSR and ANN models under-predicted
the 2018 and 2020 rice yields (RMSEP ≤ 45.1 kg/1000 m2) (Figure 4c,d). The 2020 ANN
model better predicted the 2018 and 2019 rice yields (Figure 4f) than the PLSR model
(Figure 4e) (RMSEP = 33.4 kg/1000 m2 in ANN 2020 versus ≤ 83.3 kg/1000 m2 in PLSR).
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In each multiyear, the PLSR model under-predicted the rice yields in nonoverlapping years
(RMSEP ≤ 30.2 kg/1000 m2) (Figure 4g). Among the ANN models, the 2019 + 2020 ANN
model under-predicted the 2018 rice yields (RMSEP = 39.1 kg/1000 m2), the 2018 + 2020
ANN model over-predicted the 2019 rice yields (RMSEP = 42.6 kg/1000 m2), and the
2018 + 2019 ANN model accurately predicted the 2020 rice yields (RMSEP = 24.2 kg/1000 m2)
(Figure 4h). Both the PLSR and ANN models were reproducible with prediction errors of
RMSEP ≤ 83.3 kg/1000 m2 and RE ≤ 17.6% in the ripening stage.

Table 7. Mutual prediction of the rice yield via cross-validation with nonoverlapped years using PLSR, RR, and ANN
models in single- and multi-year analyses.

Nonoverlapped Year
2018 2019 2020

RMSEP
(kg/1000 m2) RE (%) RMSEP

(kg/1000 m2) RE (%) RMSEP
(kg/1000 m2) RE (%)

PLSR model

2018 - - 59.3 10.4 71.5 15.0
2019 27.9 5.92 - - 38.8 8.10
2020 83.3 17.6 41.7 7.29 - -

2018 + 2019 - - - - 30.2 6.33
2018 + 2020 - - 23.7 4.14 - -
2019 + 2020 29.2 6.18 - - - -
Mean ± Std 46.8 ± 25.8 - 41.6 ± 14.5 - 46.8 ± 17.8 -

RR model

2018 - - 69.7 12.2 52.6 11.0
2019 52.8 11.2 - - 61.2 12.8
2020 76.1 16.1 33.2 5.79 - -

2018 + 2019 - - - - 40.2 8.43
2018 + 2020 - - 40.8 7.12 - -
2019 + 2020 42.0 8.90 - - - -
Mean ± Std 57.0 ± 14.2 - 47.9 ± 15.7 - 51.3 ± 8.62 -

ANN model

2018 - - 59.1 10.3 34.6 7.26
2019 45.1 9.56 - 29.1 6.10
2020 31.4 6.65 33.4 5.83 - -

2018 + 2019 - - - - 24.2 5.08
2018 + 2020 - - 42.6 7.44 - -
2019 + 2020 39.1 8.29 - - - -
Mean ± Std 38.5 ± 5.61 - 45.0 ± 10.6 - 29.3 ± 4.25 -

3.3.2. Rice-Protein Contents

Table 8 presents the mutual prediction results of rice-protein content using the PLSR,
RR, and ANN models. In the nonoverlapping years 2018 and 2020, the RR and ANN
models yielded relatively lower mean RMSEPs (≤0.20% in 2018 and ≤0.25% in 2020) than
the PLSR model. In 2019, the mean RMSEPs of all PLSR, RR, and ANN models were similar
(mean RMSEP ≤ 0.21). The Std of the RMSEPs were lower in the ANN and RR models (Std
RMSEP ≤ 0.04%, ≤ 0.08%, and ≤ 0.06% in 2018, 2019, and 2020, respectively) than in the
PLSR model (Std RMSEP = 0.24%, 0.08%, and 0.28% in 2018, 2019, and 2020, respectively).
The RR, and ANN models, which are ML-based regression methods, showed more stable
RMSEPs (0.13% ≤ RMSEP ≤ 0.32%) than the PLSR model (0.12% ≤ RMSEP ≤ 0.75%) in all
single-year and multiyear analyses.

Figure 5 graphs the mutual prediction results of the RR and ANN models for the rice-
protein content based on single-year and multiyear data. As shown in Figure 5a, the 2018
RR model over-predicted the 2019 and 2020 rice yields (RMSEP ≤ 0.32%). Despite poor
sensitivity for low rice-protein content in 2020, the predictions of the 2018 ANN model were
relatively closer to the 1:1 line (RMSEP ≤ 0.26%) (Figure 5b). The 2019 and 2020 ANN mod-
els better predicted the 2018 and 2019 rice yields (Figure 5d,f) (RMSEP ≤ 0.21%) than the
2019 RR model and the 2020 RR model (Figure 5c,e) (RMSEP ≤ 0.27%). The multiyear RR
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model better predicted the rice-protein contents in nonoverlapping years (RMSEP ≤ 0.15%)
(Figure 5g) than the multiyear ANN model (RMSEP ≤ 0.28%) (Figure 5h). Both RR and
ANN models were reproducible, with prediction errors of RMSEP ≤ 0.32% and RE ≤ 4.97%
in the ripening stage.
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Table 8. Mutual prediction of the rice-protein content by cross-validation with nonoverlapped years using PLSR, RR, and
ANN models in single- and multi-year analyses.

Nonoverlapped Year
2018 2019 2020

RMSEP (%) RE (%) RMSEP (%) RE (%) RMSEP (%) RE (%)

PLSR model

2018 - - 0.33 5.10 0.18 2.99
2019 0.74 13.3 - - 0.75 12.5
2020 0.25 4.57 0.18 2.82 - -

2018 + 2019 - - - - 0.12 2.01
2018 + 2020 - - 0.13 2.06 - -
2019 + 2020 0.20 3.53 - - - -
Mean ± Std 0.40 ± 0.24 - 0.21 ± 0.08 - 0.35 ± 0.28 -

RR model

2018 - - 0.32 4.97 0.14 2.42
2019 0.16 2.97 - - 0.27 4.57
2020 0.19 3.39 0.16 2.47 - -

2018 + 2019 - - - - 0.13 2.16
2018 + 2020 - - 0.15 2.38 - -
2019 + 2020 0.13 2.36 - - - -
Mean ± Std 0.16 ± 0.02 - 0.21 ± 0.08 - 0.18 ± 0.06 -

ANN model

2018 - - 0.18 2.76 0.26 4.38
2019 0.16 2.95 - - 0.21 3.45
2020 0.19 3.37 0.14 2.23 - -

2018 + 2019 - - - - 0.28 4.63
2018 + 2020 - - 0.15 2.31 - -
2019 + 2020 0.25 4.59 - - - -
Mean ± Std 0.20 ± 0.04 - 0.16 ± 0.02 - 0.25 ± 0.03 -

Figure 6 maps the rice yield and protein content of each N fertilization treatment field
at the ripening stage, predicted by the multiyear ANN models. Figure 6a shows that the
rice yield depended on the N fertilization treatment, and the rice yield was predicted to be
higher in 2019 than in the other years. The predictions agree with the measured data in
Table 3. Figure 6b shows the same pattern for the rice-protein content.
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4. Discussion
4.1. Potential for Developing a Year-Invariant Model by Evaluating the Importance of Different
Vegetation Indices

In this study, rice plant was grown in the same field for a 3 year period under the
same cultivation methods with no environmental disasters. Therefore, it was assumed
that the importance ranking of each VI input to the regression model was consistent in
each single-year and multiyear. For this reason, each VI should have the same impact
on the given data, meaning that the model is potentially available as a year-invariant
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model. Applying a regression model with the same rankings of variable importance when
predicting rice parameters under different cultivation and environmental conditions will
allow relatively easy observation of the changes in prediction performance, depending on
the use of input variables.

Figure 7 shows the variance importance in projection (VIP) in the PLSR model, ridge
coefficient (RC) in the RR model, and permutation importance (PI) in the ANN model of
each VI for predicting rice yield in single years and multiple years. A VIP determines the
relative importance of variables; VIP ≥ 1.0 and VIP ≤ 0.8 indicate high and low importance,
respectively [49]. The greater the difference of the RC from zero, the more important is
the variable. The PI method assesses the importance of a variable by its effect on the
performance loss when the particular variable is omitted from a black box model [50]. In
the rice yield prediction (Figure 7a), the VIPs of all VIs were ≥0.88, but the three most
important variables (VIP 1) in each single-year and multiyear were NDRE (2019 + 2020),
GDVI (2019, 2018 + 2019, and 2018 + 2020), and MTCI (2018, and 2020). The VIP 2 differed
among the single-year and multiyear analyses. Three RC 1s were GDVI (2018 + 2019, and
2019 + 2020), GRNDVI (2019, and 2018 + 2020), and MTCI (2018, and 2020) (Figure 7b).
The RC 2 also differed among the single- and multi-year analyses. In contrast, ANN
had a single PI 1 variable (MTCI) in all single-year and multiyear analyses (Figure 7c)
and a single PI 2 (CIrededge). Together, the MTCI and CIrededge explained more than
80% of all VIs, and may have improved the stability of the RMSEPs (24.2 kg/1000 m2 ≤
RMSEP ≤ 59.1 kg/1000 m2) in all single-year and multiyear mutual predictions by ANN
(see Table 7). The high importance of these variables might also indirectly explain why the
NIR, red edges, and red spectral bands in the MTCI and CIrededge calculations are useful
for predicting rice yields. It was considered that the ANN model has the same ranking in
the VI of the first and second importance; thus, it best predicts the rice yield in the field.
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Figure 8 shows the VIP in the PLSR model, the RC in the RR model, and the PI in the
ANN model of each VI for predicting the rice-protein content in single- and multi-year
analyses. Three RC 1s were GNDVI (2019), NDRE (2019 + 2020), or MTCI (2018, 2020,
2018 + 2019, 2018 + 2020) (Figure 8b). The MTCI was ranked VIP 1 and PI 1, except
by PLSR in 2019 and by ANN in 2020 (Figure 8a,c). The PLSR and ANN models well
explained the rice-protein content, but the ANN model yielded a lower prediction error
in mutual prediction than the PLSR model (see Table 8). In 2020, PI 1 and PI 2 were
GRNDVI and MTCI, respectively. The GRNDVI was ranked PI 2, except in 2018 + 2019.
In conclusion, the ANN model was the most promising year-invariant model. The MTCI
and GRNDVI explained more than 71% of all VIs. The MTCI was commonly the most
important variable for predicting rice yield and protein content. The second important
variables were CIrededge for rice yield and GRNDVI for rice-protein content. For both
rice yield and protein content, PI 1 and PI 2 of the multi-year analyses occupied a higher
importance ratio than single-year analyses. The importance of a specific variable becomes
clearer upon reducing the model complexity of the ANN model; this can help to develop a
year-invariant model with increasing reproducibility [20,51].
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4.2. Comparison with and Extension of Related Studies

In previously mentioned studies using linear regression analysis (SLR, MLR, and
PLSR), rice yield has been predicted with R2 ≥ 0.70 using multiyear data, regardless
of the data-acquisition conditions (image sensor, platform, and environmental factor,
etc.) [17,21]. However, there are several issues in the prediction of rice-protein content.
Most of the studies on the prediction of rice-protein content have been performed using
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high-cost hyperspectral image sensors that are disadvantageous for commercialization
applications [29,52]. Additionally, the prediction performance varies widely due to other
environmental factors, such as shadows caused by clouds and climate conditions. The
prediction model shows different slopes and intercepts for each cloud-shadowed area and
cloud-free area [23], thus hindering the development of an integrated model for rice-field
reproduction. The ANN model, which employs ML-based nonlinear analysis, tried to
overcome these issues with multispectral imagery for shadows caused by clouds [43].
As a result, the R2 of the ANN model was higher (0.92) than that of the PLSR model
(0.37). However, there are still limitations; the importance analysis for each input variable
has not been performed and it is difficult to perform mutual prediction using single-
year data. With reference to the results of previous studies, this study presented the
possibility of developing a year-invariant model with analysis of the importance of each
vegetation index and mutual prediction results using multiyear data with ANN. Unlike
the results in previous studies in which GNDVI was most advantageous in predicting
rice-protein content with linear regression [23,24], this study presented MTCI calculated
from NIR, red edge, and red as the most important variable. Although the MTCI has
been used for prediction of rice-nitrogen content that affects rice-protein content, it has
not been reported in rice-protein content prediction with linear regression analysis [53,54].
Therefore, the MTCI may have an important role in predicting rice-protein content using
a multispectral image sensor with an ANN model that can overcome environmental
factor such as shadows. In addition, different climate conditions for each region affect
the predictability of predicting grain yield and protein content. This implies that model
calibrations are needed for each cultivation region and year [55]. Some studies have
suggested that applying climate data such as temperature, precipitation, and solar radiation
as well as important spectral variables such as PI 1 and PI 2 is important to increase
predictability on crop yield in other years [28,56]. As a result, when the cumulative
temperature data for each year were applied in the mutual prediction of the onion yield
model, the RMSEP was lower, with a difference of about 16%. Ultimately, it is necessary
to expand this finding to rice fields of various environmental conditions to develop a
year-invariant model using the image sensors, modeling methods, and input variables
presented in the previous and current study results.

5. Conclusions

PLSR, RR, and ANN were applied to UAV-based multispectral imagery of rice
canopies in the ripening stage to develop prediction models for the rice yield and protein
content. ANN exhibited a poorer prediction performance (R2 ≥ 0.71, RMSE ≤ 29.0 kg/
1000 m2, and RE ≤ 5.68% in the case of rice yield and R2 ≥ 0.57, RMSE ≤ 0.16%, and RE
≤ 2.88% in the case of rice-protein content) than PLSR and RR. However, for an accurate
prediction of both rice yield and rice-protein content, the ANN model yielded more sta-
ble prediction errors (24.2 kg/1000 m2 ≤ RMSEP ≤ 59.1 kg/1000 m2 in the case of rice
yield, and 0.14% ≤ RMSEP ≤ 0.28% in the case of rice-protein content) than PLSR and RR
(23.7 kg/1000 m2 ≤ RMSEP ≤ 83.3 kg/1000 m2 in the case of rice yield and 0.12% ≤ RMSEP
≤ 0.75% in the case of rice-protein content) in all single- and multi- analyses. In each analy-
sis, the ANN model gave each VI the same ranking of importance. This consistency may
have maintained the RMSEPs in each single-year and multiyear mutual prediction by ANN.
For this reason, it was selected as the prediction model that best explained the rice yield
and protein content, and as the most promising method for developing a year-invariant
model under different cultivation and environmental conditions in the future. The MTCI
was commonly the most important variable for predicting rice yield and protein content,
followed by CIrededge for rice yield and GRNDVI for rice-protein content. This methodol-
ogy, which select the optimal model by comparing the ranking of important variables for
each year using other regression analysis and by evaluating error stability through mutual
prediction, will be useful for the development of available prediction models in the field
of agricultural remote sensing. The ANN model proposed in this study can verify the
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potential of a year-invariant model by collecting data from the same rice field under similar
environmental conditions; however, it cannot verify the reproducibility of the model under
different environmental conditions. Therefore, evaluation and reproduction of the ANN
model is required for yield and protein content analysis in various environment conditions
such as major rice-cultivation complexes.
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