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Abstract: Automatic detection of newly constructed building areas (NCBAs) plays an important role
in addressing issues of ecological environment monitoring, urban management, and urban planning.
Compared with low-and-middle resolution remote sensing images, high-resolution remote sensing
images are superior in spatial resolution and display of refined spatial details. Yet its problems of
spectral heterogeneity and complexity have impeded research of change detection for high-resolution
remote sensing images. As generalized machine learning (including deep learning) technologies
proceed, the efficiency and accuracy of recognition for ground-object in remote sensing have been
substantially improved, providing a new solution for change detection of high-resolution remote
sensing images. To this end, this study proposes a refined NCBAs detection method consisting
of four parts based on generalized machine learning: (1) pre-processing; (2) candidate NCBAs are
obtained by means of bi-temporal building masks acquired by deep learning semantic segmentation,
and then registered one by one; (3) rules and support vector machine (SVM) are jointly adopted for
classification of NCBAs with high, medium and low confidence; and (4) the final vectors of NCBAs
are obtained by post-processing. In addition, area-based and pixel-based methods are adopted for
accuracy assessment. Firstly, the proposed method is applied to three groups of GF1 images covering
the urban fringe areas of Jinan, whose experimental results are divided into three categories: high,
high-medium, and high-medium-low confidence. The results show that NCBAs of high confidence
share the highest F1 score and the best overall effect. Therefore, only NCBAs of high confidence are
considered to be the final detection result by this method. Specifically, in NCBAs detection for three
groups GF1 images in Jinan, the mean Recall of area-based and pixel-based assessment methods
reach around 77% and 91%, respectively, the mean Pixel Accuracy (PA) 88% and 92%, and the mean
F1 82% and 91%, confirming the effectiveness of this method on GF1. Similarly, the proposed method
is applied to two groups of ZY302 images in Xi’an and Kunming. The scores of F1 for two groups
of ZY302 images are also above 90% respectively, confirming the effectiveness of this method on
ZY302. It can be concluded that adoption of area registration improves registration efficiency, and
the joint use of prior rules and SVM classifier with probability features could avoid over and missing
detection for NCBAs. In practical applications, this method is contributive to automatic NCBAs
detection from high-resolution remote sensing images.

Keywords: high-resolution remote sensing; change detection; deep learning; areas registration; SVM;
newly constructed building areas

1. Introduction

Change detection (CD) refers to the process of observing the same phenomenon or
object on the ground at different times to determine its state [1], while building change
detection means detection of building changes from multi-temporal geospatial data. In the
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last 30 years, construction land has been mounting [2], and massive non-building lands
such as grassland, woodland, and cultivated land have been transformed into newly con-
structed building areas (NCBAs) [3]. On the one hand, as an active urban element, change
information of buildings is of great significance to urban planning, urban management,
and the like [4]. On the other hand, as ecological environment may be threatened by illegal
buildings, building change information has certain guiding significance in water source
protection, nature conservation, and so forth. Therefore, rapid and accurate detection of
building change is extremely important.

Featuring large range and high precision, remote sensing can quickly and efficiently
monitor ground objects from high altitude. Compared with medium-low resolution remote
sensing images, high-resolution remote sensing images bear remarkable strengths in clear
depiction of ground objects, yet the problem of spectral heterogeneity has brought huge
challenges to traditional change detection methods [5,6]. Recent years have witnessed
the rising of machine learning and deep learning techniques in artificial intelligence, by
which advanced features can be extracted from massive sample data, advancing efficient
and accurate classification and interpretation of data and providing a new automatic and
intelligent processing method for high-efficiency and high-precision change detection [7–9].

This study aims to automatically detect the existence of NCBAs from bi-temporal
high-resolution remote sensing images (GF1 and ZY302 with a resolution of 2 m) based
on generalized machine learning (deep learning and support vector machine (SVM)).
Accordingly, an automatic change detection for NCBAs method composed of four parts
is presented (Figure 1). After pre-processing, the bi-temporal masks obtained by deep
learning semantic segmentation are used to extract candidate NCBAs, which are then
registered one by one. In the next part, candidate NCBAs would be classified based on
priori rules and 14-feature (spectrum, texture, and building probability) SVM classifier.
Finally, NCBAs vectors are obtained by post-processing steps such as contour detection,
convex hull processing, and vectorization. The major contributions of this study can be
summarized as follows:

1. The strategy of area registration for NCBAs is proposed to reduce the amount of
processed data and improve registration efficiency.

2. Combining prior rules (with texture and building probability features) and SVM
classifier (with spectrum, texture, and building probability features), this method
innovatively divides NCBAs into high, medium, and low confidence levels.

3. The vector boundaries of each NCBAs are obtained through post-processing. Area-
based accuracy assessment method is adopted to evaluate the vector results of NCBAs
obtained by this method.

4. The study offers certain insights into change detection of high-resolution remote
sensing images based on machine learning for NCBAs.
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The rest of this paper is organized as follows. Section 2 introduces related works.
Methodology of this paper is detailed in Section 3. Section 4 presents experimental results.
The performance of this method is discussed in Section 5. Finally, Section 6 concludes this
paper.
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2. Related Works

Change Detection: Broadly speaking, pixel-based method and object-based method are
the two major categories of change detection methods presented in relevant papers [6,10,11].
Taking pixels as the smallest unit of processing, pixel-based methods detect changes merely
through spectral characteristics of pixels, ignoring the spatial context [5,6,12]. As shown
in [13–21], many researchers have proposed pixel-based change detection methods, yet they
are not really suitable for change detection of high-resolution images due to difficult mod-
eling of context information and easy introduction of salt-and-pepper noise [6,20,22,23].
Taking object as the smallest processing unit, object-based methods synthetically adopt
information such as context, texture and shape, freeing from disturbance of spatial resolu-
tion. Therefore, object-based methods are widely used in change detection, such as [23–27].
However, the detection results of object-based methods depend largely on the result of
object segmentation [28]. As deep learning semantic segmentation technology proceeds,
segmentation accuracy and efficiency have been greatly improved; therefore, this study
mainly uses object-based approach for change detection based on building segmentation
results.

Data Pre-processing: Remote sensing images have to be pre-processed before change
detection. Common pre-processing methods include radiometric correction, atmospheric
correction, and geometric correction. According to Zhu et al. (2017) [29], geometric
correction is unnecessary if only L1T Landsat images with good geometric positions were
used in change detection tasks. Before change detection, orthorectification, radiation
correction and normalization by histogram matching method were performed to ZY3
by Huang et al. (2020) [3]. Song et al. (2001) [30] argued that atmospheric correction is
necessary when multi-temporal or multi-sensory images are used in change detection tasks.
However, comparing Matched digital counts (DNs), Matched reflections (full radiometric
correction and matching), and No pre-processing, Collins et al. (1996) [31] concluded that
no evidence shows that Matched reflections performs better than other simple methods
during detection. The change detection method proposed in this paper selects fusion,
orthorectification, and color-consistency for pre-processing, as detailed in Section 3.1.

Deep Learning Building Semantic Segmentation: Having been successfully applied
to image segmentation, Fully convolutional networks (FCN) [32] and encoding-decoding
structure networks [33–35] perform slightly better than traditional computer vision meth-
ods [36]. Fusing low-level information is usually applied to supplement the detailed infor-
mation lost by down sampling and pooling in FCN [32], Unet [33] and DeepLabV3+ [35],
and hole convolution to expand the receptive field and extract denser features without
additional parameters in DeepLabV3 [37] and DeepLabV3+ [35]. Deep convolutional
neural networks (CNNs) currently share the best accuracy on multiple building semantic
segmentation tasks. Consequently, a wide range of studies have employed deep learning
semantic segmentation technology to extract building information; for example, [38–42]
have improved the strength of classical models, and the improved models were subse-
quently proved to be more suitable for building segmentation. This study employs classic
Resnet+FPN network to extract building information, as described in Section 3.2.

Image Registration: Fake changes are mostly caused by image registration errors,
which should thus be avoided [6]. Dai et al. (1998) [43] found that when the registration ac-
curacy is higher than 0.2 pixels, the change detection accuracy would not be lower than 90%.
Shi et al. (2013) [44] identified that the commission error caused by the registration error of
0–1 pixels is almost always within 1 pixel of the edge, regardless of image resolution. Fea-
turing invariance of rotation, scale scaling and luminance variation, SIFT [45,46] algorithm
could detect key points in scale space and determine the scale and location of key points.
SIFT algorithm was then optimized by Pca-SIFT [47] and SURF [48]. Refs. [49–51] were
studied regarding registration in change detection tasks. As an important part of change
detection, global image registration is usually performed during Data Pre-processing. In
this study, area registration was carried out on each candidate NCBAs, realizing high
registration accuracy of each area and high efficiency. See Section 3.2 for details.
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Change Areas Classification: As one feature is inadequate for change detection and
may result in missing or false detection, the object-oriented multi-feature fusion method
(in which feature vectors and classifiers are used to determine changes and non-changes)
is widely used for change detection. Usually, spectrum and texture features are included
in feature vectors [52–56]. Spectrum features are usually measured by the mean, variance
and ratio of bands, and other indexes or statistical values. Texture features are usually
composed of GLDM (Gray Level Dependence Matrix), filtering and morphological op-
erators. Tan et al. (2019) [52] integrated spectrum, statistical texture, morphological and
Gabor features, Wang et al. (2018) [53] synthesized spectrum, shape and texture features,
and He et al. (2009) [54] put forward differential Histogram of Oriented Gradient (dHOG)
feature for classification in change detection. SVM, K-Nearest Neighbor (KNN), Random
Forest (RF), and Multilayer Perceptron (MP) are commonly used machine learning classi-
fiers [52]. Wu et al. (2012) [55] and Volpi et al. (2011) [56] trained SVM for classification.
Tan et al. (2019) [52] constructed Dempster–Shafer (D-S) classifier by using SVM, KNN and
extra-trees. Wang et al. (2018) [53] adopted KNN, SVM, extremum learning machine, and
RF for non-linear classification, and then integrated the results of multiple classifiers by
an integration rule called weighted voting. In this study, prior rules and 14-feature SVM
classifier are combined to classify change areas, as presented in Section 3.1.

Result Form: The results of the above change detection methods are basically change
pixels rather than vectors. In this study, NCBAs are obtained through connected-component
analysis based on newly constructed building pixels (NCBPs), and further processed in
post-processing by graphical method (See Section 3.4).

3. Methodology and Methods

The refined change detection method for monitoring bi-temporal dynamics of NCBAs
consists of four parts: (1) pre-processing; (2) candidate NCBAs extraction; (3) NCBAs
classification; (4) post-processing, and final accuracy assessment. The details of each part
are presented below.

3.1. Pre-Processing

In this paper, pre-processing of bi-temporal images consists of two steps: (1) data
processing, and (2) color-consistency processing. The details of each step are described as
follows:

(1) Data processing: The spatial details of multi-spectral images were sharpened by
panchromatic images to generate fused images, which were subsequently orthographical
corrected by RPC model and then mosaicked if necessary. The algorithms used above were
realized programmatically based on GDAL library [57] with default parameters.

(2) Color-consistency processing: The differences of satellite sensors, shooting factors
and shooting time may lead to color differences among images. This may affect classifi-
cation of change areas, resulting in relatively large deviations in change detection results.
Therefore, to keep the hue of bi-temporal images consistent, histogram matching method
was adopted by this study for color-consistency processing [58]. Match the histogram of
an image to the histogram of another image by band, so that the two images have similar
histogram distribution in their corresponding band, and finally achieve color-consistency.

3.2. Candidate NCBAs Extraction

Candidate NCBAs was extracted by 3 steps: (1) semantic segmentation; (2) candidate
NCBAs extraction; and (3) area registration.

(1) Semantic segmentation: The neural network of Resnet50+FPN was chosen for
building segmentation. With residual module, Resnet can effectively alleviate network
degradation as the number of layers increases [59]. FPN [60] can optimize the performance
of small-scale building segmentation and improve detail extraction by fusing shallow and
deep feature maps. This study takes fused multi-spectral images (including red, green,
blue, and infrared bands) collected by remote sensing satellites and manually labeled
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building images as training data, which was randomly augmented by Gamma Transform,
Saturation Transform, Contrast Transform, Defocusing Blurring, Sharpening, Random
Rotation, and Random Clipping during training. The above algorithms for augmentation
were all programmed based on Python and then embedded in PyTorch for training of
building segmentation. Subsequently, the building and non-building probability of the
images were predicted based on the final weight, and then the building mask of the images
were obtained by the binary classification function, such as argmax.

(2) Candidate NCBAs extraction: Bi-temporal building masks were dilated and eroded
morphologically to eliminate the small cavities inside the building masks. NCBPs were
obtained when the pixel value of pre-temporal building mask is 0 while that of post-
temporal building mask is 1, as described in Formula (1).

Where NCBPs is the result of candidate NCBPs, Mask1 and Mask2 pre-temporal and
post-temporal building masks, x,y the row and column number, and J(a, b) a judging
function. In addition, according to provisions by the Ministry of Natural Resources of the
People’s Republic of China, the minimum mapping unit is set as 400 m2 [61], indicating
that NCBAs less than 400 m2 are not considered. Candidate NCBAs were finally acquired
through connected-component analysis based on NCBPs.

NCBPs = J(Mask1(x, y) , 0)× J(Mask2(x, y) , 1) (1)

J(a, b) =
{

1 i f (a == b)
0 other

(2)

(3) Areas registration: Local translation distortion caused by terrain, shooting angle
and other reasons still exists after RPC correction. To solve this problem, SIFT and SURF
algorithms were combined to refine registration of NCBAs in this paper. As shown in
Figure 2, after matching points are obtained by SIFT and SURF, the rules of RanSAC [62],
Feature Vector Matching and Minimum Distance are used to select true matching points
and eliminate false ones. The algorithms mentioned above were realized based on OpenCV
with default parameters. Integrating SIFT’s feature stability and SURF’s feature point
extraction ability of edge smooth target, the areas registration in this study shares high
robust, wide application, and small vulnerability to terrain diversity.
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3.3. NCBAs Classification

Based on 14 features, candidate NCBAs were classified into high, medium, and low
confidence by rules and SVM combined classifier. In addition to spectrum and texture
features, probability features were also selected as feature vectors. The process of candidate
NCBAs classification is composed of 2 steps: (1) feature vector computation; (2) NCBAs
confidence classification. The details of each step are described as follows:

(1) Feature vectors computation: As shown in Table 1, 14 features of NCBAs were
selected, including Former Gray Mean (FGM), Latter Gray Mean (LGM), Former Gray Var
(FGV), Latter Gray Var (LGV), Former Prob Mean (FPM), Latter Probability Mean (LPM),
Former Probability Var (FPV), Latter Probability Var (LPV), Difference Gray Mean (DGM),
Difference Gray Var (DGV), Difference Probability Mean (DPM), Difference Probability Var
(DPV), SSIM Mean (SSM), and SSIM Var (SSV). FGM, LGM, FGV, and LGV reflect spectrum
features of bi-temporal images, while differential features of spectrum among bi-temporal
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images are represented by DGM and DGV. Closer values of FGM and LGM and lower
values of DGM entail greater similarity of spectrum pixel value, and closer values of FGV
and LGV and lower values of DGV entail greater similarity of spectrum distribution of pixel
value. FPM, LPM, FPV, and LPV represent building probability features of bi-temporal
images, while differential features of building probability among bi-temporal images are
represented by DPM and DPV. Closer values of FPM and LPM and lower values of DPM
entail greater similarity of building probability, and closer values of FPV and LPV and
lower values of DPV entail greater similarity of building probability distribution. SSM and
SSV represent texture features among bi-temporal images, i.e., higher value of SSM and
lower value of SSV entail smaller difference in structure. In conclusion, NCBAs features
can be described by 14 features selected from three aspects: spectrum, building probability
and texture. The feature calculation process is detailed below.

Table 1. Feature Selection Results.

Types Selected Features

spectrum Former Gray Mean (FGM), Latter Gray Mean (LGM), Former Gray Var (FGV), Latter Gray Var (LGV), Difference
Gray Mean (DGM), Difference Gray Var (DGV)

probability Former Probability Mean (FPM), Latter Probability Mean (LPM), Former Probability Var (FPV), Latter Probability
Var (LPV), Difference Probability Mean (DPM), Difference Probability Var (DPV)

texture SSIM Mean (SSM) and SSIM Var (SSV)

Formula (3) is applied to transform multichannel images into single-channel gray
images, and Formulas (5) and (6) to calculate values of FGM, LGM, FGV, and LGV of
NCBAs. Bi-temporal gray difference is calculated by Formula (4), and then DGM and DGV
values by Formulas (5) and (6).

Based on the results of building probability, FPM, LPM, FPV, LPV, DPM, and DPV are
calculated by Formulas (5) and (6), while differential building probability by Formula (4).

The SSIM Index Mapping Matrix [63] in each window was calculated based on the
bi-temporal images when the gauss weighted function with a radius of 11 and standard
deviation of 1.5 was taken as weighted window, and values of SSM and SSV were then
calculated by Formulas (5) and (6).

Gray(x, y) = 0.114 × B(x, y) + 0.587 × G(x, y) + 0.299 × R(x, y), (3)

Di f f (x, y) = IF(x, y)− IL(x, y), (4)

Mean =
1

MN

M

∑
x=1

N

∑
y=1

I(x, y), (5)

Var =
1

MN

M

∑
x=1

N

∑
y=1

(I(x, y)− Mean)2 (6)

where x,y represent the row and column number, B(x, y), G(x, y) and R(x, y) pixel values
of Blue, Green, Red (Band1-3 in GF1 and ZY302) in (x, y), Gray(x, y) the gray images,
Di f f (x, y) the differential results among bi-temporal images, IF(x, y) pre-temporal images,
IL(x, y) post-temporal images, Mean mean of input, Var variance of input, M and N the
width and height of input images, and I(x, y) pixel value of input.

(2) NCBAs confidence classification: The feature vectors of the selected samples were
calculated according to the above method, and true NCBAs samples were labeled as 1,
while false NCBAs as −1. L2-Regularized Linear SVM classifier for binary classification
was adopted for training, until tolerance was less than 1 × 10−5. The scores given by
SVM to candidate NCBAs were −1 and 1. Specifically, scores greater than 0 indicate true
NCBA and those less than 0 indicate false NCBA by SVM classifier. Additionally, prior
knowledge exists in this study before SVM. Lower value of SSM indicates larger difference
in texture structure of a NCBA in bi-temporal images. Moreover, higher value of abs(DPM)
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possibly indicates larger difference in building probability of a NCBA among bi-temporal
images. Lower SSM value combined with higher abs(DPM) value increases the probability
of true NCBA. Therefore, a combined classifier of rules and SVM was applied to classify
NCBAs into high, medium and low confidence in this study, according to Formula (7).
With relatively large thresholds and wide range, NCBAs failing to meet the prior rules
would directly be judged as Valuencba1. Within the scope of prior rules, according to SVM,
if the score of a NCBA is greater than 0, then this NCBA would be judged as Valuencba3,
while that less than 0 as Valuencba2.

Valuencba =


3, i f (SSM ≤ th_ssm and abs(DPM) ≥ th_dpm and Score > 0)
2, i f (SSM ≤ th_ssm and abs(DPM) ≥ th_dpm and Score < 0)
1, others

(7)

where SSM and DPM stand for the values of SSM and DPM of a NCBA, th_ssm and
th_dpm thresholds of SSM and DPM, abs() absolute value function, Score score of SVM
classifier, and Valuencba of 3, 2, and 1 high, medium, and low confidence.

3.4. Post-Processing

NCBAs were further processed by three steps: (1) contour detection, (2) convex hull
processing, and (3) vectorization. The details of each step are described below:

(1) Contour detection: Detect contour of each NCBA and save all the continuous
contour points on the contour boundary.

(2) Convex hull processing: Obtain convex hull range of NCBAs based on the continu-
ous contour points on the contour boundary.

(3) Vectorization: Vectorize the convex hull obtained in the previous step and get the
final vector results of NCBAs with classified attribute of 3, 2, and 1.

3.5. Accuracy Assessment

According to the manually delineated NCBAs, area-based and pixel-based assessment
including PA (Pixel Accuracy), Recall, and F1 was conducted to evaluate the results.

PA =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 =
2 × PA × Recall

PA + Recall
(10)

(1) Area-based assessment: Algorithmic NCBAs intersecting true NCBAs are consid-
ered as true algorithmic NCBAs TPa (True Positive Areas), otherwise as false algorithmic
NCBAs FPa (False Positive Areas). True NCBAs which does not intersect algorithmic
NCBAs are considered as missing algorithmic NCBAs FNa (False Negative Areas). PAa,
Recalla and F1a were calculated according to Formulas (8)–(10).

(2) Pixel-based assessment: TPp (True Positive Pixels) denotes the number of pixels
correctly classified as NCBAs pixels by the algorithm, FPp (False Positive Pixels) the
number of non-NCBAs pixels incorrectly classified as NCBAs pixels, and FNp (False
Negative Pixels) the number of pixels of NCBAs incorrectly classified as non-NCBAs pixels.
PAp, Recallp and F1p can be calculated according to Formulas (8)–(10).
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4. Experiment and Result
4.1. Experimental Data
4.1.1. Image Data and Labeled NCBAs

The PMS camera carried by the GF-1 satellite can capture panchromatic images with a
resolution of 2 m and multispectral images (including blue, green, red, and near-infrared
bands) with a resolution of 8 m. The experimental data (from scientific research data)
consists of three groups of GF1 remote sensing images covering parts of Jinan, Shandong
Province, and the resolution reaches 2 m after data pre-processing, as shown in Figure 3.
The pre-temporal images were acquired on 4 November 2016 (group 1), 24 February 2016
(group 2), and 8 July 2017 (group 3), and the post-temporal images on 4 November 2017
(group 1), 27 February 2017 (group2), and 25 April 2018 (group 3).

The labeled NCBAs were manually drawn after field investigation, mainly dealing
with the building areas developed from non-building areas such as bare land, dig land,
and cultivated land, as shown in Figure 4.

4.1.2. Dataset of Building Segmentation

In the step of building semantic segmentation, the images for training were from
two sensors, GF1 and ZY302. 14,644 pieces of 500 ∗ 500 fusion images were included in
our dataset, covering about 14,000 square kilometers, that is, nine cities in China (Beijing,
Tianjin, Zhenjiang, Wuhan, Xuzhou, Suizhou, Ezhou, Jiaozhou, and Shijiazhuang). The
labeled build-up area was obtained manually after field investigation, mainly including
office building area, commercial area, residential area, scattered village area, and other
non-building areas.
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4.1.3. Dataset of SVM Classifier

The feature vectors of 1173 true NCBAs and 1797 false NCBAs from two satellites
(GF1 and ZY302) were selected as training data for SVM classifier, and the number of
true NCBAs was doubled during training. The distribution of training data is shown in
Figure 5.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 4. Labeled NCBAs. The areas surrounded by red polygons are marked as NCBAs. T1 and T2 represent pre-tem-
poral and post-temporal images. 

4.1.2. Dataset of Building Segmentation 
In the step of building semantic segmentation, the images for training were from two 

sensors, GF1 and ZY302. 14,644 pieces of 500 ∗ 500 fusion images were included in our 
dataset, covering about 14,000 square kilometers, that is, nine cities in China (Beijing, Tian-
jin, Zhenjiang, Wuhan, Xuzhou, Suizhou, Ezhou, Jiaozhou, and Shijiazhuang). The labeled 
build-up area was obtained manually after field investigation, mainly including office 
building area, commercial area, residential area, scattered village area, and other non-
building areas. 

4.1.3. Dataset of SVM Classifier 
The feature vectors of 1173 true NCBAs and 1797 false NCBAs from two satellites 

(GF1 and ZY302) were selected as training data for SVM classifier, and the number of true 
NCBAs was doubled during training. The distribution of training data is shown in Figure 
5. 

 
Figure 5. The distribution of support vector machine (SVM) training data. Yellow asterisks and blue
asterisks represent positive and negative samples, respectively. DPM and SSM represent the value of
DPM (Difference Probability Mean) and SSM (SSIM Mean) mentioned in Section 3.3.

4.2. Experiment Results
4.2.1. Building Segmentation

After 200 epochs of training, the Recall of the final building segmentation model
reaches 88.94%, and Precision 90.32%. To improve efficiency, only the common area of bi-
temporal images was selected for processing in the following experiment. The bi-temporal
results (for group 1) of building probability and mask of the common area are shown in
Figure 6.
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4.2.2. Area Registration

According to the rule of expanding 100 pixels around the image, image patches of
candidate NCBAs were captured and registered by the above algorithm. As shown in
Figure 7, the error of areas registration is within 0.5 pixels.
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4.2.3. Rules and SVM Classifier

Figure 8 shows the classification result of training data by SVM classifier. The Recall
reaches 73.91% and overall Accuracy 70.65%. This study set th_ssm as 0.8 and th_dpm
0.2. With relatively large threshold range, a small number of NCBAs were classified as
low confidence, and most NCBAs as high and medium confidence. Figure 9 shows the
detection and classification results of randomly intercepted NCBAs. Areas surrounded by
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red polygons are basically true NCBAs, while by yellow and blue polygons are basically
false NCBAs.
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in Section 3.3. The prior rules are indicated by dotted black lines. The blue line represents the
boundary between positive and negative NCBAs by SVM classifier.
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4.3. Accuracy Assessment

Table 2 presents the results of accuracy assessment under three cases. High confidence
expresses NCBAs with Valuencba3, High-medium confidence NCBAs with Valuencba3 and
2, and High-medium-low confidence all the NCBAs with Valuencba3, 2, and 1. NCBAs
satisfying rules were classified into High-medium confidence, and those not satisfying
rules low confidence. Therefore, NCBAs of High-medium confidence is merely the results
of rule classification.

Table 2. Results of accuracy assessment. PA stands for Pixel Accuracy.

Confidence Group Area-Based Assessment Pixel-Based Assessment

PA Recall F1 PA Recall F1

High

1 93.45% 73.54% 82.31% 96.46% 89.41% 92.80%
2 90.73% 73.10% 80.97% 91.91% 89.45% 90.66%
3 79.21% 84.72% 81.87% 86.69% 93.64% 90.03%

mean 87.80% 77.12% 81.72% 91.69% 90.83% 91.17%

High-medium

1 41.42% 78.01% 54.11% 67.49% 89.79% 77.06%
2 60.31% 76.62% 67.49% 72.51% 89.61% 80.16%
3 35.13% 91.85% 50.82% 56.87% 93.85% 70.82%

mean 45.62% 82.16% 57.48% 65.62% 91.08% 76.01%

High-medium-low

1 38.27% 79.04% 51.57% 67.56% 90.04% 77.19%
2 57.81% 77.18% 66.10% 70.55% 89.94% 79.08%
3 35.09% 97.28% 51.58% 55.79% 93.89% 69.99%

mean 43.72% 84.50% 56.42% 64.63% 91.29% 75.42%

The statistical values of area-based assessment are lower than those of pixel-based
assessment, indicating that small NCBAs are prone to be misjudged by this method. Small-
area NCBAs covering fewer pixels exert more influence on area-based assessment than
pixel-based assessment. For example, in 100 true NCBAs of 1000 pixels, 20 small NCBAs
occupying 100 pixels are missed; thus, the recall of area-based assessment is 0.8, while that
of pixel-based assessment is 0.9. Additionally, in two assessment methods, the PA and F1
of the three groups decrease from High, High-medium, to High-medium-low confidence,
while Recall increase.

From High to High-medium confidence, the mean Recall of the two accuracy assess-
ment methods increases by 5.04% and 0.25%, while PA decreases by 42.18% and 26.07%,
respectively. The increase of mean Recall for area-based assessment is more obvious than
that of pixel-based assessment, indicating that a number of small-area NCBAs may ignored
by High confidence. Yet the obviously decreased PA reveals that many NCBAs were over-
checked by High-medium confidence, leading to sharply increased FP and correspondingly
decreased PA.

Similarly, from High-medium to High-medium-low confidence, the Recall of the two
accuracy assessment methods increases by 2.34% and 0.21%, while PA decreases by 1.9%
and 0.99%, respectively. This may indicate that a tiny part of small-area NCBAs were
omitted by High-medium confidence. Yet the decrease of PA and F1 and increase of Recall
appear slow in both area-based and pixel-based assessments, reflecting that most candidate
NCBAs satisfy prior rules, and could classified into High-medium confidence.

On the whole, NCBAs of High confidence records the best balance of PA and Recall,
and the highest F1 (81.72% and 91.17%), while High-medium confidence and High-medium-
low confidence lead to slightly increased Recall yet significantly decreased PA. Therefore,
to balance PA and Recall and achieve favorable results, only NCBAs of High confidence
are considered to be the final detection result by this method.

5. Discussions

The applicability of this method to ZY302 is verified through two groups of exper-
iments. Subsequently, registration strategy and NCBAs classification are presented in
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Sections 5.2 and 5.3. In addition, error types and sources for detecting NCBAs by this
method are briefly analyzed in Section 5.4. Finally, the contribution of this method is briefly
explained.

5.1. Application

The images obtained by ZY302 include panchromatic images with a resolution of 2.1
m and multispectral images making up of blue, green, red, and near-infrared bands with a
resolution of 6 m. The ZY302 experimental images (from scientific research data) of Xi’an
and Kunming were selected for accuracy assessment and verification of the applicability
of the method on ZY302. Obtained on 22 March 2018 and 4 March 2020, the bi-temporal
images of Xi’an cover the main urban area and part of suburb in Xi’an. Obtained on 31
March 2018 and 11 May 2020, the bi-temporal images of Kunming cover the central city
and surrounding mountainous areas. It can be seen from Table 3 that the mean score of
F1 for area-based assessment reaches 81.76%, and pixel-based assessment 91.40%. Missed
detection of rebuilt NCBAs in urban areas results in relatively low Recall.

Table 3. Accuracy assessment for Xi’an and Kunming.

City Area-Based Assessment Pixel-Based Assessment

PA Recall F1 PA Recall F1

Xi’an 92.18% 72.77% 81.29% 92.15% 89.31% 90.70%
Kunming 94.90% 72.52% 82.22% 97.57% 87.20% 92.10%

mean 93.49% 72.65% 81.76% 94.86% 88.25% 91.40%

The dataset of building segmentation and SVM classifier deal with two satellites (GF1
and ZY302); that is, the building segmentation model and SVM classification model are
both trained based on the data from GF1 and ZY302. It can be observed from the results (F1
of pixel-based assessment > 90%) of three sets of GF1 (Section 4.3) and two sets of ZY302
that this method is adaptable to the data of GF1 and ZY302 and can provide a new idea for
change detection of multi-sensor images.

5.2. Areas Registration

According to the rule of expanding 100 pixels, the range of each candidate NCBA
was intercepted, and area registration was performed instead of full image registration.
Only suspected NCBAs were registered, while other areas without candidate NCBAs were
skipped. This strategy substantially reduces the amount of data that needs to be processed
during registration, shortens the process of selecting matching points of uninterested areas,
and improves the efficiency of registration. Meanwhile, registration of small area can also
curtail registration conflicts among matching points and improve registration accuracy.

5.3. NCBAs Classification
5.3.1. Single Use of 14-Feature SVM

As shown in Table 4, we compared the accuracy assessments for single use of 14-
feature SVM and combination use of rules and 14-feature SVM (Table 2 High confidence).
It can be seen that single use of SVM classifier could increase the mean Recall of area-based
assessment and pixel-based assessment by 1.67% and 0.30%, but decrease the mean PA
by 8.21% and 4.05%, and F1 by 3.38% and 1.98%, respectively. Therefore, the single use of
SVM classifier could reduce missed detection yet increase false detection.
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Table 4. Accuracy assessments for single use of 14-feature SVM.

Classifier Group Area-Based Assessment Pixel-Based Assessment

PA Recall F1 PA Recall F1

Single use of 14-feature SVM

1 88.76% 75.95% 81.85% 93.42% 89.71% 91.53%
2 86.99% 75.35% 80.75% 89.13% 89.46% 89.30%
3 63.02% 85.06% 72.40% 80.37% 94.21% 86.74%

mean 79.59% 78.79% 78.34% 87.64% 91.13% 89.19%

Figure 10 displays NCBAs failing to meet the rules yet are greater than 0 in SVM score.
The texture features of (a) and (b) change, but the value of DPM fails to meet the threshold.
The overexposure of pre-temporal image of (a) leads to loss of texture details, thus the value
of SSM is lower than the actual value. The red circled area in (b) is covered by vegetation in
pre-temporal images yet is bare in post-temporal images, leading to lower SSM value too.
In (c), due to the deviation of building probability in the pre-temporal image, higher DPM
value than actual value occurs, resulting in DPM meeting the threshold. However, SSM
value cannot reach the threshold, resulting in failure to meet the rules. To sum up, DPM
could decrease the false detection caused by pseudo texture changes in high-resolution
images, and SSM could reduce the false detection caused by building segmentation errors.
Therefore, the rules combining SSM and DPM can improve detection accuracy.
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5.3.2. Single Use of 8-Feature SVM

Eight non-probability features (FGM, LGM, FGV, LGV, DGM, DGV, SSM, and SSV)
were also employed to train SVM classifier for candidate NCBAs classification. The Recall
reaches 74.42% and overall Accuracy 68.53%. Compared with the accuracy assessment
of 14-feature SVM classifier (Table 4), the values of PA, Recall, and F1 are all decreased
significantly in the accuracy assessments of 8-feature SVM classifier (Table 5). Examples
of 8-feature SVM classifier scoring less than 0 and 14-feature one scoring greater than 0
are shown in Figure 11a. It can be seen that 8-feature SVM classifier may lead to loss of
some small-area NCBAs, which account for less pixels and are easily to be dominated
by other pixel values in the overall assessment of spectral and texture features of the
region, thus mistakenly divided into non-changing area. In addition, examples of 8-feature
SVM classifier scoring greater than 0 and 14-feature one scoring less than 0 are shown in
Figure 11b. False NCBAs not converting from non-building to building could be incorrectly
classified as real NCBAs by 8-features SVM classifier because of changes in texture and
spectrum.
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Table 5. Accuracy assessment for 8-feature SVM classifier.

Classification Group Area-Based Assessment Pixel-Based Assessment

PA Recall F1 PA Recall F1

Single use of 8-feature SVM

1 79.61% 69.76% 74.36% 91.45% 84.11% 87.63%
2 78.44% 72.25% 75.22% 85.29% 87.16% 86.21%
3 60.78% 81.83% 69.75% 79.94% 59.22% 68.04%

mean 72.94% 74.62% 73.11% 85.56% 76.83% 80.63%
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Table 5. Accuracy assessment for 8-feature SVM classifier. 

Classifica-
tion Group 

Area-Based Assessment Pixel-Based Assessment 
PA Recall F1 PA Recall F1 

Single use of 
8-feature 

SVM 

1 79.61% 69.76% 74.36% 91.45% 84.11% 87.63% 
2 78.44% 72.25% 75.22% 85.29% 87.16% 86.21% 
3 60.78% 81.83% 69.75% 79.94% 59.22% 68.04% 
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Figure 11. Examples of different classification results between 14-feature SVM and 8-feature SVM. (a,b) represent different
examples enumerated. T1 and T2 represent pre-temporal and post-temporal images.

5.4. Error Analysis

The error types of NCBAs detection are analyzed by examples in Figure 12. As the
variation range of building mask shown in (a) is less than 400 m2, it was filtered out
during candidate NCBAs extraction. The new single building in (b) was also ignored
during candidate NCBAs extraction as the bi-temporal masks have regarded it as building.
Because of threshold of minimum area and building segmentation problem, the NCBAs
in (a) and (b) failed to be detected, resulting in loss of Recall. As shown in (c), the road in
the post-temporal image was over-checked, resulting in false NCBAs in candidate NCBAs
extraction. Moreover, due to the differences in texture and building probability between
bi-temporal images, this false NCBA has passed the test of rules and SVM classifier, and
was classified as high confidence finally, leading to over-examination. The manually
marked NCBAs do not include the type of land turned into piers, resulting in the NCBA
in (d) are counted as an over-checked NCBA in accuracy assessment. Due to the building
segmentation errors and limited manually labeled types, the NCBAs in Figure 12c,d failed
to be considered as true NCBAs, leading to loss of PA. In conclusion, the detection errors
of NCBAs by this method may be caused by limit of minimum area, imprecision and
misclassification of building segmentation, and limited manually labeled types.
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5.5. Contributions

This study is contributive to NCBAs monitoring in three aspects:
Firstly, the experimental results of Jinan, Xi’an, and Kunming show that the proposed

method can achieve high accuracy (the F1 of area-based and pixel-based methods are above
80% and 90%, respectively) in detecting NCBAs. Introduction of deep learning semantic
segmentation and machine learning classification algorithms reduces limitations of spectral
characteristics of images and weakens the influence of illumination and atmosphere on
detection of NCBAs. Correction of image internal distortion widens the application area of
the algorithm (such as the mountainous city of Kunming). In addition, the strategy of area
registration saves processing time and improves efficiency.

Then, this method can be used for NCBAs detection based on GF1 and ZY302 im-
ages. The complementary use of multi-sensor images can effectively increase monitoring
frequency and enhance monitoring ability.

Finally, this refined method can be used for change detection of remote sensing images
with a resolution of 2 m, providing a new solution for detection of NCBAs in high-resolution
images and improving detection precision.

6. Conclusions

To investigate NCBAs monitoring of high-resolution remote sensing images (GF1 and
ZY303 images with a resolution of 2 m), this study proposes a refined NCBAs detection
method consisting of four parts based on generalized machine learning: (1) Process data
by fusion, orthorectification, and color-consistency; (2) Obtain candidate NCBAs by using
bi-temporal building masks acquired by deep learning semantic segmentation, and then
register these candidate NCBAs one by one; (3) Classify NCBAs into high, medium, and
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low confidence by combining rules and SVM classifier with 14 features of spectrum, texture
and building probability; and (4) Determine the final vectors of NCBAs by post-processing.
In addition, area-based and pixel-based assessment methods are integrated to evaluate PA,
Recall, and F1 of three experimental groups in Jinan under three cases (High, High-medium,
and High-medium-low confidence). Subsequently, the results of accuracy assessments
show that although the Recall of NCBAs with High-medium and High-medium-low
confidence increases slightly, PA suffers a great loss, resulting in a decrease in F1 value.
To balance PA and Recall and achieve favorable results, only NCBAs of High confidence
are considered to be the final detection result by this method. For the three groups of
GF1 images of Jinan, the mean Recall of the two assessment methods reaches 77.12% and
90.83%, the mean PA 87.80% and 91.69%, and the mean F1 81.72% and 91.17%, respectively.
In addition, the scores of F1 for ZY302 images of Xi’an and Kunming are both above 90%,
indicating that this proposed method is also applicable to ZY302 satellite.

By adopting the strategy of candidate NCBAs registration, this method avoids low
efficiency of full-image registration. In addition, experiments were conducted to verify
the accuracy of single use of 14-feature SVM, and that of combination use of rules and
SVM. The results show that the single use of SVM could increase the mean Recall of
area-based and pixel-based assessment by 1.67% and 0.30% yet decrease the mean PA
of the two assessments by 8.21% 4.05%, and F1 by 3.38% and 1.98%, respectively, while
combination use of rules and SVM could prevent false NCBAs from being mis-detected as
high confidence ones. The experimental results of 8-feature SVM (spectrum and texture
features) and 14-feature SVM (spectrum, texture, and building probability features) were
also analyzed. The results reveal that the values of PA, Recall, and F1 of 8-feature SVM
are lower than those of 14-feature SVM, which could reduce the over-checking caused by
changes in land status, and slightly avoid missed inspections of NCBAs in small areas. It is
thus proved that introduction of probability features can improve NCBAs classification
accuracy.

This paper is contributive to NCBAs detection in three aspects. To begin with, the
introduction of machine learning and area registration algorithms expands the scope and
conditions of NCBAs detection by this method. Secondly, being well adaptive to both GF1
and ZY302, this method improves NCBAs monitoring ability through complementary use
of multi-sensor images. Finally, the algorithm can be used for NCBAs detection in remote
sensing images with a resolution of 2 m, providing a new solution for the change detection
of high-resolution remote sensing images.

Limitations are inevitable, and this study is no exception. Imprecision of building
segmentation caused by image quality and building size may lead to missing and over
detection of NCBAs in this study. In the future study, NCBAs errors caused by building
segmentation would be prioritized, to reduce the impact of segmentation results on object-
based change detection. In addition, a transfer learning mechanism may be introduced
to allow this method to be applied to other satellite images. Moreover, we have plans to
release our test set in the future, so that NCBAs detection methods can be compared on the
same scale.
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