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Abstract: Powerline detection is becoming a significant issue for powerline monitoring and main-
tenance, which further ensures transmission security. As an efficient method, laser scanning has
attracted considerable attention in powerline detection for its high precision and robustness during
the night period. However, due to occlusion and varying point density, gaps will appear in scans and
greatly influence powerline detection by over–clustering, insufficient extraction, or misclassification
in existing methods. Moreover, this situation will be worse in terrestrial laser scanning (TLS), because
TLS suffers more from gaps due to its unique ground–based scanning mode compared to other
laser scanning systems. Thereby, this paper explores a robust method to repair gaps for extracting
powerlines from TLS data. Firstly, a hierarchical clustering method is used to extract the powerlines.
During the clustering, gaps are repaired based on neighborhood relations of powerline candidates,
and repaired gaps can create continuous neighborhood relations that ensure the execution of the
clustering method in return. Test results show that the hierarchical clustering method is robust in
powerline extraction with repaired gaps. Secondly, reconstruction is performed for further detec-
tion. Pylon–powerline connections are found by the slope change method, and powerlines with
multi–span are successfully fitted using these connections. Experiment shows that it is feasible to
find connections for multi–span reconstruction.

Keywords: TLS; powerline detection; gaps repair; hierarchical clustering; connection finding

1. Introduction

Powerlines are a vital component of the national infrastructure. However, material
and structural degradation under the cyclical loading and natural erosion will result in
many potential safety hazards [1]. To address such safety concerns, workmen have to
inspect and maintain powerlines in harsh environments periodically; sometimes, they have
to climb the high pylons for detailed inspection. This traditional field monitoring is not
only dangerous but also wasteful of manpower and material resources [2]. Thus, it is a
challenge to maintain powerlines efficiently, and fast but correct powerline detection is the
basic foundation.

Researchers have tried a lot of remote sensing techniques for powerline detection, such
as traditional camera sensors and laser systems. Compared to traditional camera sensors,
laser scanning systems are not susceptible to lighting conditions, for light detection and
ranging (LiDAR) can work without ambient light [1]. What is more, LiDAR can acquire
dense 3D data in the information–rich form of a point cloud, which has advantages of
high precision, fast scanning speed, and the ability to obtain abundant spatial informa-
tion, etc. As a result, the laser scanning technique is becoming increasingly popular in
powerline extraction [3].

Broadly speaking, the laser scanning system can be categorized into air borne and
terrestrial–based measurements. ALS (Airborne LiDAR Scanning) is the main method of
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air borne system, which integrates LiDAR, GNSS (Global Navigation Satellite System), and
INS (Inertial Navigation System) on manned or unmanned aircraft to scan aerially. ALS is
widely used in powerline detection for its large scanning range, but it has relatively low
accuracy because of the long distance between the targets and the scanner [4]. The main
modes of terrestrial–based measurements are MLS (Mobile Laser Scanning) and terrestrial
laser scanning (TLS). Compared to ALS, MLS similarly mounts LiDAR, GNSS, and INS
on a vehicle. The difference with ALS is that MLS can acquire data of higher precision
because it scans close to targets. However, MLS is subject to the fact that it needs to travel
on roads that sometimes do not exist underneath the powerlines. TLS is a high–precision
environmental sensing and measurement method, which mounts the LiDAR system on
a tripod to obtain data statically, but it suffers severely from two aspects: (1) decreasing
point density due to increasing distance from the scanner, and (2) occlusion caused by the
presence of other objects. Considering the advantages and disadvantages of these methods,
related work has verified the feasibility of extracting powerlines from laser scanning data.

Point cloud powerline extraction can be categorized into three phases: preprocessing,
powerline detection, and powerline reconstruction.

Preprocessing is essential for accelerating powerline extraction by simplifying point
cloud data. Jung et al. [5] and Ye et al. [6] streamlined redundant point cloud data by
voxel filter; they divided the point clouds into 3D voxels and replaced points by a cen-
troid within each voxel, which could down–sample the point cloud data without losing
accuracy in powerline extraction. According to the ground truth, powerlines are high
above the ground, but ground points that will hinder the extraction take a great part of the
point cloud data. In order to separate ground and near–ground objects from powerlines,
Yang et al. [7], Shen et al. [8], and Zhu et al. [9] structured a point cloud into subspaces
and used the statistical information of points within each subspace to filter out ground
points in undulating terrain. Jung et al. [5] proposed a voxel–based morphological filter
to isolate the objects lower than the powerline, and they defined a certain height range to
extract powerlines preliminarily. Subsequently, da silva et al. [10], Guan et al. [11], and
Wang et al. [12,13] used point cloud data to obtain DEM (Digital Elevation Model), DSM
(Digital Surface Model), or DTM (Digital Terrain Model), combined with height difference
to remove ground and near–ground points, and related studies had proved the feasibility
of these morphological methods.

In powerline detection phase, powerlines are extracted and divided into individual
lines. Feature extraction is widely used to calculate the various local geometric features.
Jung et al. [5] and Cheng et al. [14] implemented Principle Component Analysis (PCA)
to compute three eigenvalues of small clusters that derived from adjacent points, which
give a clue about the presence of linear elements (powerlines), surfaces such as building
facades, and volumetric objects, and they detected powerlines based on these eigenvalues.
Xu et al. [15] grouped the points in labeled clusters through maximum posterior estimate;
then, they extracted powerlines according to the main direction and the distance between
labeled clusters. Furthermore, machine learning is another method for powerline extraction
by feature calculation. Yang et al. [3] and Jwa et al. [16] trained feature models with semantic
information that extracted from neighborhood points, and they isolated powerlines from
other objects with the Random Forest (RF) method. Wang et al. [13] firstly extracted
multi–scale features with geometric and spatial information such as line count, cylinder,
k nearest neighbors, and Sphere; then, they trained the powerline model with these
features by Support Vector Machines (SVM), and finally, they extracted powerlines with
the Kernel Function. Guo et al. [17] used geometry and echo information of point cloud
data to generate various features and estimated parameters of the learning model. They
obtained powerline points with JointBoost classifier and optimized them under contextual
constraints. Alternatively, transforming point cloud data into other forms such as 2D pixels
or 3D voxels is also a useful way to extract information of powerlines. Wang et al. [12],
Yang et al. [7], Liu et al. [18], Grigillo et al. [19], Nasseri et al. [20], and Tilawat et al. [21] used
Hough Transform (HF) or Random Sample Consensus (RANSAC) to extract powerlines
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from an off–ground point cloud in a 2D image, but the extraction result was sensitive to
parameters that were determined by the user. Transformed data can also be applied in the
statistics–based method; Zhang et al. [22], Guan et al. [11], Shen et al. [8], Zhu et al. [9],
and Liu et al. [23] separated powerlines from other objects by counting points within a
2D pixel or 3D voxel according to the density difference among powerlines, pylons, trees,
and other objects. However, these statistics–based methods may have a poor performance
when points are unevenly distributed. The method based on prior conditions was also
carried out in powerline extraction. According to the ground truth that powerlines are
suspended high on the pylon, Awrangjeb et al. [24] and McCulloch et al. [25] used the prior
conditions such as pylon position to identify the powerline corridor and extract powerlines,
but these approaches depend on the availability of supplemental data. In addition, region
growth is another efficient extraction method to extract line features; Zou et al. [1] detected
a track with a modified region growth method, and they predefined the starting points and
step length to derive drift vectors as the growth direction and extracted railway accurately.
Liang et al. [26] used region growth to extract a powerline based on a relationship of
adjacent points in the same powerline. However, neither of the region growth methods can
extract a discontinuous line for its strong dependence on neighborhood relations.

In the powerline reconstruction phase, the detected powerlines are fitted with line
models for powerline identification. Considering the sagging posture, powerlines are
often modeled with a second–order polynomial equation in 3D [5]. Cheng et al. [14],
Awrangjeb et al. [27], Yadav and Chousalkar [4], and Lai et al. [28] used second–order
polynomials to fit powerlines directly in 3D space. Alternatively, fitting can be performed
based on the ground truth that the powerline appears as a straight line in the horizontal
plane and a second–order polynomial line in the vertical plane. Thus, Guan et al. [11],
Ortega et al. [29], and Yin et al. [30] carried out a stepwise fitting method to reconstruct the
powerline in the horizontal plane and vertical plane, respectively.

Recently, studies on powerline extraction from point cloud data are relatively mature.
However, due to decreasing point density and occlusion causing by the other objects
in the line of sight, gaps will appear during the scanning process, resulting in uneven
points distribution and discontinuous lines, which further greatly affect the performance
of powerline extraction by over–clustering, insufficient extraction, and misclassification.
What is worse, previous studies had few efforts in extracting powerlines by repairing gaps.
To address such concern, this paper explores a hierarchical method that takes full use of
neighborhood relations to repair gaps in a point cloud of powerline corridors for powerline
extraction as well as a multi–span line fitting method based on pylon–powerline connection
for further detection. A TLS point cloud is used as the provisionally appropriate data to
validate the gap repair method, because TLS produces more occlusion than other laser
scanning systems. The main experiment in this paper can be divided into following steps:
First, off–ground point cloud data are cut into segments with a predefined step length
along the powerline, and within each segment, points are grouped into various clusters
by Euclidean Clustering (EC). Then, the centroids of these clusters are calculated, and
centroids of gaps are estimated by centroids of their adjacent powerline clusters. With these
estimations, powerline clusters that have the nearest centroid are clustered hierarchically
into individual lines. Finally, each individual line with multi–span is fitted according to
pylon–powerline connections found by slope change method. As a result, powerlines
with multi–span will be directly extracted and fitted as an individual line. The main
contributions of this research are as follows:

1. Explore a new method to repair gaps for powerline extraction, which solves the
problem of over lustering and insufficient extraction caused by gaps in the existing
method. The method has been tested in various gap situations, and experiments show
that the method is of high robustness.

2. Propose a method of searching pylon–powerline connections based on the slope
change and reconstruct the powerline with multi–span.
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The structure of the article is as follows: Section 2 introduces the experimental data,
Section 3 presents the processing flow and main algorithms, Section 4 analyzes and dis-
cusses the powerline extraction and reconstruction results, and Section 5 is the summary.

2. Data Description

The experimental TLS point cloud data were measured near the Land and Resources
College in Hannan District of Wuhan, Hubei Province, China. Hannan District is located in
the southwest of Wuhan (30.30879◦N, 114.08462◦E), which is an urbanized area far from the
downtown with gentle terrain, and there are sparse shrubs and low buildings distributing
in this area. Figure 1 displayed the location of the test field.
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Figure 1. Location of the test field.

In this test field, powerlines with a transmission voltage of 35 Kv are distributed on
both sides of the road. The point cloud data were obtained by the laser scanner FARO Focus
3DS 120 in 2020 and were completed with SCENE, which is a software packaged with the
FARO scanner. The instrument specifications of the scanner are list in Table 1. As shown in
Figure 2, the obtained TLS point cloud data have lots of gaps and contain powerlines with
two spans, which is suitable for the gap repair method and multi–span reconstruction.
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Table 1. Parameters of FARO light detection and ranging (LiDAR).

Parameters Type Values

Scan radius 120 m
Horizontal scan range 300◦

Vertical scan range 360◦

Ranging error ±2 mm
Scan speed 976,000 p/s

Color options 70 million built–in pixels

3. Methodology

As a LiDAR scanning system, TLS has the advantages that can obtain accurate three–
dimensional spatial information, and it is not affected by illumination conditions. Addi-
tionally, TLS data can be used as provisionally appropriate data to verify the gap repair
method because it suffers severely from the occlusion, which produces lots of gaps in scans.
Figure 3 visually illustrates the workflow of the proposed approach to repair gaps and
extract the powerline from the TLS data. First, the raw data are preprocessed by data
cropping, ground filter, height filter, and voxel filter to refine and thin the numerous points.
Second, the experimental point cloud data are divided into continuous segments, and the
points of each segments are grouped into clusters by EC. Then, the centroid and slope
of each cluster are calculated for further extraction. After that, a hierarchical clustering
method between segments is carried out, and adjacent powerline clusters that have the
nearest centroids are combined into one. In order to solve the problem of discontinuity
caused by the gaps, this paper takes full use of neighborhood relations to repair gaps, and
all powerlines are extracted as individual lines directly. Finally, multi–span reconstruc-
tion is performed on each line. The powerline–pylon connections that part the powerline
into different spans are found by the slope change method, and then a powerline with
multi–span is fitted based on these connections.

3.1. Data Preprocessing

In this article, point cloud data preprocessing include data cropping, ground filtering,
height filtering, TLS data thinning, and data rotation. TLS point cloud data contain
lots of redundant points, which will greatly slow down the powerline extraction. Thus,
data cropping is necessary to reduce the point cloud data. Points that were far from the
powerline corridors were removed as outliers without losing any powerline points. The
cropped data contain a total of 17,159,420 points, with a horizontal span of 46 m and a
vertical span of 10 m. The data include four main parts: pylons, vegetation, buildings,
and powerlines with two spans. To highlight the vertical distribution of the objects in
the powerline corridor, we colored a point cloud according to the elevation. As shown in
Figure 4, it is obvious that most objects of the cropped data are lower than powerlines, and
the test field has a relatively flat terrain.
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Ground filtering and height filtering are important prerequisites to reduce unwanted
objects. The point cloud data not only include powerlines but also a large number of
outliers that are lower than powerlines (ground, shrubs, low buildings, etc.), which will
hinder the extraction of the powerline point cloud. The cloth simulation filter is an efficient
ground filtering method that utilizes the nature of cloth and modifies the physical process
of cloth simulation to adapt to point cloud filtering [31]. For disconnecting the powerlines
from the ground, the ground is detected and removed by cloth simulation filter in this
study. However, ground–filtered data may still include some unwanted objects that are
lower than the powerlines. The height filtering method that is based on the DTM (Digital
Terrain Model) derived from the detected ground can further reduce the outliers and isolate
the powerlines [7,8]. Thus, we also performed height filtering based on DTM. The DTM
derived from the detected ground was raised to a certain height (hmin), and points that
were lower than the raised ground were removed. According to the National Electrical
Safety Code (NESC), the vertical clearance of the lowest–level powerline is standardized as
6.4 m in China [11]. Considering the sagging factor, hmin is set at a value of 5 m, which is
lower than the NESC standard to ensure we did not miss any powerline points. As shown
in Figure 5a, points that are 5 m above the ground are further extracted as off–ground
points, while others are filtered out as outliers, and the filtered data are 90% less than before
with total of 134,463 points.
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The ground–filtered point cloud is of great redundancy with numerous points, which
will influence the efficiency of processing. Thereby, data thinning is essential to accelerate
the further processing. A voxel filter was used to streamline the ground–filtered point cloud;
point cloud data were put into 3D voxels, and each voxel was 8 cm3 in size; then, points
within the same voxel are replaced by the centroid of them. As a result, the voxel–filtered
points are reduced by 90% compared to the original data, with a total of 1,350,728 points
left. However, the original structure of the test point cloud data remains without losing
any accuracy.

Since the proposed method is carried out along the powerline, it is necessary to rotate
the point cloud until powerlines are parallel to the X–axis. Powerlines are parallel to each
other in XOY plane; thus, calculating the angle of one of the powerlines is enough for
rotation. First, we selected line1 on the XOY plane and converted the coordinate origin
to one end of line1, as shown in Figure 5b; pi(ρi, θi) represents 2D points on the line1
(i = 1 − n, n is number of points). When line1 is parallel to the X–axis, θi and the rotation
angle θ should satisfy the following conditions:

n

∑
i=1

(θi − θ)2 ≥
n

∑
i=1

(θi − θj)
2 (1)

where θj represents any value of the rotation angle.
Subsequently, we rotated the point cloud data based on the obtained θ; the RMSE

(Root Mean Square Error) of the rotation is 0.014 rad, and the rotated point cloud is shown
in Figure 5c.

3.2. The Hierarchical Clustering Method
3.2.1. Segmentation and Powerline Candidate Selection

In this part, preprocessed data are divided into continuous segments and powerline
candidates are obtained by EC within each segment. First, preprocessed data are divided
with a predefined step length s1 to get continuous segments that contain the points of
powerlines and pylons in Figure 6a; then, points in each segment are clustered into different
groups by EC based on constraint distance r. Figure 6b demonstrates the EC algorithm: EC
starts from a random point (colored in green), and points whose distance from the start
point is less than r are grouped. After that, a new start point is picked from this group
(except the previous start point) and the clustering is continued with r until there are no
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more points that can be added. Then, we pick a new point from the rest points as the
new start point and repeat the above process until all the points are clustered. Figure 6c
exemplifies the results of EC with five clusters ( C1 ∼ C5). As the consequence of EC, the
points of the powerline and pylon in each segment are grouped into series of unlabeled
clusters, which are subsequently used for selecting powerline candidates.
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Figure 6. Segmentation and Euclidean Clustering (EC). (a) Segmentation of preprocessed data with predefined step
length s1. Blue lines represent powerlines and black lines represent pylons. (b,c) The schematic diagram of EC within a
segment (cross–section).

Although various clusters are obtained by EC, clusters that represent powerlines are
still unknown. Finding powerline clusters is essential for executing gaps repair and indi-
vidual powerline detection. Since the powerline cluster can be regarded as an approximate
cylinder and its cross–section is approximately a circle, we can distinguish the power line
from other objects by the following steps:

(1) Determine the slope of all the clusters using LS (Least Square method) in plane
corresponding to the direction of the powerline (in this paper, the plane is XOZ).

(2) Rotate the clusters around the Y–axis that is perpendicular to the plane of the power-
line run.

(3) Distinguish powerline clusters in the cross–section. For each cluster, sph (horizontal
span) and spv (vertical span) of the cross–section are calculated to reflect the cluster
size, and clusters approximately equal to sph and spv (ratio of sph and spv larger than
predefined value spt) are regarded as powerline clusters. It should be mentioned that
we set 2r as the threshold of the horizontal and vertical span to further distinguish
powerline clusters from others. Detail judgment is as follows:
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abs(sph − spv) > spt

spv < 2r
spv < 2r

. (2)

Consequently, the powerline clusters are labeled with “line” as powerline candidates,
distinguishing from others labeled with “no–line”. Figure 7b,c exemplify the powerline
candidates selection in each segment.
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Figure 7. Powerline candidate selection. (a) Characteristic of rotated powerline and pylons. Black arrows denote the
principal direction of different clusters. sl is the step length of segmentation, and the circle with radius r is the cross-section
of the powerline cluster. (b) Result of powerline candidate selection (cross–section), c1–c5 are clusters in the segment
si(i = 1, 2, 3 . . .), c1–c4 are selected as powerline candidates with “line” label (c) Result of powerline candidate selection
(front view). si is the front view of (b), si−1 and si+1 are neighboring segments of si. Powerline candidates of the same
segment are colored the same, clusters that are not powerline are displayed in gray.

3.2.2. Powerline Candidates Clustering and Gaps Repair

Based on the above steps, preprocessed data are divided into several continuous seg-
ments and powerline candidates are obtained, while the gap repair method and powerline
extraction can be further implemented. In our study, we calculated centroids of powerline
candidates and used distance of centroids as the clustering foundation, for powerline
candidates in the same individual powerline are closely connected, which means that every
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two adjacent powerline candidates in the same individual powerline have the nearest
centroids compared to others.

In this work, our clustering method is to combine the powerline candidates of the
same individual powerline segment by segment, and it begins with a “starting segment”.
First of all, the segment with the most powerline candidates is regarded as a starting
segment, and its adjacent segments is called the “matching segment”. Then, powerline
candidates in the starting segment are labeled from 1 to n (n is count of these candidates),
and they are matched successively along both sides of the starting segment. For either
side of the starting segment, the distance between the powerline candidates of the starting
segment and candidates of the matching segment are computed, candidates that have the
nearest centroids are labeled the same, and candidates of the staring segment that have
found their nearest candidates in the matching segment are labeled “matched”. After that,
the visited matching segment is set as a new starting segment to continue the clustering
until all the segments are traversed. Figure 8a illustrates the clustering method visually.
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Figure 8. Example of candidate clustering and gaps. (a) Clustering between the starting segment and matching segment
(take the clustering process of c1 as an example. Black cylinders are powerline candidates in matching segments, c1–cn are
labeled powerline candidates in the starting segment, red points are centroids of powerline candidates, and d1–dn are the
distance between the centroids). (b) Gaps in the preprocessed data.
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In theory, the hierarchical clustering method could extract individual powerlines directly.
Unfortunately, powerline candidates are not continuous due to gaps, as shown in Figure 8b,
which results in discontinuous neighborhood relations and will severely block the execution
of the clustering method. Moreover, methods rely on neighborhood relations; for example,
EC and the region growth method are also severely plagued by this problem. To ensure
clustering, the method mentioned above is refined by the gap repair method as follows:

(1) Gaps detection. In the above hierarchical clustering, candidates without a “matched”
label in the starting segment can imply that they are discontinuous in the neighbor-
hood, indicating the existence of gaps in the matching segment. Thus, gaps can be
found with these “unmatched” candidates.

(2) Centroid estimation. According to the ground truth that powerlines of the same
span share the similar morphological characteristics, we can infer that centroids of
powerline candidates in the same segment have similar variation tendency. Hence,
centroids of gaps can be estimated to create continuous neighborhood relations. The
formulas of estimation are as follows:

avec(x,y,z) =
N

∑
j=1

cj
i (x,y,z) − cj

i−1(x,y,z)

n
(3)

Ck
i(x,y,z) = Ck

i−1(x,y,z) + avec(x,y,z). (4)

In Formula (1), the average change in centroids of matched candidates (avec) is
computed as the estimated change in centroids of unmatched candidates. cj

i (x,y,z) and

cj
i−1(x,y,z) respectively denote the matched powerline candidates of the adjacent segment

and starting segment, i and i − 1 represent two adjacent segments (starting segment and
matching segment), and n is the count of the matched candidates in the starting segment.
In Formula (2), centroids of gaps are estimated by centroids of unmatched candidates and
avec. Ck

i(x,y,z) is the estimated centroid of the gap, Ck
i−1(x,y,z) is the unmatched candidate in

the starting segment, and k is the label of candidates that have not found their nearest
candidates in the matching segment. However, it is impossible to obtain avec if there are
not any powerline candidates in the matching segment. To improve the robustness, we
used avec of the previous adjacent segments for estimating centroids of gaps. Figure 9
comprehensively demonstrates the method of gap repair.
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The powerline has multiple forms in different spans. Therefore, it is difficult to fit a 

powerline with multi–span using only one model. In this article, pylon–powerline con-
nections are found by the slope change method; then, powerlines of different spans are 
modeled and connected with these connections. Finally, powerlines with multi–span can 
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In summary, gaps repair and powerline candidates clustering are carried out simul-
taneously. Gaps are repaired based on the clustering method; in return, repaired gaps
facilitate the execution of clustering. As a result, neighborhood relations are continuous
and powerline candidates are grouped into an individual line directly in the case of gaps.

3.3. A Powerline Connection Finding Method Based on Slope Change

The powerline has multiple forms in different spans. Therefore, it is difficult to fit
a powerline with multi–span using only one model. In this article, pylon–powerline
connections are found by the slope change method; then, powerlines of different spans are
modeled and connected with these connections. Finally, powerlines with multi–span can
be successfully fitted. Slopes of powerline candidates in the XOZ plane are computed in
Section 3.2, and they are further used to find the connection. Pylon–powerline connections
lie between the adjacent powerline candidates that have the largest slope change. Thus,
as shown in Figure 10, we firstly used the slope change method to find the two adjacent
powerline candidates that have the largest slope change (indicate the position of the
pylon–powerline connection); then, a quadratic polynomial is used to fit the candidates
respectively, and the pylon–powerline connection is found by computing the intersection
of them. It should mention that we used the proposed method to find connection in the
XOZ plane, and the y value is estimated by a straight line model in the XOY plane.
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Figure 10. Powerline connection finding based on slope change. Red regions represents the
adjacent segmentations that have the largest variation of a single powerline, and (x,z) is the
pylon–powerline connection.

4. Results and Discussion

This section mainly shows the results of the proposed hierarchical clustering method
based on gap repair and the results of multi–span powerline reconstruction. Table 2 shows
strategies for powerline extraction and reconstruction, and the thresholds are discussed in
Section 4.3.

4.1. Powerline Extraction

In order to deal with the problems caused by gaps, this article proposed a robust
and automatic algorithm framework for extracting powerlines from point cloud data.
As shown in Figure 11b,c, gaps are distributed disorderly in the preprocessed data. In
this case, continuous neighborhood relations are created by the gap repair method, and
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powerlines are extracted from preprocessed data and divided into individual lines, as
shown in Figure 11a. The result shows that the hierarchical clustering method proposed in
this paper can effectively solve the problem caused by gaps, and individual powerlines
can be extracted from preprocessed data directly without any prior conditions.

Table 2. Parameters in proposed method.

Parameter Description Values

sl Step length 0.5 m
rd Constraint distance of EC 0.3 m
r Radius of powerline candidates 0.02 m

spt Ratio of vertical span and horizontal span 0.7
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shown in Figure 12, data with segment width of	  (step length), 2 , 4 , 8 , and 12  are 
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imental results show that proposed method can extract individual powerlines within the 
segment width 12 . When the segment width is larger than 12 , different individual lines 
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Figure 11. The results of powerline extraction. (a) Each single powerline is successfully extracted from preprocessed data
directly and shown in different colors. (b,c) Clustering with the gaps. Powerlines are clustered correctly.

Although extracting powerlines from data containing gaps has been proved in pre-
processed data, gaps not only distribute disorderly but also appear as a whole segment
in a powerline point cloud. To further verify the robustness of the hierarchical clustering
method, we manually removed the entire segment of the powerline to simulate the gaps
and continuously enlarge the segment width to test the ability of this method in repairing
gaps. As shown in Figure 12, data with segment width of sl (step length), 2sl , 4sl , 8sl , and
12sl are used as the test data to validate the robustness of the hierarchical clustering method.
Experimental results show that proposed method can extract individual powerlines within
the segment width 12sl . When the segment width is larger than 12sl , different individual
lines will be grouped into one due to the accumulation of errors in centroid estimation.
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extraction with segment width 8 . (e) Individual powerlines extraction with segment width 12 . 

The proposed method has been proved robust under data with various gaps. 
However, some powerline points are treated as outliers that were distributed close to the 
pylons in Figure 13. We conclude that the points close to pylons are grouped with pylons 
during the extraction. Although these points only take an extremely small part of pow-
erlines, in order to seek for greater perfection, we set step length empirically to get pow-
erline points closed to pylons as much as possible and discuss it in Section 4.3.  

Figure 12. Robustness test. (a) Individual powerlines extraction with segment width sl . (b) Individual powerlines extraction
with segment width 2sl . (c) Individual powerlines extraction with segment width 4sl . (d) Individual powerlines extraction
with segment width 8sl . (e) Individual powerlines extraction with segment width 12sl .
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The proposed method has been proved robust under data with various gaps. However,
some powerline points are treated as outliers that were distributed close to the pylons in
Figure 13. We conclude that the points close to pylons are grouped with pylons during the
extraction. Although these points only take an extremely small part of powerlines, in order
to seek for greater perfection, we set step length empirically to get powerline points closed
to pylons as much as possible and discuss it in Section 4.3.
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Figure 13. The missing powerlines points close to the pylons.

Related work has also made many efforts in powerline extraction. Region growth is
an efficient method for line extraction because it can take full use of neighborhood relations;
Zou et al. [1] used the modified region growth method by deriving drift vectors, and
they extracted railway accurately in the case of bends and a straight line. Liang et al. [26]
implemented traditional region growth for powerline extraction, and they extracted the
powerline completely from point cloud data. However, for every plus, there is a minus.
The region growth method, which takes full use of neighborhood relations, also relies on
neighborhood relations strongly. When gaps increase in powerline point cloud data, the
region growth method may have poor performance in powerline extraction and results in
insufficient extraction, as shown in Figure 14a. Guan et al. [11] conducted EC combined
with HF to detect transmission lines in a rural environment. Unfortunately, when the
neighborhood relations are not continuous, the optimal constraint distance of EC may not
exist. If the constraint distance is relatively small, EC may over–cluster powerlines into
multiple parts in Figure 14b, but if we enlarge the constraint distance, it will misclassify
different individual powerlines by merging them into the same clusters, as shown in
Figure 14c.

Some other methods have a certain tolerance to the gap. The method proposed
by Awrangjeb et al. [24] is less affected by gaps, but it relies too much on positions
of pre–detected pylons, which makes the extraction less automatic. Jung et al. [5] and
Cheng et al. [14] used a morphological method to extract individual powerlines. They
calculate the RMSE of the fitting model of powerline clusters in the XOY plane and XOZ
plane, as well as the distance between the end points of the powerline clusters to obtain
individual powerlines. To a certain extent, this method is able to deal with gaps, but it
contains a large amount of calculation, and the constraints are complicated. In addition, its
ability to handle large gaps remains to be verified. Yang et al. [7] proposed an improved
HT method combined with line model to detect powerlines, but the accuracy would be
affected by large gaps and the distance of the transmission corridor.

Based on the above results and analysis, the proposed method has been proved robust
in individual powerline extraction, which is also an improvement in handling large gaps
compared to the existing methods.

4.2. Powerline Recosntruction

Then, powerline reconstruction is carried out for further detection. According to the
geometry of the powerline, our experiment performs least squares fitting on two 2D planes
to reconstruct the 3D powerline, the geometry of a powerline is sufficiently appropriate
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modeled as a straight line on horizontal plane (5) and a quadratic polynomial line on
vertical plane (6), where a, b, and c denote the parameters of the equation of a straight line
or polynomial line, while x, y, and z denote the 3D coordinates of the powerline points:

ax + by + c = 0 (5)

z = ax2 + bx + c. (6)

Different from previous studies, we fit the powerline with multi–span based on
connections found by the slope change method. As shown in Figure 15a, connections are
successfully estimated, they are located in the middle of adjacent powerline parts that
have the largest slope change. Using the obtained connections, the powerlines can be
fitted preferably with two spans in Figure 15b. Although powerlines in test data only have
two spans, it can verify the feasibility of the pylon–powerline connection finding method.
Furthermore, a powerline with multi–span can also be fitted based on the connection.

4.3. Parameter Setting
4.3.1. Step Length Setting

The size of the step length affects the morphological characteristics of the powerline
clusters in each segment. After several experiments, the step length is set to 0.5 m, which
is greater than width of the pylon along the X–axis (0.4 m). This step length can not only
separate all the pylon points from test data but it can also maintain the morphological
characteristics of powerline clusters. If the step length is given a higher value, centroids of
powerline clusters may not be on the line, which will result in deviation in the hierarchical
clustering method. If the step length is given a lower value, pylon points may be mixed
into the powerline points, which will affect the powerline candidate selection.
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4.3.2. Parameters of Powerline Candidate Selection

Due to the characteristics of low–voltage transmission lines and the change of point
cloud density, rd = 0.3 can separate the power lines separately [11]. Therefore, we set
rd = 0.3 to obtain the powerline clusters correctly. According to the State Grid’s regulations
on the construction of 35 kv transmission lines, the distance from the outer edge of the
insulation layer to the center of the conductor cross–section is approximately 0.01 m.
Appropriate values can distinguish the powerline candidate from the others. Considering
that the powerline candidate is not a strict straight line in a natural environment, which
also makes its cross–section not a standard circle and results in a larger spv, we set the
r = 0.02 m and spt = 0.8 as empirical values after several experiments to ensure that there
is no misjudgment in the process of selecting power line candidate points.



Remote Sens. 2021, 13, 1502 19 of 21

4.4. Quantitative Evaluation

In this section, effect of powerline extraction and reconstruction are evaluated from
the perspective of data. Precision, recall and F1-score are used to evaluate the results of the
hierarchical clustering method, and they are computed by following formulas:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(9)

where TP denotes the number of true positive points, which is the number of powerline
points found in both ground truth and detected data. FP is the number of false positive
points, which is the number of powerline points that were detected but did not exist in
ground truth. FN denotes the number of false negative points, which is the number of
powerline points found in ground truth but were not found in detected data.

Table 3 lists the average percentage of recognition precision, recall, and F1-score in the
hierarchical clustering method under different gap widths, where gap width 0 represents
the test data without manual gaps. The results show that the proposed method has a high
precision, recall, and F1-score in individual powerline extraction, which indicates that the
method can extract most powerline points correctly. In addition, results have little change
even when the gap width is increased to 12sl , which proves that the hierarchical clustering
method has high robustness in processing gaps.

Table 3. Evaluation of powerline extraction.

Gap Width (m) Average Precision (%) Average Recall (%) Average F1-Score (%)
0 100 98.3 99.1
sl 100 98.3 99.1

2sl 100 98 98.9
4sl 100 97.5 98.5
8sl 100 97.3 98.2

12sl 100 97.1 98.1

For powerline reconstruction, the coordinate difference (Error) between estimated
connections and the connections in ground truth (real connections found manually in
obtained TLS data) is used to evaluated effect of the slope change method, and RMSE is
used to evaluate the fitting results. Table 4 lists the analysis of the data results. The highest
fitting accuracy is 0.012 cm, the lowest is 0.021 cm, and the average fitting accuracy is
0.015 cm. In summary, the overall accuracy of powerline fitting is high, which proves the
feasibility of the pylon–powerline connection finding method.

Table 4. Evaluation of connection finding and reconstruction.

Line X_Error (cm) Y_Error (cm) Z_Error (cm) RMSE (cm)
1 2.89 3.80 2.71 0.019
2 2.76 3.51 2.23 0.018
3 2.74 3.09 1.99 0.017
4 −0.87 −1.12 −0.61 0.012
5 0.76 1.22 0.34 0.012
6 0.51 1.04 0.29 0.012
7 2.87 2.95 2.13 0.017
8 1.33 2.02 0.98 0.013
9 1.71 2.37 1.38 0.013

10 2.91 4.17 2.60 0.019
11 3.84 4.21 3.41 0.021
12 −1.56 −1.83 −0.74 0.013
13 1.28 2.43 0.83 0.013
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5. Conclusions

Powerline detection is important for powerline monitoring, previous studies had
several attempts at powerline extraction based on LiDAR point cloud data. However, due
to the increasing distance from the scanner or occlusion caused by the presence of other
objects, gaps will appear in LiDAR point clouds, which makes it difficult for methods that
rely on continuous relations (such as region growth or EC) to process powerlines with gaps.
To solve this concern, a robust method is proposed to repair gaps and extract powerlines
from TLS data, which can create continuous neighborhood relations by estimating the
centroids of gaps and extract individual powerlines directly without any prior conditions.
For verifying the robustness of the proposed method, we implemented the method using
data with gaps of different widths. Experimental results showed that the method can
extract individual powerlines even when the gap width increased to 12sl (6 m), and the
recognition precision changed little as the gap width changes. What is more, the ability to
handle large gaps ensures that the proposed method can be applied to various scenarios
with gaps, which provides great potential for repairing gaps in the line extraction field.
Although the robustness of the proposed method has been proved, the recognition precision
needs to be further verified under complicated environments in our future work.

In addition, we reconstructed the powerlines of two spans using pylon–powerline
connections found by the proposed slope change method. Results showed that the found
connections are of small error, which validates the feasibility of the method in finding con-
nections. In summary, this method has certain application value for multi–span powerline
reconstruction in the future work.
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