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Abstract: In recent years, fully supervised object detection methods in remote sensing images
with good performance have been developed. However, this approach requires a large number
of instance-level annotated samples that are relatively expensive to acquire. Therefore, weakly
supervised learning using only image-level annotations has attracted much attention. Most of the
weakly supervised object detection methods are based on multi-instance learning methods, and
their performance depends on the process of scoring the candidate region proposals during training.
In this process, the use of only image-level labels for supervision usually cannot obtain optimal
results due to the lack of location information of the object. To address the above problem, a dynamic
sample pseudo-label generation framework is proposed to generate pseudo-labels for each proposal
without additional annotations. First, we propose the pseudo-label generation algorithm (PLG)
to generate the category labels of the proposal by using the localization information of the object.
Specifically, we propose to use the pixel average of the object’s localization map in the proposal as
the proposal category confidence and calculate the pseudo-label by comparing the proposal category
confidence with the preset threshold. In addition, an effective adaptive threshold selection strategy is
designed to eliminate the effect of different category shape differences in computing sample pseudo-
labels. Comparative experiments on the NWPU VHR-10 dataset demonstrate that our method can
significantly improve the detection performance compared to existing methods.

Keywords: remote sensing; convolution neural network; weakly supervised learning; object detection

1. Introduction

Object detection is an important task in the remote sensing image interpretation.
With the application of deep learning in computer vision [1–4], an increasing number of
object detection methods based on convolutional neural networks (CNNs) [5–11] have
been proposed to achieve good performance. However, fully supervised object detection
methods require a large number of samples with instance-level labels. For remote sensing
images with many targets, obtaining instance-level annotation is laborious and time-
consuming. Therefore, weakly supervised object detection methods that require only
image-level labels have attracted increasing attention.

Most weakly supervised object detection methods [12–24] are based on multi-instance
learning (MIL) [25]. For MIL, a set of packages is given, and each package is a collection
of instances. MIL has the following constraints: (1) If a package is positive, at least one
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instance of the package is positive. (2) If a package is negative, all instances in the package
are negative. In WSOD, MIL treats each proposal as an instance and each image as a
package of latent target instances. The proposal scores are summarized into image-level
classification scores that can be supervised by category labels in all methods. Finally,
the most contributing proposals will be selected as pseudo-instance-level labels used to op-
timize the object detector. With the development of CNN, Bilen and Vedaldi [16] combined
convolutional neural networks with multi-instance learning to design a weakly supervised
deep detection network (WSDDN). Then, a series of works [17–24,26–31] based on WSDDN
were proposed to enhance the performance of weakly supervised object detection (WSOD).
Tang et al. [17] proposed online instance classifier refinement (OICR) to improve perfor-
mance by propagating inferred labels of instances. Then, Tang et al. [19] proposed proposal
cluster learning (PCL) to optimize the process of online instance classifier refinement. These
methods perform proposal score prediction under image-level supervision and use the
predicted proposal scores to evaluate the final detection results.

Despite the promising results of the above studies, weakly supervised object detection
is still widely considered to be an open problem. First, the main weakly supervised
detection methods obtain the prediction scores of proposals by training an image-level
classifier. In weakly supervised object detection, only the category labels of the image
can be used to constrain the classifier, instead of having the spatial information of the
proposal like the fully supervised detector. There is a large number of dense objects in
remote sensing images, and without the constraint of ground truth information, as shown
in Figure 1a, the detector may mistake neighboring instances as one object. Therefore, there
is a potential ambiguity in the weakly supervised object detection method, which leads to
the inferior performance of WSOD compared to fully supervised object detection.

Second, for lack of instance-level annotation, WSOD is affected by background noise in
the learning process. Particularly in complex remote sensing images, many objects appear
with individual-specific backgrounds. Such confusing backgrounds adversely affect the
learning of the detector. For example, for aircraft that usually stay on the tarmac, as shown
in Figure 1b, the detector tends to mistake the tarmac for an aircraft. The OICR approach
mentioned above would use the proposal scores in the WSDDN as supervision for the
refined classifier, which would exacerbate this problem to a certain extent.

（a） confusing boundary

（b） confusing background

Figure 1. WSOD issues in remote sensing images : (a) confusing boundary: less tight candidates or
fail to differentiate clustered instances (top); (b) confusing backgrounds: misjudge the background as
object (bottom).
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To address these challenges, we propose a novel pseudo-label generation (PLG) al-
gorithm that combines the localization information of samples and image-level labels to
generate instance-level pseudo-labels for each proposal to provide supervised informa-
tion for training object detection networks. Specifically, a weakly supervised localization
model is trained to obtain the localization map of the object, and negative samples are
added to reduce the effect of the cluttered background. Next, during training, we map the
region proposals to the localization maps generated by the pretrained localization model.
Then, the proposal confidence is calculated based on the intersection between the proposal
and the localization map, and the confidence score of the proposal is compared with a
preset threshold to calculate the pseudo-label of the proposal. Finally, the instance-level
pseudo-label is used as the supervision information for proposal classification in the weakly
supervised object detection network.

In PLG, the proposal category confidence scores are measured based on the coverage
of the proposal with the localization map. If the same threshold is used in the proposal
pseudo-label calculation, the different geometric properties for categories will have dif-
ferent effects on the pseudo-label calculation. Therefore, it is important to choose the
appropriate threshold value. We propose an effective adaptive threshold selection strategy
to eliminate this effect. Specifically, we select the proposals with the highest prediction
scores in all categories for each sample and then calculate the category confidence his-
togram distributions for all high-quality proposals, calculate the quantile of frequency
histogram, and select the quantile as the new threshold. Finally, using the new threshold,
the pseudo-label of the input image is calculated for the next iteration.

In summary, our main contributions and innovations are as follows.
(1) Based on image-level labels, a novel instance-level pseudo-label generation algo-

rithm is designed in this paper for training the detection network. We propose to map
region proposals into the localization map that is generated by a pretrained localization
model. Then, confidence scores are calculated by computing the pixel average of the
regional proposals in the localization map, and pseudo-labels are assigned by comparing
confidence scores with the preset threshold.

(2) We design an adaptive threshold selection strategy that is used to continuously
update pseudo-labels during the iteration process. First, we calculate the frequency his-
togram distribution of confidence scores for each category. Then, we propose to calculate
the quantile on the frequency histogram and use the quantile as the new preset threshold
to update the pseudo-labels for input image in the next iteration.

Experiments on the NWPU VHR-10 publicly available dataset shows that our weakly
supervised method displays advanced performance. The remainder of the paper is struc-
tured as follows. Section 2 presents the framework of our method and describes its
components in detail. Section 3 describes the experiments and results to analyze the im-
pact of our method. Section 4 discusses the results of our method. Section 5 summarizes
the paper.

2. Methods

We illustrate the overall framework of dynamic pseudo-label generation in Figure 2.
The basic weakly supervised object detector extracts features on the backbone network,
performs detection and classification branches by weighted MIL pooling, multiplies the
outputs of the two branches, and accumulates them to obtain the image-level prediction
scores. A proposal cluster learning (PCL [19]) strategy is also used to add the refined
instance classifier to improve the performance. PLG generates a localization map for each
image and assigns a pseudo-label and confidence score to each proposal based on the
coverage of the proposal with the localization map. The pseudo-label is used to guide the
training of classification branches. An adaptive threshold selection strategy selects the
proposals with highest scores in the refined instance classifier as high quality proposal,
and sets the quantile on the frequency histogram of high quality proposal confidence
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scores as a new threshold value to update the pseudo-labels of the input images in the next
iteration. Each part is described in detail below.
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Figure 2. Pipeline of our weakly supervised learning strategy. The pseudo-label generation strategy generates category
labels for each proposal during the training phase. The weakly supervised detector combines the proposal pseudo-labels
and the image category labels for training. The adaptive threshold selection strategy is used to update the threshold for
computing pseudo-labels. In “Weakly Supervised Detection Network”, the ellipses represent the intermediate refinement
classifier process.

2.1. Architecture of Weakly Supervised Object Detection Network

Figure 2 describes the overview architecture of the basic weakly supervised detection
network. For each input image, the selective search method [32] is performed to produce
approximately 2k proposals. Then, an ROI pooling [33] is used to obtain fixed-size con-
volutional feature maps. After two FC layers, the proposal features are divided into two
branches: the classification branch and the detection branch. The proposal features are
passed to the fully connected layer and softmax operation is performed to generate the
classification score and detection score of each proposal. This is described by

[σcls(xc)]i,j =
exc

ij

∑C
k=1 exc

kj
(1)

[
σdet

(
xd
)]

i,j
=

exd
ij

∑
|R|
k=1 exd

ik
(2)

where xc ∈ RC×|R| represents the proposal feature vector after the fully connected layer
of the classification branch. σcls(xc) represents the output of the classification data stream,
generated by performing softmax calculations on the classes. xd ∈ RC×|R| represents the
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proposal feature vector after the fully connected layer of the detection branch. σdet

(
xd
)

represents the output of the localization data stream, generated by performing softmax
operations on proposals. C represents the number of classes and |R| represents the number
of proposals.

The score of each proposal is obtained by multiplying the above two scores,
xcr = σcls(xc)� σdet

(
xd
)

. Finally, the scores of each proposals are added up to obtain the

image-level prediction scores: Φc = ∑
|R|
r=1 xR

cr. By using the image level labels, the model
can be trained with the composite loss function.

LMID = Lcls + Lproposal (3)

We use the pseudo-label generated for each proposal as supervision to learn the
classification branches. Thus, the class branches can be trained by the cross-entropy
loss function:

Lproposal = −
1
|R|

|R|

∑
r=1

C+1

∑
c=1

Src log σcls(xc) (4)

where Src is the pseudo-label of each proposal, and σcls(xc) is the predicted output of the
classification branch. Src is the proposal category pseudo-label generated by pseudo-label
generation. When the score within a proposal is zero, the network tends to identify it as
a negative sample. The multi-instance classifier is trained by minimizing cross-entropy
loss functions using stochastic gradient descent, where yc denotes the category label of
the image:

Lcls =
C

∑
c=1
{yc log Φc + (1− yc) log(1−Φc)} (5)

Inspired by the work in [19], we adopt the PCL strategy to improve the performance.
PCL adds a refined instance classifier to WSDDN. PCL has multiple output streams,
treating WSDDN as the first data stream and the other streams as refined instance classifiers
supervised by the previous stream. For each refined instance classifier, the proposal with
the higher score is first used as the cluster center, and proposal clusters are generated based
on the overlap with the cluster center. Next, the predicted scores of the previous streams
at the cluster centers are used to compute the labels of the proposal clusters. Finally, each
proposal cluster is considered as a package for training a refined instance classifier using a
weighted softmax loss function. After the classifier is refined K times, the classifier tends to
assign high scores to tight proposals.

During the training of WSOD, region proposals are obtained for every training image.
Each proposal of the image is assigned a pseudo-label from the PLG algorithm to train
classification branch. Then, the proposal prediction scores are obtained by multiplying the
classification score with the detection score. Next, the scores of the proposals are summed
to obtain the image-level prediction scores for training the basic multiple instance classifier.
Additionally, the proposal prediction score is used as supervision of the first refined
instance classifier and using the predicted scores of the preceding streams supervision
information is calculated for the next output stream. Finally, the average output of all
refine classifiers is chosen as the proposal’s predicted score. Then, the adaptive threshold
selection strategy is used to calculate a new threshold to update the pseudo-label of the
input image for the next iteration. During testing, the average output of all refine classifiers
is selected as the final predicted score.

2.2. Pseudo-Label Generation

Weakly supervised object detection can only utilize category labels at the image level.
All of the proposals are assigned as positive packets when the image contains a positive
instance in multi-instance learning. However, the presence of many negative instances
in these proposals can affect the training of the weak supervision detector. Therefore,
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we consider using the localization information generated by the weakly supervised lo-
calization model to generate pseudo-labels for each proposal. During the training stage,
low-quality proposals are effectively suppressed, and the prediction scores of the proposals
are generated more accurately.

Inspired by the work in [34], a global average pool (GAP) [35] layer is inserted in the
classification module, followed by a classifier. The output features of the GAP are used as
features of the fully connected layer. After the training is completed, the features output
using the convolutional neural network are multiplied with the weights of the classifier
to obtain a class activation map (e.g., Figure 3). We use the class activation map as the
localization map of the samples. To obtain a cleaner localization map, negative samples
are added in the training phase to give the model better discriminative power against the
confusing background. The loss function used in training is a cross-entropy loss function
containing C + 1 classes.

As shown in Figure 3, the localization map is first generated using a weakly supervised
localization model. The proposal category confidence is designed to utilize the object
localization information in the localization map. We consider Ri, i ∈ (1, 2, 3, ...|R|) as a
proposal from the given image, Hc, c ∈ (1, 2, 3, ...C) represents the localization map for each
category, and Pci represents the confidence level of the proposal on a category, where C
represents the number of classes and |R| represents the number of proposals. The category
confidence of the proposal is calculated by the pixel average of regional proposals in the
localization map, and the confidence of the category for the ith proposal is expressed
as follows:

Pci = avgRi (Hc) (6)

...

...

...

Backbone Feature maps Classifier

P(A)<th
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Pseudo  label
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Figure 3. Illustration of the process of pseudo-label generation. For the classification model, the global
average pooling layer is trained instead of the fully connected layer. Class activation mapping uses
the feature map of the backbone network and the corresponding multiplication of the weights of the
classifiers to obtain the localization map of the object. Pseudo-label generation calculates pseudo-
labels and confidence scores based on the intersection between the proposal and the localization map.
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Next, the pseudo-label of each proposal is calculated based on the proposal confidence
scores. The proposal pseudo-label for the ith label is denoted using Sci, where th is the
threshold value.

Sci =

{
1, if Pci > th
0, if Pci < th

(7)

The weakly supervised localization model used in our method does not show optimal
performance. Works such as those in [36,37] have made many improvements on this
basis. We insist that this stage can be further improved by using a more complex weakly
supervised localization model. In this paper, our experiments show that using a simple
localization model is enough to demonstrate the effectiveness of our method.

2.3. Adaptive Threshold Selection

We can use a weakly supervised localization model to generate a localization map of
the target, and we can calculate the category confidence of each proposal by Equation (1).
The proposal category scores are obtained by comparing them with a fixed threshold value.
For the weakly supervised network, using the proposal scores as part of the supervised
information suppresses the low-quality candidate frames.

In PLG, we designed the proposal category confidence scores is the pixel average of
the object’s localization map in the proposal. However, as shown in Figure 4, the proposal
category confidence scores vary by categories. Figure 5 shows the frequency histograms
of the airplane and tennis court confidence. If the pseudo-label is calculated by using the
same threshold compared with the proposal confidence, it will have different effects on the
detection results for different categories.

Figure 4. The location maps of plane (left) and tennis court (right).

Figure 5. Frequency histogram of confidence for the airplane (left) and tennis court (right).

Therefore, we design an adaptive threshold strategy to select the threshold that is most
adapted to each image category. First, the highest scoring proposals in all categories of each
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sample are selected, and their category confidence scores are counted. Then, the frequency
histograms of the confidence scores for each category are obtained. Finally, the quantile on
the frequency histogram is calculated as the new threshold. Specifically, we use the average
output of all refined classifiers as the final prediction score of the proposal and count the
category confidence of the highest scoring proposals. The top-scoring proposal can be
expressed as

ri = arg max
r

xrc (8)

where ri denotes the highest scoring proposal and xrc denotes the final score of the
proposal. Then, the proposal confidence of the high scoring proposal is taken as a sample
and its frequency histogram is counted. The adaptive selection threshold is the quantile of
the distribution of confidence scores for each category, and the probability of splitting is
the hyperparameter th

′
. The algorithm process is detailed in Algorithm 1.

In Algorithm 1, we use xrk, r ∈ (1, 2, 3, ...|R|), k ∈ (1, 2, ...K) as the proposal predicted
score of the refine classifier, and xr denotes the final predicted score. In the calculation
of the frequency histogram of the confidence scores, using M denotes the numbers of
groups, and fc, c ∈ (1, 2, ...C) denotes the relative frequency of sample confidence. th

′
is a

hyperparameter. The new threshold is expressed using thc.

Algorithm 1 Adaptive threshold selection.
Input:
training data set I; proposals r; proposal category confidence P; image labels
y = [y1, ...yC]

T; refinement times K; the number of classes C; hyperparameters th
′
;

Output:
new threshold thc, c ∈ (1, 2, ...C)

Input image I and its proposal r into the network to produce proposal predicted score
xrk
The final proposal score xr =

1
K ∑K

k=1 xrk
for c = 1 to C do

if yc = 1 then
Choose the top-scoring proposal ri by Equation (8)
Calculate the category confidence Pci for the proposal ri

Divide confidence score distribution interval into M small intervals
Count the frequency of confidence scores Pc falling into each interval
Calculate the relative frequency fc, acquire the confidence frequency histogram of

each category.
Set m = 1;
while P

′
< th

′
do

Calculate the cumulative confidence P
′
= ∑m

j=1 fcj;
m = m + 1;

Calculate new threshold thc =
m
M

Update the threshold thc, c ∈ (1, 2, ...C).

At the beginning of training, proposal scores are calculated using a predefined thresh-
old. In this paper, we use a PCL strategy where the predicted scores of the higher scoring
proposals are propagated to the proposal boxes with their larger IOUs during the process
of refine classification. Therefore, as the number of network iterations increases, the perfor-
mance of the classifier continuously improves. Based on this, statistical information about
the proposals with higher scores allows for the calculation of more reliable thresholds.
The final experimental evaluation results confirm the effectiveness of this strategy.

3. Experiments and Result

In Section 3, the experimental setup including datasets, evaluation metrics, and hy-
perparameters used in training is described in detail. We conducted ablation experiments
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to analyze the impact of the proposed method. Finally, comparisons with the existing
advanced works are provided.

3.1. Implementation Details
3.1.1. Datasets and Evaluation Metrics

We conduct experiments on the proposed method on the publicly available NWPU
VHR-10 dataset [38–40]. The dataset contains 3282 images (512× 512 pixels) from object
categories. The dataset is divided into three parts: 60% for training, 20% for validation, and
20% for test. For PLG, the negative samples are used in the training period of the weakly
supervised localization model. In our experiments, two standard evaluation metrics are
used to measure the performance of the proposed method. First, we evaluate our model
by measuring the mAP on the test set. When the IOU between the ground truth and the
bounding box is more than 0.5, the proposed method considers the bounding box as a
positive test, which is the same as the PASCAL VOC standard. Second, the localization
accuracy of our model is evaluated by using the correct position (CorLoc) [41]. CorLoc is
the ratio of images containing at least one target, where the most confidently predicted box
has an IOU greater than 0.5 with one of these targets. Furthermore, CorLoc is evaluated on
the training set.

3.1.2. Train

We use VGG16 [1] pretrained on ImageNet [42] as the backbone network in which
we replace the fifth max-pooling by RoI pooling. To enhance the features of small targets,
we use a dilated convolutional layer instead of the fourth max-pooling layer and its
subsequent convolutional layers. For initialization, the uninitialized layers are initialized
by a Gaussian distribution with 0-mean and a standard deviation of 0.01. Prior to training,
we use selective search [32] to produce approximately 2000 proposals for each image.
For data augmentation, we horizontally mirror each image and rotate them by 180◦.
During training, the network performed 20k iterations. The initial learning rate is set to
0.001 for the first 15k and reduced it to 0.0001 for the last 5k iterations. The mini-batch
size of the stochastic gradient descent optimizer is set to 4. Furthermore, we use the same
five scales {480, 576, 688, 864, 1200} as WSDDN. For the instance refinement classifier, we
set the same refinement time K = 3 as PCl. In the pseudo-label generation algorithm, we
use a threshold for calculating the proposal scores via proposal confidence with th = 0.5.
The threshold value th

′
is set to 0.2 in the adaptive threshold selection strategy. The 0.3

IOU threshold in NMS [43] is set to calculate average precision (AP) and CorLoc.

3.2. Ablation Experiments

We performed ablation experiments in order to evaluate the effectiveness of our
experimental approach and analyzed the effects of key components.

(1) Pseudo-label generation: To demonstrate the effectiveness of the pseudo-label
generation algorithm, we used the training strategy of WSDDN + PCL as a baseline, using
the localization information generated by the weakly supervised localization model as
the supervision of the detection network. As shown in Table 1, the mAP improved from
46.7% to 50.9% and the performance of CorLoc improved from 52.0% to 58.1%, further
confirming that the pseudo-label generation algorithm is effective for mining objects in a
weakly supervised environment.

(2) Adaptive threshold selection strategy: to make the network adaptable to different
classes, adaptive threshold ablation experiments are designed. As shown in Table 1,
adaptive thresholding can improve the detection performance. The adaptive thresholding
strategy mines higher quality instances as much as possible by statistically updating the
threshold value with information of the detection frames with higher confidence. As shown
in Table 1, the map improves from 50.9% to 53.6%, confirming the effectiveness of the
proposed method. Figure 6 demonstrates the frequency confidence histogram of the
proposed method for each class on the NWPU VHR-10 data set.
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Figure 6. Frequency confidence histogram of the proposed method for each class on the NWPU VHR-10 data set.

Table 1. Result on the NWPU VHR-10 for Ablation experiments.

Method mAP % CorLoc %

baseline 46.7 52.0
baseline + PLG 50.9 58.1

baseline + PLG + Adaptive threshold 53.6 61.5

3.3. Comparative Experiment

We designed a series of experiments on NWPU VHR-10, and our method achieved
advanced performance. Tables 2 and 3 show a summary of the experimental results of the
various methods. We analyze the differences between the various methods and show the
effectiveness of our approach.

WSDDN uses a two-branch structure to implement a multi-instance learning network
but can easily fall into local optimization. OICR adds a refine classification module, but only
the highest scoring proposal is selected as a positive sample, resulting in a large information
loss. PCL improves on the OICR but relies on the detection results of WSDDN that can
easily fall into the local optimization direction.

Table 2. mAP on the NWPU VHR-10 test set.

Method Airplane Storage
Tank

Baseball
Diamond

Tennis
Court

Basketball Ground
Track Field

Vehicle Bridge Harbor Ship mAP

WSDDN [16] 0.008 0.016 0.297 0.175 0.414 0.482 0.005 0.007 0.01 0.034 0.145
OICR [17] 0.646 0.024 0.792 0.317 0.552 0.798 0.03 0.015 0.11 0.674 0.396
PCL [19] 0.740 0.049 0.901 0.504 0.682 0.791 0.009 0.018 0.251 0.744 0.467

ours 0.809 0.105 0.901 0.644 0.691 0.802 0.087 0.14 0.396 0.783 0.536

Table 3. CorLoc on the NWPU VHR-10 train set.

Method Airplane Storage
Tank

Baseball
Diamond

Tennis
Court

Basketball Ground
Track Field

Vehicle Bridge Harbor Ship CorLoc

WSDDN [16] 0.005 0.029 0.374 0.139 0.500 0.757 0.005 0.008 0.001 0.034 0.185
OICR [17] 0.661 0.352 0.869 0.501 0.602 0.732 0.101 0.009 0.283 0.732 0.484
PCL [19] 0.862 0.035 0.937 0.516 0.738 0.886 0.049 0.012 0.283 0.877 0.520

ours 0.872 0.168 0.961 0.751 0.732 0.863 0.163 0.187 0.467 0.851 0.615



Remote Sens. 2021, 13, 1461 11 of 15

Our method achieves a 6.9% improvement in mAP values compared to the results of
PCL examinations. This is mostly because of the following.

(1) Introduction of localization information as supervision in the detection network,
use of a pretrained weakly supervised target localization model to generate the localization
map of the target, and use of the localization information of the target as a constraint of
the detection network. The low-quality proposals are suppressed, and the high-quality
proposals are highlighted.

(2) Considering the complexity of the background of remote sensing images, in the
process of pretraining the weakly supervised localization model, the background samples
are added to participate in the training with the dataset to mitigate the influence of the
background samples. Additionally, the weakly supervised labels are fully utilized in an
effort to generate clean localization maps.

(3) Considering that the ratios of object area to detection frame vary by categories,
the same threshold used in calculating the proposal score will have different effects on the
detection structure with different categories. Therefore, the strategy of adaptive thresholds
is proposed to adapt the network to different categories of objects.

Table 3 shows that our method improves from 52.0% to 61.5% on CorLoc compared to
the results of PCL examinations. The main reason is that our proposed PLG algorithm uses
the location information generated by the location model to calculate the instance pseudo-
label. During the training of WSOD networks, we use the instance-level pseudo-label to
mine as many instances as possible in the image, and the model performance is improved.

As observed in Figure 7, the accuracy is better for categories with similar distribution
of fc curves, while for categories such as vehicles and bridges, the detection effect is not
satisfactory. Figure 6 demonstrates the frequency confidence histogram of the proposed
method for each category on the training set. It is observed from this that the confidence
response intervals vary for different categories. This is shown in Figure 8 for a number
of detection examples of the NWPU VHR-10 dataset. As observed from the figure, our
method can provide accurate and tight bounding boxes for each object that appears in
the image. However, for several categories such as bridges and oil storage tanks, our
method may misdetect. This is because the coexistence of bridges and rivers causes the
weakly supervision detector to misinterpret rivers as bridges. Furthermore, for multiple
nonoverlapping storage tank clusters, the detector tends to identify them as a single target.

Figure 7. Frequency confidence curves of the proposed method (blue) and ground truth (red) for each class on the NWPU
VHR-10 data set.
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Figure 8. Example results on the NWPU VHR-10 test set for each class.

4. Discussion

The effectiveness of our proposed method and strategy is verified through careful
analysis and comparison of multiple sets of experiments. Our proposed method makes full
use of the existing weakly supervised information and extracts the localization information
of the target as supervision in combination with the weakly supervised localization task.

From the experiments, it can be concluded that our proposed method can improve the
performance of weakly supervised object detection in remote sensing images. Below, we
list the main outcomes of this paper.

1. We propose a pseudo-label generation algorithm (PLG) to assign pseudo-labels to
region proposals during the training phase of the model. Specifically, a weakly
supervised localization model is first trained using image-level annotations. For any
image, a localization map of the sample can be generated using the weakly supervised
localization model. Then, during the final weakly supervised object detector, each
proposal of the input image is assigned a label and a confidence score using the
pregenerated localization map that is based on the intersection between the proposal
and the generated localization of the PLG when the image is used as input. Then,
“low-quality proposals”, i.e., proposals with confidence scores below a given threshold,
are considered as negative samples in the training phase.

2. We propose an adaptive threshold selection method. Considering the different object
area to detection frame ratios in different categories, if the same threshold is used in
calculating the proposal scores, it will have different effects on the detection structure
with different categories. Specifically, the threshold T that is most adapted to each
image category is selected by calculating the confidence score histogram for each
category and analyzing which thresholds are associated with the proposals with the
highest scores.

In addition, our proposed weakly supervised detection process uses a pretrained
weakly supervised model to generate localization information. Therefore, the performance
of the detector is influenced by the localization model. The localization strategy of CAM
used in this paper is not the state-of-the-art performance method, and some studies have
made many improvements on this basis. The detection effect should be improved if a better
performing localization model is used.

Although the proposed method improves detection performance and works well on
airplanes, tennis courts, and baseball fields, some problems still exist, and the detection
results are less satisfactory in some classes. Bridges and vehicles are some examples of
such targets. There are two main reasons for this.
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1. For remote sensing images, many targets will appear along with a certain specific
background. For example, in the detection of bridges, the coexistence of bridges
and rivers causes the weakly supervision detector to misinterpret rivers as bridges.
Although adding negative samples to the weakly supervised model for training can
reduce the damage, it still cannot completely solve this problem.

2. The objects in remote sensing images are relatively dense. For categories such as oil
storage tanks, multiple targets usually appear near, and a target appears less often.
The lack of instance-level labeling makes it difficult for the detector to separate the
adjacent object areas. In this case, the detector will tend to misjudge multiple targets
as a single target, damaging the performance of the detector.

Because of the lack of instance-level annotation, the detector will not learn accurate
information when the above situation occurs. During the training stage, the model will
obtain suboptimal solutions. Therefore, compared with the fully supervised approach,
the performance of the weakly supervision detector still needs to be improved, and these
issues still need to be explored.

5. Conclusions

In this paper, we propose a novel weakly supervised object detection process that
combines a weakly supervised localization method to process complex remote sensing
images, detect objects in the images, and reduce false positive samples. The corresponding
network structure is designed for this method. First, the corresponding network structure is
designed that can be trained using the localization information of the samples to effectively
suppress the low-quality samples from being misclassified as positive samples. Then,
an adaptive threshold adjustment strategy is designed to calculate appropriate thresholds
for different categories to improve the overall performance.

Detailed experiments show that our model obtains advanced performance on experi-
mental datasets, particularly on targets such as aircraft, baseball fields, and tennis courts.
Although the performance was improved, there were still some problems at that time.
For example, the detection performance was not satisfactory on targets such as bridges,
vehicles, and oil storage tanks, and this part of the problem still needs to be explored.
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