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Abstract: Estimating the fractional coverage of the photosynthetic vegetation (f PV) and non-phot-
osynthetic vegetation (f NPV) is essential for assessing the growth conditions of vegetation growth in
arid areas and for monitoring environmental changes and desertification. The aim of this study was
to estimate the f PV, f NPV and the fractional coverage of the bare soil (f BS) in the lower reaches of Tarim
River quantitatively. The study acquired field data during September 2020 for obtaining the f PV, f NPV

and f BS. Firstly, six photosynthetic vegetation indices (PVIs) and six non-photosynthetic vegetation
indices (NPVIs) were calculated from Sentinel-2A image data. The PVIs include normalized difference
vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), modified
soil adjusted vegetation index (MSAVI), reduced simple ratio index (RSR) and global environment
monitoring index (GEMI). Meanwhile, normalized difference index (NDI), normalized difference
tillage index (NDTI), normalized difference senescent vegetation index (NDSVI), soil tillage index
(STI), shortwave infrared ratio (SWIR32) and dead fuel index (DFI) constitutes the NPVIs. We then
established linear regression model of different PVIs and f PV, and NPVIs and f NPV, respectively.
Finally, we applied the GEMI-DFI model to analyze the spatial and seasonal variation of f PV and f NPV

in the study area in 2020. The results showed that the GEMI and f PV revealed the best correlation
coefficient (R2) of 0.59, while DFI and f NPV had the best correlation of R2 = 0.45. The accuracy of
f PV, f NPV and f BS based on the determined PVIs and NPVIs as calculated by GEMI-DFI model are
0.69, 0.58 and 0.43, respectively. The f PV and f NPV are consistent with the vegetation phonological
development characteristics in the study area. The study concluded that the application of the
GEMI-DFI model in the f PV and f NPV estimation was sufficiently significant for monitoring the
spatial and seasonal variation of vegetation and its ecological functions in arid areas.

Keywords: photosynthetic vegetation; non-photosynthetic vegetation; GEMI-DFI model; seasonal
variation

1. Introduction

Vegetation cover is an important part of the ecosystem, which plays an important
role in the soil and water conservation, restraining the desertification process, biodiversity
protection and other ecological service and functions etc. [1,2]. From a functional point
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of view, vegetation can be divided into two parts: the photosynthetic vegetation (PV)
and the non-photosynthetic vegetation (NPV) [3]. The PV mainly refers green leaves,
while the NPV mainly includes the vegetation litter (dead leaves, dead branches and
stems) and crop residues [4,5]. NPV is important as it not only affects the carbon storage,
CO2 exchange capacity and temperature between the surface and soil [6,7] but also slows
down soil erosion, increases the soil organic matter and improves the soil quality [8–12].
Therefore, an accurate estimation of the fractional coverage of the photosynthetic (f PV) and
non-photosynthetic vegetation (f NPV) is of great significance in evaluating the ecological
conditions.

In recent decades, remote sensing technology has made great progress in many as-
pects of geography [13,14]. In the f PV estimation, a number of indices (e.g. normalized
difference vegetation index (NDVI) [15], soil adjusted vegetation index (SAVI) [16] and
global environment monitoring index (GEMI) [17]) have been developed for PV utilizing
spectral reflectance, which is widely used in various satellite platforms. Researchers have
also proposed some vegetation indices so as to estimate the f NPV [18–23]. According to the
spectral resolution of remote sensing data, non-photosynthetic vegetation indices (NPVIs)
can be divided into hyperspectral NPVIs and multispectral NPVIs. Daughty [21] proposed
hyperspectral NPVI (cellulose absorption index (CAI)) based on hyperspectral reflection
characteristics of the NPV. Taking into account the limitations of hyperspectral data, re-
searchers have developed many multispectral NPVIs using Landsat TM bands, such as
the normalized difference index (NDI), the normalized difference tillage index (NDTI), the
normalized difference senescent vegetation index (NDSVI) and the soil tillage index (STI).
Guerschman [3] developed the shortwave infrared ratio index (SWIR32) based on MODIS
data, which accurately estimated the f NPV of grasslands in Australia. Cao [24] utilized
multispectral, MODIS, data to estimate NPV using the dead fuel index (DFI).

In order to estimate the proportion of PV and NPV in a pixel, based on spectral
mixture analysis (SMA), researchers construct pixel unmixed model by using PVI and
NPVI to estimate f PV and f NPV. And based on this, Guerschman [3] used the Hyperion
data to propose pixel linear unmixed model of the NDVI-CAI (NDVI represents the PV,
CAI represents the NPV). This updated methodology includes a better estimation of the
spatiotemporal distribution of the PV and NPV in the sparse grasslands of Australia.
Validating this methodology, Wang [25] applied the DFI index to construct the NDVI-DFI
linear unmixed model based on the MOD09GHK surface reflectance data and effectively
calculated the f PV and f NPV of the Xilingol grasslands. The foundational work mentioned
above successfully showed suitable PV and NPV estimation using multispectral data but
were limited in geographic and ecological scope. Focusing primarily on grasslands, other
regions have not been explored yet. This work aims to estimate f PV and f NPV in riparian
regions.

The Tarim River is a typical arid inland river basin. Due to the impact of human
reclamation and irrigation in the upper reaches of the Tarim River, the water of the lower
reaches has dropped sharply over the past 20 years, the Tetima Lake has dried up and
the vegetation environment has deteriorated year by year. A comprehensive assessment
of the vegetation changes in this area has been an ongoing effort. Some of the work,
by Guli [26] and Li [27] employed a variety of models to discuss the suitability of the
estimated vegetation coverage in the Tarim River Basin. Zhu [28] applied the method
of transfer learning so as to extract and analyze the vegetation coverage changes in a
long time series. These studies neglect to include NPV data in their analyses and rely
largely on course resolution imagery, resulting in limited accuracy and uncertainty in the
original estimations. Considering the improvements made to spectral instruments and the
requirements for time and spatial resolution, Sentinel-2 satellite data are a good choice,
specifically the multispectral imager (MSI) onboard could provide multispectral data with
spatial resolution of 10 m and revisiting period of five days. Therefore, using the Sentinel-2
data with a high spatial and temporal resolution will be the focus to estimate the f PV and
f NPV in the study area.
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The objective of this study was to quantitatively estimate the seasonal variation in
the f PV, f NPV and the fractional coverage of bare soil (f BS)in the lower reaches of the Tarim
River based on Sentinel-2A image data. The study is divided into the following sections:
(1) select the best PVI and NPVI as estimation index of f PV and f NPV according to the
correlation coefficient of the PVIs with f PV and NPVIs with f NPV by linear regression
models analysis, (2) build pixel unmixing model based on Sentinel-2A image data and
quantitatively evaluate the results of estimating f PV and f NPV by using field sampled data
and (3) map different periods of f PV, f NPV and f BS for the lower reaches of the Tarim River
and analyze seasonal variation.

2. Materials and Methods
2.1. Study Area

The study area was located between the Dashkol Reservoir and Tetima Lake [39.5–40.59◦ N,
87.56–88.46◦ E] in the lower reaches of the Tarim River (Figure 1), which was surrounded
by the Taklamakan Desert in the west and the Kuruktagh Desert in the northeast [29].
The study area’s annual precipitation ranged from 20 to 50 mm but the annual potential
evaporation varied from 2500 to 3000 mm [30,31]. The total annual solar radiation varied in
a range of 5692–6360 MJ m−2 with an annual sunshine from 2780 to 2980 h [32]. The water
supply of the vegetation in the area mainly depended on the water streamed from the
upper reaches of the river. The vegetation was mostly distributed on the floodplain on the
riverbank, which composed of trees, shrubs and herbs. Dominant trees included the Populus
euphratica, Elaeagnus angustifolia, the shrubs consisted of the Tamarix ramosissima, Lycium
ruthenicum, Halimodendron halodendron, and herbs Phragmites australis, Alhagi sparsifolia,
Poacynum hendersonii, Karelinia caspia [2].
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Figure 1. Location of the study area and distribution of the sample sites.

2.2. Datasets
2.2.1. Field Data

The fractional coverage samples of the PV, NPV and bare soil (BS) were collected
from the Dashkol Reservoir, Gancaochang, Bozkol, Arghan, Kurgan and Tetima Lake. All
samples were collected from 25 September to 29 September 2020 when the PV, NPV and BS
existed simultaneously. Data collection and processing steps were as follows: we defined
10 m × 10 m squares, aligned to the north, and covered by a homogeneous vegetation
distribution. The four corners and the center of the square were precisely located with
GPS. Secondly, a smaller square of 1 m × 1 m was positioned randomly 3–5 times in the
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larger square. At the same time, a digital camera was used to take pictures vertically 1.6 m
above the sample square. Each image was processed in ENVI 5.3. Photos were divided into
NPV, PV and BS categories and training samples were established for each for supervised
classification. Finally, we calculate the f PV, f NPV and f BS of all 1 m × 1 m squares in each
10 m × 10 m square, and count the average value to represent the f PV, f NPV and f BS in
the 10 m × 10 m square. Figure 2 shows the field square acquisition and classification
processing.
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Figure 2. Field square acquisition and classification processing.

2.2.2. Remote Sensing Data

Sentinel-2A Level-1C data was used in this study. Images were from, seven periods
on 5 April, 25 May, 24 July, 18 August, 12 September, 2 October and 6 November 2020. The
data were radiometrically calibrated and geometrically corrected, downloaded from the
ESA website (https://sci hub.copernicus.eu/home). The image preprocessing was carried
out in SNAP 6.0 provided by ESA (Sentinel application platform) and the ENVI 5.3 software
platform. The SNAP 6.0 Sen2Cor (Sentinel to Correction) plug-in was used to perform
atmospheric correction processing on all L1C data, which resulted in 9 bands (Band 2,
Band 3, Band 4, Band 5, Band 6, Band 7. Band 8a, Band 11 and Band 12) L2A surface
reflectance data. And the 9-band data were combined into a single multiple image using
composite bands in Quantum GIS (QGIS) and then resampled to 10 m pixels. Image data
were mosaicked, and the study area was clipped. Water features were masked by using
the modified normalized difference water index (MNDWI) combined with the threshold
method (threshold value is −0.08).

2.3. Methods

The general workflow of this project was: (1) construct linear regression models of
the PVIs and f PV, NPVIs and f NPV, respectively, to select the optimal PVIs and NPVIs,
(2) analyze the feasibility of the selected PVIs and NPVIs so as to construct the response
space, (3) apply the pixel linear unmixed model to determine the end member values of
the PV, NPV and BS based on the Sentinel-2A image data, (4) quantitatively evaluate the
estimation accuracy of the f PV and f NPV using the field sampled data, (5) map time series of

https://sci
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the f PV, f NPV and f BS for the lower reaches of the Tarim River and to analyze the seasonal
variation. The flowchart is shown in Figure 3.
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Figure 3. A methodology flowchart.

2.3.1. PVIs and NPVIs

PV was affected by chlorophyll and the cell structure and showed typical spectral
characteristics of green vegetation, with obvious peaks and valleys [25]. In this study, we
selected several PVIs for testing, including the NDVI [33], RVI [34], SAVI [35], MSAVI [16],
RSR [36] and GEMI [17] (Table 1).
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Table 1. The Sentinel-2-based multispectral photosynthetic vegetation indices (PVIs) used for the photosynthetic vegetation
(f PV) estimation.

Vegetation Index Equation Citation

NDVI (normalized difference vegetation
index) NDVI = RNIR−RRed

RNIR+RRed
Deering. 1978

RVI (ratio vegetation index) RVI = RRed
RNIR

Jordan. 1969

SAVI (soil adjusted vegetation index) SAVI = RNIR−RRed
RNIR+RRed+L (1 + L) Huete. 1988

MSAVI (modified soil adjusted
vegetation index) MSAVI =

2×RNIR+1−
√
(2×RNIR+1)2−8×(RNIR−RRed)

2
Qi et al., 1994

RSR (reduced simple ratio index) RSR = RNIR
RRed

×
(

1 − RSWIR1−RSWIR1min
RSWIR1max−RSWIR1min

)
Brown et al., 2000

GEMI (global environment
monitoringindex)

GEMI = η × (1 − 0.25η)− RRed−0.125
1−RRed

;

η = 2 × (RNIR
2−RRed

2)+1.5×RNIR+0.5×RRed
RNIR+RRed+0.5

Pinty et al., 1992

Notes: RRed, RNIR, RSWIR1 and RSWIR2 represent the reflectance of the Red band, Near Infrared band, Shortwave Infrared 1 band (1600 nm)
and Shortwave Infrared 2 band (2100 nm), corresponding to the band 4, 8, 11 and 12 of sentinel-2A data, respectively. L is a soil adjustment
factor, based on the experience L = 0.5.

NPV and BS had similar spectral reflectance characteristics in Visible and Near Infrared
band and but could be differentiated using the Shortwave Infrared band (1600 nm and
2100 nm) [25]. In this study, we selected several PVIs for testing, including the NDI [23],
NDTI [19], NDSAVI [20], STI [19], SWIR32 [3] and DFI [24] (Table 2).

Table 2. The Sentinel-2-based multispectral non-photosynthetic vegetation indices (NPVIs) used for the non-photosynthetic
vegetation (f NPV) estimation.

Vegetation Index Equation Citation

NDI (normalized difference index) NDI = RNIR−RSWIR1
RNIR+RSWIR1

Mc Nairn et al., 1993

NDTI (normalized difference tillage index) NDTI = RSWIR1−RSWIR2
RSWIR1+RSWIR2

Deventer et al., 1997

NDSVI (normalized difference senescent
vegetation index)

NDSVI = RSWIR1−RRed
RSWIR1+RRed

Qi et al., 2002

STI (soil tillage index) STI = RSWIR1
RSWIR2

Deventer et al., 1997

SWIR32 (shortwave infrared ratio) SWIR32 = RSWIR2
RSWIR1

Guerschman et al., 2009

DFI (dead fuel index) DFI = 100 ×
(

1 − RSWIR2
RSWIR1

)
× RRed

RNIR
Cao et al., 2010

Notes: RRed, RNIR, RSWIR1 and RSWIR2 demonstrate the reflectance of the Red band, Near Infrared band, Shortwave Infrared 1 band(1600 nm)
and Shortwave Infrared 2 band (2100 nm), corresponding to the band 4, 8, 11 and 12 of sentinel-2A data, respectively.

PVIs and NPVIs were calculated using ArcGIS 10.5 software. The PVI value and
f PV measured value, and NPVI value and f NPV measured value, were constructed linear
regression models of PVI and NPVI relative to f PV and f NPV, respectively, and were used
to evaluate the accuracy of the various indices. Considering the number of samples we
have taken, we used the leave-one-out cross-validation (LOOCV) which was suitable for a
small number of sample. In LOOCV, each sample was excluded in turn and the regression
model was calculated with all the remnants samples and used to predict that sample. The
benefit of LOOCV was its aptitude to detect outliers and its capability of providing nearly
unbiased estimations of the prediction error [4,37]. The performance of these models was
assessed by the coefficients of determination (R2), root mean square error of leave-one-out
cross-validation (RMSECV) and regression significance (p):

R2 =
∑n

i=1(xi − x)(yi − y)

∑n
i=1 (xi − x)2 ∑n

i=1 (yi − y)2 (1)
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RMSECV =

√
1
n

n

∑
i=1

(xi − yi)
2 (2)

where n shows the sample plots’ number, xi is the measured value of the sample plot i,
yi stands for the estimated value of the sample plot i, x illustrates the mean value of the
measured sample plots, y stipulates the mean value of the estimated sample plots.

2.3.2. Linear Unmixed Model

Guerschman [3] hypothesized that the NDVI and CAI could resolve the fractions
of the PV, NPV and BS, when the NDVI and f PV were linearly related (as were the CAI
and f NPV). This situation is reflected in the scatterplot of the NDVI and CAI, namely that
the feature space forms a triangle; BS is situated on the right side of the triangle, with a
high NDVI and intermediate CAI value; the NPV is located in the upper left corner of the
triangle, showing a low NDVI and a high CAI value; the BS is seen in the lower left corner
of the triangle, having low NDVI and CAI values; Cao [24] used the DFI (replacing CAI)
to present the NPV in order to construct the NDVI-DFI linear unmixed model, and it is
successful in estimating the fractions of the PV, NPV and BS. Therefore, we applied the
GEMI-DFI linear unmixed model to assess the fractions of the PV, NPV and BS in the study
area (Figure 4).
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PV is expressed by the global environmental monitoring index (GEMI) and the NPV
by the dead fuel index (DFI), The GEMI formula is calculated as Table 1, The DFI formula
is the following in Table 2. The relative proportions of each fractional coverage for any
Sentinel-2A image pixel were found by solving the equations:

GS = ∑[ fiGi] = [ fPVGPV + fNPVGNPV + fBSGBS] (3)

DS = ∑[ fiDi] = [ fPVDPV + fNPVDNPV + fBSDBS] (4)

∑ fi = [ fPV + fNPV + fBS] = 1 (5)

where GS and DS show the GEMI and DFI value in the given Sentinel-2A image pixel, the
f PV, f NPV and f BS illustrate the fractional coverage of the PV, NPV and BS; the GPV, GNPV
and GBS are the GEMI values of the end members, the DPV, DNPV and DBS demonstrate the
DFI values of the end members. It forces the values of f PV, f NPV and f BS to sum to unity. If
the sum does not get one, the pixel has a negative or higher than 1 value in at least one end
member. When that occurred, the following correction was applied:

Cx = 0(−0.2 < Cx < 0) (6)
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Cx = 1(1 < Cx < 1.2) (7)

Cy = Cy/
(
Cy + Cz

)
(8)

Cz = Cz/
(
Cy + Cz

)
(9)

where Cx is the value not within a specified range (Cx < −0.2 or Cx > 1.2), and Cy and Cz
are the values of the other two end members. If the range of Cx is amounts from −0.2 to 0,
Cx is 0; if the range of Cx is 1 to 1.2, Cx is 1; the condition is mentioned in the above two
cases, we only calculated Cy and Cz.

2.3.3. Determination of the GEMI and DFI End Member Value

The choice of pure end members was the key to success of the PV and NPV model
inversion. The GEMI-DFI linear unmixed model needed to become a pure end member of
the PV, NPV and BS to calculate the corresponding proper values and the model needed
be used to solve the fractional coverage of each end member. We employed the pixel
purity index (PPI) method to determine the pure end member. Firstly, the Sentinel-2A
images were subjected to the minimum noise fraction (MNF) so as to reduce the image
dimensionality during different periods. The first 6 bands of each image period were
selected for calculation and the number of iterations was set to 5000 in order to generate
the PPI. Secondly, the GEMI and DFI were calculated for various period images. Finally,
the pixels near the vertices of the triangular feature space were regarded as pure pixels.

2.3.4. Model Evaluation

In order to quantitatively evaluate the performance of the model’s estimation ability,
the coefficients of determination (R2), root mean square error (RMSE) and mean error (ME)
were applied.

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (10)

ME =
1
n

n

∑
i=1

(xi − yi) (11)

where n shows the sample plots’ number, xi is the measured value of the sample plot i, yi
stands for the estimated value of the sample plot i.

3. Results
3.1. PVI and NPVI Index Optimization

In this study, six PV indices (NDVI, RVI, SAVI, MSAVI, RSR and GEMI) were selected
to build linear regression models with f PV (Table 3 and Figure 5). Various PVIs exhibited
different performance, with the R2 ranging from 0.33 to 0.59 and the RMSECV ranging from
0.752 to 0.1283. The GEMI index showed the highest correlation, with the R2 reaching 0.59
and RMSECV being 0.752 (p < 0.05). The RVI, MSAVI and RSR indices had low correlations
(all R2 lower than 0.50 and RMSECV higher than 0.8). The GEMI index was used as the PVI
index to estimate the f PV of the study area. In order to count the GEMI value, the GEMI
index value had been normalized.

Table 3. Parameters of linear regression analyses between PVIs and f PV.

PVIs Regression Equation R2 RMSECV p

NDVI y = 1.4562x + 0.1199 0.51 0.0815 p < 0.05
RVI y = 0.9331x + 0.7924 0.47 0.0817 p < 0.05

SAVI y = 1.1202x − 0.1199 0.51 0.0795 p < 0.05
MSAVI y = 0.9333x − 0.1407 0.47 0.0814 p < 0.05

RSR y = 0.4316x − 0.2178 0.33 0.1283 p < 0.05
GEMI y = 2.8495x − 0.0349 0.59 0.0752 p < 0.05
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We selected six NPVI indices (NDI, NDTI, NDSAVI, DFI, STI and SWIR32) to construct
linear regression models with the f NPV (Table 4 and Figure 6). Compared with the corre-
lation between the PVI indices and f PV, the correlation between the NPVIs and f NPV was
lower. This might be caused by similar spectral characteristics of the NPV and BS [24]. The
DFI index showed the best performance with a R2 of 0.45 and RMSECV of 0.2111(p < 0.05).
The STI, NDTI, SWIR32, NDSVI and NDI indices were lower than the DFI, with the R2

ranging from 0.02 to 0.43, and the RMSECV from 0.2611 to 0.2627. Therefore, the DFI index
was selected to assess the f NPV of the study area.

Table 4. Parameters of linear regression analyses between NPVIs and f NPV.

NPVIs Regression Equation R2 RMSECV p

NDI y = 0.9950x + 0.4855 0.02 0.2627 p < 0.05
NDTI y = 3.4457x + 0.1076 0.39 0.2223 p < 0.05

NDSVI y = 3.1160x + 0.9570 0.11 0.2606 p < 0.05
DFI y = 0.0328x − 0.0422 0.45 0.2111 p < 0.05
STI y = 1.4480x − 1.3296 0.43 0.2161 p < 0.05

SWIR32 y = −2.0018x + 2.0096 0.37 0.2272 p < 0.05
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3.2. The Feasibility of the GEMI-DFI Model

We obtained the GEMI-DFI response space by calculating the GEMI and DFI values
for seven Sentinel-2A images’ data (Figure 7). GEMI-DFI response space of the first six
images was basically triangular, which was consistent with the theoretical conceptual
mode. It showed that the GEMI-DFI linear unmixed model could be utilized to estimate
the fractional coverage of the PV, NPV and BS. The last GEMI-DFI response space image
did not seem to conform to the triangle shape. We selected images covering the growing
season from spring to fall (April to November) and as vegetation leafed out and became
active, GEMI values increased while DFI values declined. The inverse was seen with the
onset of fall, as vegetation began to senesce and go dormant.

3.3. Evaluation of the fPV and fNPV Estimation Accuracy

Considering that field data collection occurred between 25–29 September in 2020,
Sentinel 2A data collected on 2 October in 2020 were selected. We used the GEMI-DFI
linear unmixed model (combined with the PPI) to obtain the spatial distribution of the
f PV, f NPV and f BS. The BS proportion in the study area was the largest and the PV and
NPV were mainly distributed along the downstream river and the Tetima Lake. In order
to clearly show the model result in estimating the f PV and f NPV, we selected the areas
with a vegetation distribution evenly for display. The four regions were: a (Dashkol), b
(Chiwinkol), c (Bozkol) and d (Tetima Lake). The f NPV of the four regions was greater than
the f PV, indicating that after October, the vegetation entered the end of the growing season
and the increase in the NPV (during this period) caused an increase in the proportion of
the f NPV (Figure 8) in turn.
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Figure 7. Response spaces of the Sentinel-2A reflectance spectral defined by the GEMI and DFI for seven dates in 2020. The
green, red and blue circle indicate the position of the PV, NPV and BS end members, respectively (and form triangles). The
colors indicate the point density from blue (low density) to dark red (high density). (a) 5 April 2020, (b) 25 May 2020, (c) 24
July 2020, (d) 18 August 2020, (e) 12 September 2020, (f) 2 October 2020, (g) 6 November 2020.

We could conclude from Figure 9 that the estimated f PV has the best correlation with
the measured f PV, with a R2 of 0.69 and RMSE of 0.07 (p < 0.05). The estimated f NPV and
the measured f NPV have a lower correlation with a R2 of 0.58 and RMSE of 0.17 (p < 0.05).
For BS, the measured (and estimated) values possess the lowest correlation, with a R2 of
0.43 and a RMSE of 0.17 (p < 0.05). For the PV, the fitted line is situated below the reference
line (1:1 line) and the ME value amounts to −2.67%. The data mentioned above show that
overall the estimated f PV value is lower than the measured f PV value, this is due to the fact
that the acquisition time of the Sentinel-2A image data is later than the one for the field
measured data, resulting in lower f PV estimates. Concerning the f NPV, the value of ME is
3.14%, this means that the estimated f PV value is higher than the measured f PV value. In
general, the estimation accuracy of the f NPV and f BS is lower than the f PV, this reflects the
fact that the PV could be resolved in an easier way than the NPV. Both the NPV and BS
have similar spectral reflectance characteristics, resulting in a greater probability of wrong
classification between the NPV and BS.



Remote Sens. 2021, 13, 1458 12 of 17
Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8. Spatial distribution of the fPV, fNPV and fBS in the study area (based on the Sentinel-2A im-

age). Four areas: a (Dashkol), b (Chiwinkol), c (Bozkol) and d (Tetima Lake). The proportions of 

the fractional coverage are shown in the RGB. The white area of the map represents the location in 

which the presence of a water body has been masked. 

We could conclude from Figure 9 that the estimated fPV has the best correlation with 

the measured fPV, with a R2 of 0.69 and RMSE of 0.07 (p < 0.05). The estimated fNPV and the 

measured fNPV have a lower correlation with a R2 of 0.58 and RMSE of 0.17 (p < 0.05). For 

BS, the measured (and estimated) values possess the lowest correlation, with a R2 of 0.43 

and a RMSE of 0.17 (p < 0.05). For the PV, the fitted line is situated below the reference 

line (1:1 line) and the ME value amounts to −2.67%. The data mentioned above show that 

overall the estimated fPV value is lower than the measured fPV value, this is due to the fact 

that the acquisition time of the Sentinel-2A image data is later than the one for the field 

measured data, resulting in lower fPV estimates. Concerning the fNPV, the value of ME is 

3.14%, this means that the estimated fPV value is higher than the measured fPV value. In 

general, the estimation accuracy of the fNPV and fBS is lower than the fPV, this reflects the 

fact that the PV could be resolved in an easier way than the NPV. Both the NPV and BS 

have similar spectral reflectance characteristics, resulting in a greater probability of wrong 

classification between the NPV and BS. 

 

Figure 8. Spatial distribution of the f PV, f NPV and f BS in the study area (based on the Sentinel-2A
image). Four areas: a (Dashkol), b (Chiwinkol), c (Bozkol) and d (Tetima Lake). The proportions of
the fractional coverage are shown in the RGB. The white area of the map represents the location in
which the presence of a water body has been masked.
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3.4. Seasonal Variation of the fPV and fNPV

In this study, the b region was chosen as the representative area for seasonal variation.
This was located in the Chiwinkol wetland, which was less disturbed by human activities
and could have better indicated the natural alternation of the PV and NPV’s seasonal
variation. We selected Sentinel-2A image data from seven periods and used the GEMI-DFI
linear unmixed model to estimate the f PV, f NPV and f BS during different periods (Figure 10).
We counted mean values of the f PV, f NPV and f BS in the b region (Figure 11). By analyzing
the changes of the f PV, f NPV and f BS values, it was found that the seasonal variation of the
f PV and f NPV was estimated by the GEMI-DFI model in conformity with the characteristics
of the vegetation phenology. In April, most of the vegetation not yet broken dormancy and
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as such, there was a large NPV amount, the GEMI value was low, the DFI value was high,
the f NPV was 0.93 and the f PV measured 0.01. In May, as the vegetation had emerged and
begun actively growing, the GEMI value increased, the DFI value decreased, the f PV rose
to 0.17 and the f NPV declined to 0.69. As the growing season progressed, GEMI increased,
peaking in August with DFI following an inverse trend, and the DFI value fell to the lowest
point. Similarly, f PV reached maximum value, which was 0.44 and f NPV its lowest value
of 0.45. In September, the vegetation began to yellow and GEMI fell and DFI rose. By the
beginning of October, most of the vegetation had already withered, the f NPV occupied
the dominant position again (at 0.81) and the f PV decreased further to 0.17. The f BS value
remained in a relatively stable position throughout the whole year.
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4. Discussion

This study explored the performance of several Sentinel-2A based PVIs by constructing
linear regression models in the lower reaches of the Tarim River. The GEMI index has the
best correlation with the f PV, which is consistent with the conclusion of Liu [38] on the
vegetation information monitoring this area. The GEMI index shows greater advantages
in detecting the low coverage vegetation information. In the regression analysis between
the NPVI index and f NPV, the correlation between the DFI index and f NPV is better than
for those of the NDI, NDTI, NDSVI, STI and SWIR32. Among them, the NDI and NDSVI
indices mainly use Band 11 (SWIR1: 1565~1655 nm), combined with a visible light band
(NDI for the NIR band, NDSVI for the Red band) and without combining Band 12 (SWIR:
2100~2280 nm). Previous research has demonstrated that the cellulose absorption signature
(amounting to around 2100 nm in the SWIR region) has a strong discriminatory ability
between the NPV, PV and BS [8]; so Band 12 is a good choice to distinguish the PV, NPV
and BS. Compared with the DFI index, STI and SWIR32 simply perform ratio calculations.
The DFI index uses more bands for the calculation, including the Red, NIR SWIR1 and
SWIR2. It might reduce the impact of the BS background to some extent and it might
further improve NPV detection [4]. Ji [39] similarly concluded that the red-edge and NIR
bands of the Sentinel-2 data are effective in improving the accuracy of the f NPV estimates.
The manner in which the red-edge band of the Sentinel-2 data could be utilized in order to
estimate the vegetation information accurately still need further exploration.

The study uses the PPI method to extract the pure end members of the image data,
which eliminates the discrepancies between the image data and the measured data, en-
suring that both have the same spatial scale, which is widely employed to select the pure
end of the spectrum [14,37]. We were able to estimate the f PV and f NPV of the study area in
different periods by means of the GEMI-DFI model, revealing the changes in the photosyn-
thetic and non-photosynthetic vegetation at different growth stages. The NPV proportion
is greater at the beginning and at the end of the growing season, while the proportion of
the PV peaks in the middle of the vegetation growing season. This is consistent with the
findings of Wang [40] estimating the f PV and f NPV in the typical grasslands of Xilingol,
indicating that the GEMI-DFI model is feasible to estimate the f PV and f NPV in the lower
reaches of the Tarim River. The accuracy of the f NPV estimation (R2 = 0.58) is slightly lower
than for the f PV estimation (R2 = 0.69). As the NPV and BS have similar spectral reflection
characteristics in the visible band [3,41], the NPV estimation is more susceptible to the
influence of the BS background, which could lead to a false distinction between the NPV
and BS. Both the GEMI and DFI values are influenced by a variety of factors, such as the
vegetation type, vegetation structure, etc. [17,24]. Therefore, more consideration should be
given to the influencing factors in future studies on the PV and NPV.

The overall vegetation coverage in the study area is low, as vegetation is mostly dis-
tributed along the watercourses. Due to this, higher spatial resolution imagery is required
to obtain more detailed information on the type of the vegetation [42]. Based on this, the
Sentinel-2A data with a resolution of 10 m were used, which might reduce the spatial het-
erogeneity of the mixed pixels and improve the estimation accuracy by a better acquisition
of pure pixels. There is still some uncertainty noticeable in the estimation of the PV, NPV
and BS using multispectral data. In fact, the vegetation and other surrounding compo-
nents form a complex system [37] and it endures stages of greening, heading, flowering,
maturing and yellowing [43]. The above-mentioned conditions affect the acquisition of the
estimated GEMI and DFI values, thereby impacting the model’s accuracy to estimate the
f PV, f NPV and f BS. In addition, uncertain factors also exist in the field data collection. The
moment in which the photo was taken does not match the time of the satellite transit; the
visual interpretation of the PV, NPV and BS classification and the accuracy of the geometric
alignment will inevitably be influenced by subjective factors, resulting in errors in the
f PV, f NPV and f BS estimates [18]. This study relies on the coverage obtained from field
sampled data as the verification data. Taking into account the diversity of vegetation types
and structures, the spectral characteristics of vegetation are different. We should combine
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spectral data to accurately estimate the changing trends of different types of vegetation.
The use of drones is also an effective measure to improve the estimation of vegetation
coverage. This method can obtain a large area of vegetation coverage and reduce the error
of its estimation and should be taken into account in future research work.

5. Conclusions

In this study, we constructed the GEMI-DFI linear unmixed model based on the
Sentinel-2A image data so as to estimate the fractional coverage of the PV, NPV and BS in
the lower reaches of the Tarim River combined with the field measured data for an accuracy
evaluation. The main conclusions are as follows:

We established a linear regression model for the PVIs and f PV, and NPVIs and f NPV.
The study found that the GEMI have a significantly linear correlation with the f PV, R2 is
0.59 and the DFI has a significantly linear correlation with the f NPV, R2 measuring 0.45. We
used GEMI and DFI indices to construct linear unmixed model, the response space shown
as triangle, which conformed the basic assumption of the linear unmixed model.

The GEMI-DFI linear unmixed models could effectively estimate the f PV and f NPV,
but the accuracy of estimation f PV is higher than that of f NPV. How to improve the accuracy
of estimation of f NPV is the focus of future work.

Considering the number of sampling data, we need to collect more vegetation coverage
data in future work. We can use drones as a platform for obtaining vegetation coverage
to achieve a wide range of coverage, thereby improving the accuracy of f PV, f NPV and f BS
estimation.
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