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Abstract: In this paper, the performance of C-band synthetic aperture radar (SAR) Gaofen-3 (GF-3)
quad-polarization Stripmap (QPS) data is assessed for classifying late spring and summer sea ice
types. The investigation is based on 18 scenes of GF-3 QPS data acquired in the Arctic Ocean in
2017. In this study, floe ice (FI), brash ice (BI) between floes and open water (OW, ice-free area) were
classified based on a mini sea ice residual convolutional network, which we call MSI-ResNet. While
investigating the optimal patch size for MSI-ResNet, we found that, as the patch size continues to
grow, the classification accuracy first increases and then decreases. A patch size of 31 × 31 was
found to achieve the best performance. The performance of classification using different polarization
combinations from the QPS data was also assessed. The vertical-vertical (VV) polarization input
overestimates the FI category while incorrectly identifying most of the BI as FI. The VH polarization
produces a synchronous improvement in FI, BI, and OW discrimination, with a higher overall
accuracy and kappa coefficient (91.09% and 0.85, respectively) than the VV polarization (83.37% and
0.70, respectively). The combination of VV and vertical-horizontal (VH) polarizations presents a
modest precision improvement for BI and OW together with a slight overestimation for FI. With VV,
VH, and horizontal-horizontal (HH) polarization data as the inputs, the user’s accuracy improves to
95.12%, 93.42%, and 95.17% for FI, BI, and OW, respectively. The accuracy was assessed against visual
interpretation of the sea ice classes in the images using a stratified sampling method. The application
of the MSI-ResNet method to data covering the Beaufort Sea and the north of the Severnaya Zemlya
archipelago was found to achieve a high overall accuracy (kappa) of 94.62% (±0.92) and 94.23%
(±0.90), respectively. This is similar to the classification accuracy obtained in the Fram Strait. From
the results of this study, it is shown that the MSI-ResNet method performs better than the classical
support vector machine (SVM) classifier for sea ice discrimination. The GF-3 QPS mode data also
show more details in discriminating scattered sea ice floes than the coincident Sentinel-1A Extra
Wide (EW) swath mode data.
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1. Introduction

Polar sea ice is a sensitive indicator of global climate changes. Information about
sea ice type is also important for ship navigation and climate change prediction in polar
regions [1–5]. However, the large extent and harsh environment make most of the polar re-
gions difficult to access and the cost of field investigation remarkably high [6]. Spaceborne
remote sensing methods, particularly those using active and passive microwave instru-
ments have proven to be successful in monitoring sea ice. Long-term records of Arctic sea
ice monitoring (>40 years) are now available from different operational sources, including
the Canadian Ice Service (CIS), the Russian Arctic and Antarctic Research Institute (AARI),
the Norwegian Ice Service (NIS), and the U.S. National Ice Center (NIC).

Synthetic aperture radar (SAR) has proven to be suitable for monitoring polar sea
ice because it is independent of sunlight and atmospheric influences such as clouds and
water vapor [7–9]. As the imaging mechanism is triggered by surface roughness and
subsurface physical properties, SAR can be used to distinguish the different types of
sea ice. A few milestones among the SAR systems that have been used to monitor and
research Arctic sea ice are NASA’s SeaSAT mission, the series of satellites operated by the
European Space Agency (ESA) (the European Remote Sensing, ENVISAT, and Sentinel-1
systems), the Japan Aerospace Exploration Agency (JAXA) Advanced Land Observing
Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) systems,
the German Aerospace Center (DLR) TerraSAR systems, and the Canadian Space Agency
(CSA) RADARSAT systems.

Many studies of sea ice classification using polarimetric SAR data have been conducted
as polarized data hold more information about the ice surface. According to Gill et al. [10],
the authors explored the potential of polarimetric parameters and used ground truth data
to estimate sea ice classification accuracy based on the maximum likelihood classifier. They
found that the accuracy increased when more uncorrelated polarimetric parameters were
used. By using the parameters of σ0

vv, entropy and σ0
hv, the accuracies for open water

(OW), smooth first-year ice (SFYI), rough first-year ice (RFYI), and deformed first-year
ice (DFYI) were 96.72%, 96.58%, 67.44%, and 95.58%, respectively. Moen et al. [11] used
three consecutive RADARSAT-2 (RS-2) scenes to investigate the robustness of polarimetric
SAR data for sea ice classification under slightly varying winter environmental conditions
based on a supervised classification method with unsupervised automatic segmentation
and labeling of the scene as a reference. This study discriminated between seven sea ice
types and found that scenes with similar incidence angles produced reasonable results.
Another study by Ressel et al. [12] examined the performance of an automated sea ice
classification algorithm based on polarimetric TerraSAR-X (TS-X) images. By the use of
four polarimetric features of the geometric intensity, the scattering diversity, the surface
scattering fraction features, and comparison with in situ measurements, the study correctly
identified young ice (YI), SFYI, rough first-year and multi-year ice (RFYMYI), multi-year
ice (MYI), and OW. The polarimetric features of spaceborne L- (ALOS-2), C- (RS-2), and X-
(TS-X) band quad-polarimetric SAR data were evaluated and validated by Singha et al. [13]
for sea ice discrimination using an artificial neural network method, obtaining accuracies
of 100% and 96.9% for OW and all the sea ice classes, respectively.

The neural network approach has been applied to SAR sea ice classification in previous
studies. An unsupervised neural network Learning Vector Quantization method was
applied to airborne polarimetric SAR data by Hara et al. [14] to classify sea ice, achieving a
total classification accuracy of 77.8%. A pulse-coupled neural networks-based unsupervised
method for sea ice classification in the Baltic Sea under dry snow conditions was developed
by Karvonen et al. [15] using Radarsat-1 ScanSAR wide mode data. A supervised neural
network was also developed by Ressel et al. [16] for TS-X backscatter data using gray
level co-occurrence matrix (GLCM) textural features as the inputs. The authors found the
classification accuracies for OW, smooth drift ice/smooth fast ice (SDI) and moderately
deformed drift ice (MDDI) to be 79.4%, 89.3%, and 94.5% respectively. Song et al. [17]
designed a residual convolutional network for sea ice classification called SI-Resnet, using



Remote Sens. 2021, 13, 1452 3 of 22

the backscatter from Sentinel-1 SAR Extra Wide (EW) swath mode data in HH polarization,
and reported a reasonably high overall classification accuracy and kappa coefficient of
94% and 91.9%, respectively. The ResNet deep learning framework was presented by
He et al. [18] for easing the training of networks by reformulating the layers as residual
learning functions, with reference to the layer inputs instead of learning unreferenced
functions. ResNet V2, which is a refined version of ResNet, was subsequently proposed by
He et al. [19] in 2016. To date, ResNet V2 has been found to be one of the most effective
deep learning network frameworks for image detection and classification.

Gaofen-3 (GF-3) is a civilian spaceborne SAR satellite developed as part of China’s
High-Resolution Earth Observation System Project. GF-3 was launched on 10 August
2016, by the China Academy of Space Technology (CAST). The satellite operates in a
sun-synchronous orbit with an orbital altitude of about 755 km, and an in-orbit design
life of 8 years. One of its main purposes is monitoring ocean and coastal areas [20]. The
nominal resolution of the satellite instruments ranges from 1 to 500 m, and the nominal
swath width varies from 10 to 650 km. One of the distinctive features of the GF-3 system
is its fully polarimetric imaging capability. GF-3 can acquire fully-polarimetric data in
three modes of quad-polarization Stripmap I (QPSI), quad-polarization Stripmap II (QPSII),
and wave mode. The former two modes are referred to as QPS mode in this paper. More
technical specifications of the sensor can be found in [21,22]. GF-3 SAR data have been
used in different marine environment investigations and services, e.g., sea surface wind
retrieval [23,24], sea ice detection [25], and ship detection [26,27]. The performance of
GF-3 in the observation of intertidal flats, offshore tidal turbulent wakes, and oceanic
internal waves has also been evaluated [28]. However, to date, there has been no specific
investigation of the polar sea ice classification capabilities of GF-3.

The objective of this study was to investigate the performance of GF-3 full-polarization
data for late spring and summer sea ice classification based on the three linear orthogonal
polarization backscatter coefficients (σ0

vv, σ0
hh, and σ0

vh) from QPS mode data. As residual
neural networks have been found to be effective in image recognition [19], we adopted this
approach, with some adaptive modifications and developed the MSI-ResNet (where ‘MSI’
means mini sea ice) scheme. This method was found to be effective in discerning between
FI, BI, and OW. The optimal patch size for the deep learning scheme was determined, so
as to ensure more precise results. The influence of different polarization combinations on
sea ice classification was also synthetically explored and analyzed. In addition, in this
paper, a comparison between the results from MSI-ResNet and the Support Vector Machine
(SVM) classifier [29] for sea ice classification with QPS mode data is presented. Finally, the
classification results obtained using GF-3 QPS data are compared with the results obtained
from near-coincident Sentinel-1A data using the same MSI-ResNet classifier.

2. Dataset, Preprocessing and Training Data
2.1. The GF-3 QPS Mode Dataset

In this study, 18 scenes of GF-3 QPS data acquired over late spring and summer Arctic
sea ice were used to evaluate the sea ice classification performance based on a deep neural
network approach (Section 3). Figure 1 shows the spatial distribution of these scenes in
three regions. The five scenes in the Beaufort Sea, denoted as region 1 (R1), were acquired
on 25 May 2017. The seven scenes located north of the Severnaya Zemlya archipelago,
denoted as region 2 (R2), were acquired on 2 August 2017. The other six scenes in the Fram
Strait, denoted as region 3 (R3), were acquired on 14 and 17 June 2017. According to the
temperature related seasonal descriptors in [30] and the 2 m temperatures from ERA5 [31]
for those three regions, the R1 and R2 scenes are in early melt season, and the R3 scenes
are in advanced melt season. All the images are the Level-1A single look complex product.
Table 1 summarizes the information about each scene. The imaging mode of the scenes in
regions R1 and R2 was QPSI, and the imaging mode was QPSII in region R3. The nominal
resolution for the R1 and R2 scenes is 8 m and for R3 it is 25 m. The incidence angle varies
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between 35.35◦ and 43.79◦. All these data were acquired in conditions with a wind speed
of less than 6 m/s.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 22 
 

 

melt season, and the R3 scenes are in advanced melt season. All the images are the Level-
1A single look complex product. Table 1 summarizes the information about each scene. 
The imaging mode of the scenes in regions R1 and R2 was QPSI, and the imaging mode 
was QPSII in region R3. The nominal resolution for the R1 and R2 scenes is 8 m and for 
R3 it is 25 m. The incidence angle varies between 35.35° and 43.79°. All these data were 
acquired in conditions with a wind speed of less than 6 m/s. 

 
Figure 1. Geographical locations of the 18 Gaofen-3 (GF-3) quad-polarization Stripmap (QPS) 
mode overpasses used in this study. 

Table 1. Data of the 18 scenes from GF-3. 

Region ID Date Acq. Time 
(UTC) 

Swath 
(km) 

Near inc. 
Angle (deg.) 

Far inc. Angle 
(deg.) 

R1 

1 25 May 2017 15:11:01 18.28 35.35  37.18  
2 25 May 2017 15:11:11 18.28 35.35  37.18  
3 25 May 2017 15:11:15 18.28 35.35  37.18  
4 25 May 2017 15:11:20 18.28 35.35  37.18  
5 25 May 2017 15:11:25 18.27 35.35  37.18  

R2 

6 2 August 2017 09:09:01 18.10 35.39  37.20  
7 2 August 2017 09:09:06 18.13 35.39  37.20  
8 2 August 2017 09:09:11 18.15 35.39  37.20  
9 2 August 2017 09:09:30 18.24 35.38  37.20  

10 2 August 2017 09:09:44 18.30 35.37  37.20  
11 2 August 2017 09:09:59 18.34 35.37  37.20  
12 2 August 2017 09:10:14 18.32 35.36  37.19  

R3 

13 14 June 2017 08:01:09 24.88 37.96  40.16  
14 14 June 2017 08:01:15 24.84 37.97  40.16  
15 17 June 2017 07:37:19 27.27 41.73  43.79  
16 17 June 2017 07:37:25 27.24 41.74  43.79  
17 17 June 2017 07:37:31 27.20 41.74  43.79  
18 17 June 2017 07:37:37 27.20 41.74  43.79  

2.2. SAR Data Preprocessing 
The preprocessing of the GF-3 SAR data included radiometric calibration, speckle 

reduction, normalization, and preparation of the training data. The first three steps 

Figure 1. Geographical locations of the 18 Gaofen-3 (GF-3) quad-polarization Stripmap (QPS) mode
overpasses used in this study.

Table 1. Data of the 18 scenes from GF-3.

Region ID Date Acq. Time
(UTC)

Swath
(km)

Near inc.
Angle (deg.)

Far inc. Angle
(deg.)

R1

1 25 May 2017 15:11:01 18.28 35.35 37.18
2 25 May 2017 15:11:11 18.28 35.35 37.18
3 25 May 2017 15:11:15 18.28 35.35 37.18
4 25 May 2017 15:11:20 18.28 35.35 37.18
5 25 May 2017 15:11:25 18.27 35.35 37.18

R2

6 2 August 2017 09:09:01 18.10 35.39 37.20
7 2 August 2017 09:09:06 18.13 35.39 37.20
8 2 August 2017 09:09:11 18.15 35.39 37.20
9 2 August 2017 09:09:30 18.24 35.38 37.20
10 2 August 2017 09:09:44 18.30 35.37 37.20
11 2 August 2017 09:09:59 18.34 35.37 37.20
12 2 August 2017 09:10:14 18.32 35.36 37.19

R3

13 14 June 2017 08:01:09 24.88 37.96 40.16
14 14 June 2017 08:01:15 24.84 37.97 40.16
15 17 June 2017 07:37:19 27.27 41.73 43.79
16 17 June 2017 07:37:25 27.24 41.74 43.79
17 17 June 2017 07:37:31 27.20 41.74 43.79
18 17 June 2017 07:37:37 27.20 41.74 43.79

2.2. SAR Data Preprocessing

The preprocessing of the GF-3 SAR data included radiometric calibration, speckle
reduction, normalization, and preparation of the training data. The first three steps consti-
tute the fundamental processing requirements when using SAR data, and normalization is
a prerequisite for preparing the inputs of a deep learning method.

The GF-3 radiometric calibration method is given in the user manual as follows:

σ0
dB = 10 log10 PI ∗ (QV/m)2 − KdB (1)

where σ0
dB is the calibrated backscatter coefficient in the unit of dB, and PI is the sum of

the squares of the real and imaginary parts of the single look complex SAR data. The QV
(qualified value) is the maximum digital value of the image before quantization and KdB is
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the calibration constant, both of which are provided in the metadata of each scene. The
term m is of 32,767 for Level-1A data. Normalization of the backscattering coefficients to a
fixed incidence angle for each scene was unnecessary because the variation of the incidence
angle across the swath in this dataset is small, ranging from 1.8◦ to 2.2◦.

A Lee filter was applied to reduce the speckle noise. The Lee filter accentuates the
edges between ice and water with an insignificant loss of texture features. A window size
of 5 × 5 pixels was used. The calibrated GF-3 SAR backscatter coefficient data was used
as inputs to the adaptive Lee filter. After calibration and speckle filtering, we rescaled
the backscatter coefficient dB range into a digital range of 0–255 for each region. The
scaling of each region was performed for each image separately. The limits of the rescaled
backscatter coefficient were set to 1.5% and 98.5% of all the polarization ranges in the given
region. We then combined the different polarization data (σ0

vv, σ0
vh, and σ0

hh) into RGB
format, in preparation for the input into the deep learning scheme. Figure 2 shows the color
composite images of the R1-1, R2-6, and R3-15 scenes (the first two alphanumeric letters
are the region designation and the third number is the ID of the scene as listed in Table 1).
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hh) of (a) scene R1-1, (b) scene R2-6 and (c) scene R3-15. Details of the

GF-3 QPS scenes are provided in Table 1.

2.3. Dataset for Model Training

Ground truth data are important for implementing supervised neural network classifi-
cation. The sea ice type maps released by a sea ice monitoring agency such as CIS, NIC, or
AARI are commonly used as training datasets in sea ice classification studies. However, CIS
ice charts are not available in all the geographic areas of the present study, and although
the NIC/AARI ice charts are produced weekly, they are generated at a coarse resolution.
Therefore, for the data during the melt season, the training data were generated using
manual visual identification of the different sea ice types in the images.

The World Meteorological Organization (WMO) has defined seven major sea ice
categories based on the ice development stage [32]. However, it is impractical to identify
all these categories, especially in late spring and summer scenes when young ice types do
not exist, and flooded ice surfaces can mask the underlying ice type in radar images. This
results in MYI (which has a distinctly high backscatter in winter) and first-year ice (FYI)
having similar radar signatures in summer. The surface deformation form, which is caused
by the collision and convergence of mobile ice floes, makes the backscatter high in SAR
images in both co- and cross-polarization [33]. However, the deformation may become
eroded in summer or covered with wet snow, both of which reduce the backscatter. BI
may also continue to exist between ice floes, and its roughness results in relatively high
backscatter. Therefore, in this study, three surface categories were considered: floe ice (FI),
brash ice (BI), and open water (OW). The FI category combines FYI and MYI, both of which
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are commonly of round or elliptical shape, with medium backscatter. The BI category
represents the crushed ice between ice floes, and OW denotes the ice-free area, which has
the lowest backscatter coefficient, because of its relatively smooth surface.

To construct the machine learning model (see Section 3.1), training data and validation
data were required. The training data were used for developing the model. The validation
data served as auxiliary data for tuning the parameters of the model to avoid overfitting
and were used to improve the model capability by checking the performance of the model
during the training phase.

The training and validation datasets used in developing the model were generated
as follows. Firstly, we labeled the areas of the different surface types, i.e., FI, BI, and OW,
in the RGB composite SAR scenes using LabelMe [34], which is an efficient open-source
graphical image annotation tool. Figure 3 shows the sparse labeled areas in the composite
image of the R3-16 scene, with enlarged segments representing the three surface categories
of FI, BI, and OW in blue, green, and red, respectively. The labeled areas may not feature
homogeneous SAR backscatter because the given surface may have a range of backscatter.
The labeled areas were randomly selected but evenly distributed within the image space,
and they occupy a small percentage (about 0.14%) of the entire image area.
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Figure 3. Examples of the labeled areas from the training scene of the composite image of R3-16 with
three amplified segments: blue: floe ice, green: brash ice, red: open water.

For each pixel in the labeled area of each type, the pixel and its neighboring pixels
in the composite SAR image were extracted as a patch. Each patch was considered to
represent a single surface type, i.e., the type of the center pixel. Figure 4 depicts a virtual
segment in an image, with the three colors representing the three surfaces of FI, BI, and
OW. For instance, the black outer boundary represents the labeled area, with all the pixels
inside representing the FI surface. For each pixel within the labeled area, a window is
established. This is shown in the dotted lines for pixels “a”, “b”, “c”, and “d”. The window
is 3 × 3 pixels in this example, where the window constitutes one patch. With the changing
of the window size, the surface type information contained in a given patch becomes
different. To determine the most appropriate information content for GF-3 QPS mode data
for the algorithm, four patch sizes were tested in this study, i.e., 25 × 25, 31 × 31, 37 × 37,
and 43 × 43. All the pixels within a patch constituted a training sample, which was used
as the input for the deep learning network. As a patch may contain peripheral pixels, the
surface types of the pixels within the same patch can be different. As the VV, VH, and HH
polarizations were considered, each image patch was a 3-D matrix of size, 31 × 31 × 3. The
number of generated patches is equal to the number of pixels in all the labeled area. Of
the generated patches, 80% were randomly selected as training data, and the other 20%
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were used for the validation. We did not reject any training data. The number of training
samples for the R1, R2, and R3 scenes were 207,409, 219,888, and 344,043, respectively, and
the ratios of FI, BI, and OW were about the same in each scene.
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Figure 4. Example of an image segment with three surfaces (the different colors) and a labeled area
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The composite images of the R1-1, R2-6, and R3-15 SAR scenes were used to test
the performance of the final trained model for each region, respectively, and the rest of
the scenes in each region were used for the labeling and making the training data. The
training scenes were not used for the testing, considering the possible overfitting of the
machine learning.

3. Methodology

In this study we constructed a deep neural network structure called MSI-ResNet for
classifying the three surface types of FI, BI, and OW in the GF-3 SAR QPS data. This
structure is based on ResNet V2 [19] after shrinking and modifying the original network
to allow for classification of a small number of categories in high resolution SAR imagery
as the input data. In the field of machine learning, different patch sizes and inputs will
have an influence on the classification results. Based on MSI-ResNet, the effect of the patch
size and the classification performance of different polarization combinations of GF-3 QPS
mode data were explored. For the classification result assessment, a stratified random
sampling method was used to compare the results with the visual classification of the
surface types in the SAR images. To further assess the MSI-ResNet classification results, the
results were also compared with the classification results obtained using the SVM classifier.
The specifics of the MSI-ResNet structure and stratified random sampling method are
respectively presented in Sections 3.1 and 3.2. Data from the images with an ID of 1, 6, and
15 (Figure 1 and Table 1) were selected for performing the accuracy evaluation for each
region, and the other data in the same region were used for the training.

3.1. Structure of MSI-ResNet

A neural network is able to establish the intrinsic connection between input–target
pairs when they are well associated [35]. A deep learning network, which is also known
as a deep neural network, consists of an input layer, hidden layers, and an output layer.
The hidden layers include convolutional layers, pooling layers, and fully connected layers.
A convolutional layer (conv) functions as a feature extractor by convolving with the
input data, generally using multiple kernels of a specific size. The convolved features
are then nonlinearized by an activation layer to produce the feature maps. A pooling
layer compresses the feature map to reduce its redundancy and converts the output to a
vector during the last pooling process. All the learned features of the previous layers are
combined by the fully connected (fc) layer to determine the desired patterns.
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Deep learning models have been widely used in image classification. Among the dif-
ferent models, deep residual neural network models, and especially the ResNet V2 model,
can solve the problem of gradient explosion and gradient disappearance. Therefore, accord-
ing to the characteristics of SAR remote sensing imagery and the principle of the ResNet
V2 model, we designed a lightweight deep residual neural network model for sea ice
classification, i.e., MSI-ResNet, based on pixels (Figure 5a). The model effectively shortens
the training time, while improving the training efficiency and classification accuracy.
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The MSI-ResNet model is structured in 10 layers, as shown in Figure 5a, with input
images of a size of 3 × 31 × 31. The first convolutional layer’s kernel size is 5 × 5, the
stride is 2, and the number of convolution kernels is 32. It is the largest layer of convolution
kernels in the model to obtain the features of large neighborhood of the model and image
denoising. The resulting vectors are processed using max pooling with a stride of 1. Four
residual blocks follow, each of which consists of two convolutional layers with the kernel
size of 3 × 3, and the inputs of each block are connected with the outputs using an arrowed
curve. The kernel number generally increases as the neural network becomes deeper to
learn more features of the specific inputs. Each convolutional layer in the first two residual
blocks has 32 kernels, and there are 64 kernels for the last two blocks in the structure of
MSI-ResNet. The stride of the third block changes to 2 in order to decompress the outputs
of that block as the channel number doubles, while all the other blocks remain with a
default stride of 1. This leads to dimension inconsistency in the third residual block, whose
input and output dimensions are 64 × 14 × 14 and 64 × 7 × 7, respectively. We use the
dotted curve to represent this in Figure 5a. The other three solid lines refer to a consistent
dimension connection for the blocks. The specific structure of these two residual blocks
are shown in Figure 5b,c, respectively. After the residual blocks, the image is processed
by average pooling to reduce the dimension of the image, and a vector of 64 × 1 × 1 is
obtained, which greatly reduces the computational load. The last layer is a fully connected
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layer, which outputs the probability of the center pixel of the input image belongings to
each kind of surface type.

As mentioned above, there are two types of blocks in the MSI-ResNet model, as shown
in Figure 5b,c. Each block consists of three layers: a batch normalization (BN) layer, a
rectified linear unit (ReLU) activation layer, and a weight layer (the parameters of that
convolution). In addition to the residual block itself, the BN is carried out to prevent the
gradient from disappearing and exploding in each residual block, which can effectively
improve the training efficiency. Suppose that the input of the l-th residual block is xl and
the output is xl+1. In most cases (as shown in Figure 5b), in a residual block xl performs two
convolution operations Wl with the step size of 1. The residual F(xl , Wl) plus xl gives xl+1:

xl+1 = F(xl , Wl) + xl (2)

The dimensions of xl and F must be equal in Equation (2) to conduct the addition
operation. In another case (Figure 5c), as shown in the third residual block in Figure 5a, the
number of channels and the size of each channel have changed which will cause the inputs
and outputs to have different dimensions as mentioned above. To achieve the addition
operation for xl and F(xl , Wl), a convolution operator Ws is needed for xl to make the
convolved Wsxl and F(xl , Wl) have the same channel number and size. The calculation
formula is:

xl+1 = F(xl , Wl) + Wsxl (3)

We set the learning rate to 0.0001, the weight decay to 0.0001, the BN decay to 0.997,
and the batch norm scale to 10−5. The classifier is the SoftMax function.

The loss function is the SoftMax-cross-entropy cost function, which is defined as:

loss = − 1
n

n

∑
i=1

[yi ln h(xi) + (1 − yi) ln(1 − h(xi))] (4)

where h(xi) is the predicted output, yi is the expected output, n is the total number of
samples, and xi is an input vector.

3.2. The Stratified Random Sampling Assessment Method

Due to the large width and resolution of SAR image coverage, it is always difficult to
obtain accurate reference data by field measurement or manual annotation. Evaluation of
the classification accuracy is thus usually conducted by the use of sampling and construct-
ing an error matrix. Stratification is a common technique for data sampling when there
are certain subdivisions in the imagery. If a random sample is taken in each stratum, the
whole procedure is described as stratified random sampling which guaranteed that the
strata have already been constructed. The stratified random sampling method allows each
stratum to have different classification accuracy expectations [36]. As a result, stratified
random sampling has been applied to many remote sensing image classification accuracy
assessment tasks [37,38]. One of the convenient forms of stratified random sampling
formulas for any allocation with continuous data is given as follows [36]:

n =
(∑ WhSh)

2

V + (1/N)∑ WhS2
h

(5)

where the term n is the number of samplings for each stratum, the suffix h denotes the
stratum, Wh = Nh/N is the stratum weight, Nh is the total number of units, N is the total
number of units. In our study, N is the total pixel number of the validation image. S2

h is the
unbiased estimate of the true variance for a certain stratum (the divisor for the variance is
Nh−1). S2

h = Uh(1 − Uh), where Uh is the expected user’s accuracy for each stratum. We
set the user’s accuracy values of FI, BI, and OW as 0.7, 0.9, and 0.95, respectively, which are
appropriate values, according to the previous research [10,16,39]. The term V is the desired
variance of all the estimates, which was specified as 0.01 in this study.
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4. Results and Assessments
4.1. Experiments with the Patch Size

Figure 6 depicts the results of the sea ice classification of the R3-15 scene using patch
sizes from 25 to 43 with a step size of 6 using the MSI-ResNet method with the VV, VH,
and HH polarization combination as input. The blue, green, and red colors denote FI, BI,
and OW, respectively. The assessment of the classification accuracy was performed based
on visual interpretation of the imagery. Random sampling from each ice type was used
while maintaining the proportion of the samples from each class. The confusion matrix is
shown in Table 2.
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Figure 6. Sea ice classification results for the R3-15 scene using MSI-ResNet with a patch size of (a)
25 × 25, (b) 31 × 31, (c) 37 × 37, and (d) 43 × 43.

The user’s accuracy is the correctly classified pixels in a category divided by the total
number of pixels that are classified into that category. The producer’s accuracy is the
number of the correctly classified pixels of a category divided by the number of reference
pixels selected from the training data [40,41]. The overall accuracy combines these two
measures. The kappa coefficient takes the bias caused by sample size differences into
account, so that it can be used to evaluate the consistency between the model prediction
results and the actual classification results. A high kappa coefficient value means high
consistency. Table 2 shows that the overall accuracy and kappa coefficient reach their
maximum values (94.67% and 0.91, respectively) when the patch size is 31 × 31, and their
minimum values (89.53% and 0.83, respectively) when the patch size is 43 × 43. This means
that the patch size may add noise that hinders the development of the machine learning,
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and hence affects the classification accuracy. We recommend exploring the optimal patch
size to refine the accuracy of the classification.

Table 2. Sea ice classification confusion matrix for the R3-15 scene data based on MSI-ResNet with patch sizes of 25 × 25,
31 × 31, 37 × 37, and 43 × 43.

Patch Size Ice Type FI BI OW User’s
Accuracy (%)

Producer’s
Accuracy (%)

Overall
Accuracy (%) Kappa Fraction (%)

25 × 25
FI 565 19 6 95.76 90.98

90.53 0.85
46.18

BI 53 379 16 84.60 89.81 35.02
OW 3 24 213 88.75 90.64 18.80

31 × 31
FI 687 21 9 95.12 96.33

94.67 0.91
53.04

BI 21 341 3 93.42 90.21 27.04
OW 3 10 256 95.17 96.60 19.92

37 × 37
FI 473 25 1 94.79 91.67

90.10 0.85
48.98

BI 39 267 7 85.30 80.42 29.80
OW 4 40 316 87.78 97.53 21.22

43 × 43
FI 639 26 2 95.80 93.70

89.53 0.83
51.02

BI 36 296 5 87.83 77.28 25.74
OW 7 61 231 77.63 97.12 23.24

Considering all the examined patch sizes, the average user’s (producer’s) accuracies
for FI, BI, and OW are 95.37% (93.17%), 87.79% (84.43%), and 87.33% (95.47%), respectively.
When using the minimum and maximum patch sizes in Table 2, the variation range of the
user’s (producer’s) accuracy is 1.01% (5.35%), 8.83% (12.93%), and 17.54% (6.89%) for FI,
BI, and OW, respectively, and the corresponding variance is 0.25 (5.76), 16.04 (43.17), and
52.57 (10.53), respectively. The FI shows the highest classification accuracy, which remains
relatively steady with the changing patch size. The accuracy of BI is more variable than
that of FI, with the largest variance of the producer’s accuracy. The OW is most sensitive to
the patch size, and shows the highest accuracy variance.

The patch size of 31 × 31 was used in the subsequent exploration. The OW is overesti-
mated in all the patch sizes since its user’s accuracy is always lower than the producer’s
accuracy. As for the resulting fractions of these three ice surfaces (Table 2), the OW fraction
increases from 18.8% to 23.24% as the patch size increases, which is very different to the
fluctuations for FI and BI.

4.2. Experiments with Polarization Data Combination

The classification results for the R3-15 scene obtained by MSI-ResNet with different
polarization combinations and a patch size of 31 × 31 are presented in Figure 7, and the
corresponding confusion matrix is shown in Table 3. Noticeably, Figure 7d is the same as
Figure 6c. In these experiments, only one type of copolarization data (VV polarization) was
used. Additionally, as the VH and HV polarizations are physically reciprocal, only the VH
cross-polarization was considered.

Table 3 shows that the overall accuracy and kappa coefficient increase with the added
polarization data. The combination of the three polarizations results in the maximum
accuracy and kappa coefficient. The improvement over using VV only, VH only, and the
combination of VV + VH is 11.3%, 3.58%, and 3.55%, respectively. The worst discrimination
result is with the single VV polarization as the input data. The VH polarization leads to a
similar overall accuracy and kappa to that obtained from using the combination of VV and
VH polarization inputs, at around 91% and 0.85, respectively. This is an improvement of
about 7.7% and 0.15 (respectively) compared to the use of VV polarization only.

The average user’s (producer’s) accuracy for FI, BI, and OW is 89.51% (94.77%), 91.83%
(81.13%), and 88.65% (87.55%), respectively, when considering the VV, VH, VV + VH, and
VV + VH + HH polarization combinations together. This also shows the approximate order
of the feasibility of the identification of each surface.
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Figure 7. Sea ice classification results for the R3-15 scene (2017-06-17, 07: 37) using (a) VV, (b) VH, (c)
VV + VH, and (d) VV + VH + HH polarizations with a patch size of 31 × 31.

Table 3. Sea ice classification confusion matrix for the GF-3 QPS R3-15 mode data based on MSI-ResNet with different
polarization combinations.

Patch Size Ice Type FI BI OW User’s
Accuracy (%)

Producer’s
Accuracy (%)

Overall
Accuracy (%) Kappa Fraction (%)

VV
FI 786 129 54 81.11 93.46

83.37 0.70
54.27

BI 10 282 6 94.63 67.46 26.36
OW 45 7 190 78.51 76.00 19.38

VH
FI 689 30 24 92.73 92.98

91.09 0.85
64.20

BI 31 323 7 89.47 89.23 19.75
OW 21 9 235 88.68 88.35 16.05

VV + VH
FI 833 57 36 89.96 97.54

91.12 0.85
62.40

BI 17 292 4 93.29 78.28 21.07
OW 4 24 332 92.22 89.25 16.53

VV + VH + HH
FI 687 21 9 95.12 96.33

94.67 0.91
53.04

BI 21 341 3 93.42 90.21 27.04
OW 3 10 256 95.17 96.60 19.92

Using the single VV polarization, the classification of the BI surface type achieves the
highest user’s accuracy of 94.63% and the lowest producer’s accuracy of 67.46%. Most of
the BI is misclassified into the overestimated FI, as shown in Figure 7a and Table 3. The VH
polarization experiment results in similar user’s and producer’s accuracies for every ice
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type, as well as OW. The overall accuracy from using the copolarization VV data is higher,
especially for FI and OW discrimination. In short, when dual-polarization or multipolariza-
tion data are used for sea ice classification, the proportion of FI misclassification is greatly
reduced, which also improves the classification accuracy of BI and OW.

Almost all the ice types achieve the maximum user’s and producer’s accuracies with
the three polarizations as input data, except for the producer’s accuracy of BI, which
shows the highest value using the VV and VH polarization combination. Furthermore,
all the ice types show the minimum accuracy when using the copolarization input. The
classification accuracy for the VV and VH polarization combination is slightly higher than
that when using VH polarization only, but is very much better than the results obtained
when using the VV polarization. This confirms that using dual- or quad-polarization data
can improve the sea ice classification precision when compared to using single polarization
data. The improvements in the overall accuracy and kappa from dual to quad modes are
3.55% and 0.06, respectively.

Figure 8 shows the box-whisker plots of the backscatter coefficient statistics of the three
surface types from all the images in the R3 region based on the sea ice classification results
obtained using the MSI-ResNet method with the input of the VV, VH, and HH polarization
combination and a patch size of 31 × 31. The circles denote the median values. The values
corresponding to the upper and lower boundaries of each solid rectangle are the upper
quartile (Q3) and lower quartile (Q1), respectively, and Q3−Q1 is the interquartile range
(IQR). The upper and lower extremes of each box-whisker plot are the Q3 + 1.5*IQR and
Q3 − 1.5*IQR, respectively. The lower limits of the box-whisker plots in Figure 8 suggest
that the noise equivalent sigma zero (NESZ) values of the VV, VH, and HH polarizations
are approximately −33, −45, and −33 dB (near to the 40–42◦ incidence angle), which
are comparable values to those reported in previous GF-3 research [23,24]. The median
backscatter coefficient values of FI, BI, and OW in the VV polarization in Figure 8 are closer
together than in the VH polarization, which confirms that the classification performance
of the VH polarization is better than that of the VV polarization. The separation between
the three types in the HH polarization is better than that in the VV polarization, which
results in the overall accuracy being further improved when the three polarizations are
used together.
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Figure 8. The backscatter coefficient statistics for FI, brash ice (BI), and open water (OW) in the R3 region.

4.3. Application and Comparison
4.3.1. Classification of the R1-1 and R2-6 Scene Images

To further investigate the stability of the sea ice classification performance of GF-3,
another two sea ice classification experiments based on MSI-ResNet were conducted using
the R1-1 and R2-6 scene data. The related results are shown in Figure 9 and Table 4. For
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each experiment, the VV, VH, and HH polarization combination data were used with a
patch size of 31 × 31.
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Figure 9. Sea ice classification results obtained using (a) R1-1 and (b) R2-6 scene data based on
MSI-ResNet, with the VV, VH, and HH polarization data in a patch size of 31 × 31.

Table 4. Sea ice classification confusion matrices for the R1-1 and R2-6 scene data based on MSI-ResNet, and the R3-15 scene
data based on the LibSVM classifier.

Data
(Classifier) Ice Type FI BI OW User’s

Accuracy (%)
Producer’s

Accuracy (%)
Overall

Accuracy (%) Kappa

R1-1
(MSI-ResNet)

FI 480 9 10 96.19 97.76
94.62 0.92BI 11 269 33 85.94 96.76

OW 0 0 360 100.00 89.33

R2-6
(MSI-ResNet)

FI 838 38 9 94.69 98.70
94.23 0.90BI 11 283 22 89.56 87.08

OW 0 4 251 98.43 89.00

R3-15
(LibSVM)

FI 746 57 36 88.92 92.21
89.04 0.81BI 38 308 1 88.76 84.38

OW 25 0 222 89.88 85.71

The R1-1 images of the Beaufort Sea in late spring (Figure 2) contain many scattered
large ice floes with rough surface, scattered ice debris, brash ice, and extended open water
with a visible wave induced rough surface in the northwest part of the scene. On the
other hand, the R2-6 image (north of the Severnaya Zemlya archipelago in midsummer)
contains many small ice floes surrounded with crushed ice. The overall accuracies (kappa)
for those two areas are 94.62% (0.92) and 94.23% (0.90), respectively, which are as high as
the results for R3-15 when using MSI-ResNet (in Table 2). For each region, the FI shows the
best classification results from the aspect of both the user’s and producer’s accuracies. The
user’s accuracy for OW is much higher than the producer’s accuracy in these two cases,
unlike the case for the R3-15 scene, which indicates that the OW is slightly underestimated.
Moreover, the BI is overestimated in the R1-1 scene, with a relatively low user’s accuracy.

4.3.2. Comparison with the SVM Classifier

The results of the classification of the R3-15 (Table 3) scene obtained using MSI-ResNet
are compared to the results achieved using the LibSVM classifier [29] in Table 4, where
calibrated, filtered, and scaled VV, VH, and HH backscattering coefficients were used.
The related parameters for LibSVM used in this study were 8, 17, and 31 × 31 for the
displacement, quantization, and region size, respectively, based on former studies of the
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sea ice classification of SAR data [42]. The radial basis function was chosen as the kernel
for the application of LibSVM. The training data were 4000 FI pixels, 4000 BI pixels, and
4000 OW pixels. The classification results are displayed in Figure 10 and Table 4. The
results of the LibSVM classifier show an overall accuracy and kappa coefficient of 5.63%
and 0.1, respectively, which are both lower values than the results obtained from using MSI-
RestNet. In addition, the FI is overestimated when using the LibSVM method. Improving
the accuracy of FI detection may be the main direction of future optimization when using
this method by testing the sensitivity of the displacement, quantitative, region size, and
number of training samples.
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Figure 10. Sea ice classification result for the GF-3 QPS mode data based on LibSVM using the VV,
VH, and HH polarization data of the R3-15 scene.

4.3.3. Comparison with Sentinel-1 SAR Classification

For a comparison with the data of another SAR sensor, and to explore the applicability
of the MSI-ResNet method, a scene of near-coincident Sentinel-1A (S1A) EW swath mode
data, covering the GF-3 R3-15 to R3-18 scenes was processed using the MSI-ResNet classifier.
The S1A scene was acquired on 17 June 2017 at 08:17 UTC, which was 41 min later than
the GF-3 scene acquisition. The nominal cover is 400 × 400 km and the pixel spacing is
40 × 40 m. The EW mode at a slightly higher spatial resolution than the GF-3 QPS mode
data was adopted for the comparison as it is the only mode of S1A that covers the 18 scenes
of GF-3 data used in this study. The S1A Interferometric Wide mode data with a higher
resolution of 10 m are unavailable in the coverage of our research region. Figure 11a shows
the geographic location and coverage of the S1A scene (with the blue rectangular box). The
coincident coverage of S1A over the area of the R3-15 scene (the black box in Figure 11a)
was classified using the MSI-ResNet classifier, while the coincident coverages of scenes
R3-16, R3-17, and R3-18 (the red box in Figure 11a) were used for the training.

The S1A false-color image for scene R3-15 is shown in Figure 11b. Regardless of
the differences in the number of polarization channels and pixel spacing, the composite
images of both GF-3 and S1A in the same area of R3-15 are visually very similar. All the
polarization (HH and HV) images of S1A were radiometrically calibrated, Lee filtered, and
scaled before the training. The improved and effective denoising method proposed in [43]
was applied for the elimination of the additive and residual noise of the HV polarization.
The variation of the incidence angle across the extracted subimage of S1A was small and
therefore ignored. The patch size of 7 × 7 was found to have a better accuracy than 15 × 15
or 31 × 31 (not provided in the text), and was adopted for the S1A classification experiment.
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The accuracy assessment method of stratified random sampling was also applied for the
S1A data.
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Figure 11. (a) Location of the near-coincident Sentinel-1A Extra Wide (EW) image mode data, with
the GF-3 R3 scenes included. (b) The colocated and coincident S1A false-color image (with RGB
represented by HH, HV, and HV channels, respectively) over the R3-15 scene. The sea ice classification
results of the Sentinel-1A and GF-3 data are shown in (c) and (d), respectively.

The classification image from S1A in Figure 11c is compared to the classification data
from GF-3 R3-15 in Figure 11d which is the result of GF-3 with dual-polarization data
(HH and HV) as the input in the MSI-ResNet classifier. Qualitatively speaking, the results
are similar. The quantitative classification confusion matrix is presented in Table 5. The
application of MSI-ResNet to the S1A data results in good discrimination of large ice floes
and OW, with a user’s accuracy of 89.16%, and 87.82%, respectively, which is comparable
with the GF-3 results obtained using dual-polarization inputs, as shown in Figure 11d.
Nevertheless, this approach is weaker in identifying the scattered tiny ice floes surrounded
by BI, when compared with Figure 11d, which causes the overestimation of BI. This can
be attributed to either the similar backscatter coefficients in the sea ice mixed region, the
training data labeling or the patch size selection. In general, the GF-3 QPS mode data can
capture more specific details in the discrimination of sea ice classification, especially for
the scattered ice floes, than the S1A EW mode data with the MSI-ResNet method.
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Table 5. Sea ice classification confusion matrix for the Sentinel-1A scene of the R3-15 scene and the GF-3 R3-15 scene based
on MSI-ResNet.

Data
(Method) Ice Type FI BI OW User’s

Accuracy (%)
Producer’s

Accuracy (%)
Overall

Accuracy (%) Kappa

Sentinel-1A
(HH + HV)

FI 658 54 26 89.16 89.52
88.03 0.79BI 64 411 1 86.34 87.26

OW 13 6 137 87.82 83.54

GF-3
(HH + HV)

FI 750 54 10 92.14 96.53
92.08 0.84BI 25 312 4 91.50 81.46

OW 2 17 240 92.66 94.49

5. Discussion

In this study, we used 18 scenes acquired by the polarimetric SAR sensor onboard the
Chinese GF-3 satellite to classify sea ice in late spring and summer in the Arctic Ocean,
with the assumption that all the scenes have the same surface cover types, namely, floe
ice, brash ice, and open water. The warm weather in summer induces flooding or snow
melting of the ice floe surfaces, which lowers the backscatter of the ice floe surfaces. It
also causes the melting of thin FYI and thus the expansion of the open water area, which
increases the mobility of the ice floes and leads to formation of more brash ice. The study
was limited in data and space, using only the 18 available scenes acquired over four days
from three regions. The wind speed during the data collection did not exceed 6 m/s, and
the incidence angle range across the 30-km swath of each scene was less than 3◦. We believe
that this study is the first attempt to investigate the performance of GF-3 data in sea ice
classification. Therefore, in this paper, it was necessary to provide comparisons with the
other sensors used in previous studies.

Areas of low backscatter intensity, such as the flooded or snow melting surfaces of sea
ice, are usually contaminated by system noise. The NESZ is a measure of the sensitivity of a
given SAR system to areas of low backscatter [44]. Low backscatter areas, especially under
low wind, large incidence angle, and cross-polarization conditions, can be well observed
by SAR systems, with low NESZ values [45]. The empirically estimated NESZ values for
GF-3 QPS mode shown in Figure 8 (under a wind speed of <6 m/s and an incidence angle
of about 40◦) are very low, and are comparable with the NESZ values of other C-band
SAR sensors at the same incidence angle, e.g., −33 dB (HH, VV) and −34 dB (HV, VH)
for Radarsat-2 fine quad mode data [46] and lower than the −22 dB for S1A EW mode
data [45,47]. Notably, the low NESZ achieved by the cross-polarization denotes the good
observation capabilities of GF-3 quad-polarization data in polar sea ice monitoring.

The backscatter coefficient is an essential parameter for surface classification in SAR
images. It is triggered by different scattering mechanisms [48], and is affected by the
surface properties, sensor parameters, and viewing geometry. Backscatter in measured in
terms of its intensity, phase, and polarization. The polarization is particularly important
when discriminating ice from the surrounding open water. This is because the ice surface
may depolarize the backscatter if the surface becomes deformed or very rough, while the
water surface does not depolarize the backscatter, no matter how wind-roughened the
surface is [33]. The cross-polarization observations have been recognized as a good tool
to discriminate sea ice from open water [49–51]. The reduced sensitivity to changes in
incidence angle makes cross-polarization observations more suitable for sea ice classifi-
cation [45,52]. Therefore, the use of σ0

hv in this study resulted in an improvement of the
overall accuracy (Table 3). The ocean clutter is more suppressed in σ0

hh than in σ0
vv, which

makes the former better in ice–water discrimination [53]. This is also shown in the results
of σ0

vv+σ0
vh (Table 3) and σ0

hh+σ0
hv (Table 5).

There are some SAR ice classification studies that have been conducted for summer ice
types although they overlap between the ice types as they become covered with wet snow
or flooded surfaces. Park et al. [54] applied a new proposed semiautomated SAR-based
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sea ice classification scheme on the S1A EW data for classifying three summer ice types
in the Fram strait region with an overall accuracy of 68%, and an ice–water discrimina-
tion accuracy of 98% which is comparable with the accuracy of about 90% acquired by
Zhang et al. [55] using a mixture statistical distribution based conditional random fields
model. Singha et al. [56] studied the influence of melting on sea ice classification and
recommended an independent training for different seasons using ALOS-2 PALSAR data
based on an artificial neural network method. By the use of NASA’s airborne AIRSAR
system in March over the Beaufort Sea, the results reported in [57] showed that C-band
fully polarimetric data can achieve a 9% and 7% improvement over single-polarization
(σ0

vv) and dual-polarization (σ0
vv+σ0

hh) data in sea ice classification, respectively. This study
was based on the maximum a posteriori classifier. The results of the present study showed
that, by using the full-polarization parameters (σ0

vv+σ0
vh+σ0

hh) within a machine learning
scheme, an improvement of 11.3% in classification accuracy over the accuracy obtained
when using a single polarization (σ0

vv) can be achieved (Table 3).
In addition to the direct usage of backscatter intensity, some studies have combined

other information, such as the autocorrelation and the cross- and copolarization ratio
and difference, to pursue a better performance [58–60]. Other studies have used an-
other set of polarimetric parameters based on decomposition of the coherence or co-
variance matrices derived from vectors composed of elements of the scattering matrix.
These include eigen decomposition of the coherence matrix and the generated canonical
entropy/anisotropy/alpha-angle parameters [10,11,13,61]. These parameters are indicators
of the power of the three main scattering mechanisms, i.e., surface, volume, and double-
bounce. In the present study, we did not use such parameters, in order to focus on testing
the use of machine learning using the more traditional backscatter parameters, i.e., σ0

hh,
σ0

vv, and σ0
vh. The sea ice classification accuracy of the other SAR sensors based on machine

learning is described below, for comparison.
Zakhvatkina et al. [62] used the average backscatter value and eight texture features

from ENVISAT ASAR wide-swath mode data based on a three-layer neural network
method, and obtained an overall accuracy of 80% for four winter ice types. Liu et al. [63]
applied the ice concentration and selected texture features for the second SVM iteration
based on RADARSAT-2 ScanSAR mode data. This resulted in an overall accuracy of
91.74% for five late autumn ice types. Song et al. [17] applied the S1-ResNet method
with 14 layers built on ResNet to the S1A EW HH polarization data, and achieved an
overall accuracy of 90.3% and a kappa coefficient of 0.86, respectively. MSI-ResNet is also
built on the ResNet structure, but our classification accuracy for S1A EW data is slightly
lower. However, the differences in the design of the network, training data generation,
and validation data make a direct intercomparison difficult. The performance for the other
frequencies is also presented here, for comparison. Ressel et al. [64] applied the input of the
co-pol ratio and other selected polarimetric features to the openly accessible fast artificial
neural network (FANN) based on TerraSAR-X StripMap mode data, resulting in an overall
accuracy of 95% for three spring sea ice classes and open water. Aldenhoff et al. [58]
used the inputs of the σ0

hh and σ0
vh backscatter intensities, the σ0

vh/σ0
hh polarization ratio,

and the σ0
vh autocorrelation from the ALOS-2 PALSAR-2 wide-beam dual-mode data in

a three-layer neural network. This resulted in an overall accuracy of 84.17% for ice and
water classification.

Notably, most of the above-mentioned studies used data from the winter in the Arctic
region. Since a neural network can establish the intrinsic connection between input/target
pairs when they are well associated [65], the potential of expanding the present technique
to winter ice data from GF-3, when such data become available, is a possible direction of
future study.

6. Conclusions

In this study, a deep neural network method based on the ResNet deep learning
structure was developed to classify late spring and summer sea ice types in GF-3 QPS
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mode satellite data obtained with a moderate incidence angle and at low sea surface
wind conditions. The method, which is called MSI-ResNet, features 10 layers, and is
aimed at performing classification of the three late spring and summer ice categories, i.e.,
FI, BI (between ice floes), and OW. The FI category was chosen because the backscatter
from FYI and MYI are similar in the melt season. Experiments to test the effect of the
patch size inherent in the algorithm and the different polarization combinations for the
input were undertaken using SAR scenes from the Fram Strait. Another two groups
of data from the Beaufort Sea and the north of the Severnaya Zemlya archipelago were
used to further validate the classification performance. In addition, a comparison of the
classification results was conducted using the results obtained from another classifier (the
LibSVM method) and another sensor (Sentinel-1A). The classification accuracy in all the
experiments was estimated by using visual interpretation of the images and stratified
random sampling from the identified classes.

Based on the MSI-ResNet method, the patch size experiments indicated that the classi-
fication accuracy does not linearly increase with an increase in the patch size. The optimal
overall accuracy for the three categories (4.15–5.14%) and kappa coefficient (0.06–0.08)
were obtained with a patch size of 31 × 31. The OW was shown to be the most sensitive
surface type to patch size. Meanwhile, the OW category was found to be overestimated in
each patch size since the BI type tends to be misclassified as OW. On the other hand, FI
was found to be less sensitive to the patch size and obtained the highest user’s accuracy,
which was 7.58–8.04% higher than that of BI and OW. Most of the misclassified pixels were
between the FI and BI surface types.

The polarization combination experiments showed that the input combination of the
three polarizations produces an improvement in the overall accuracy, kappa coefficient
and the accuracy of the FI, BI, and OW surface types. The combination of VV and VH
polarizations produced a much better improvement than the use of VV polarization only,
but an insignificant improvement over the use of VH polarization only. The average overall
accuracies of all three categories when using VV, VH, and VV + VH were 83.37%, 91.09%,
and 91.12%, respectively. The VV polarization was found to overestimate FI, while the VH
polarization produced a better classification accuracy for this category. The combination of
the three polarizations also produced a high accuracy in the other scenes from the Beaufort
Sea (R1-1), the scenes near the Central Arctic (R2-6), and the From Strait (R3-15) scene. Sea
ice classification of GF-3 QPS mode data based on MSI-ResNet also performed better than
the simple LibSVM classifier.

The GF-3 QPS mode data showed similar details for the scattered FI compared with
the coincident S1A EW mode data in the same area of R3-15. Comparable classification
results for FI and OW were obtained using MSI-ResNet with input from S1A (HH + HV)
or GF-3 QPS (HH + HV). Considering that the GF-3 QPS mode data and the S1A EW
mode data have the same magnitude of spatial resolution, the overestimation of the BI
and its relatively low overall accuracy presented in the result for S1A imply that the newly
designed deep learning model (MSI-ResNet) based on the ResNet structure, as presented
in this paper, is more suitable for the GF-3 QPS mode data.

The different performances of MSI-ResNet with different patch sizes may be caused
by the fading of the sharp boundaries between the FI and BI especially in the areas of small
ice floes. This also makes it hard to visually identify the two ice types. However, there are
sharp boundaries between the BI and OW. Therefore, if the extent of one type changes the
other will change in the opposite direction.

Further investigation is recommended for future work. In addition to the patch size,
other factors that may affect the classification accuracy of the MSI-ResNet method remain
to be explored, such as the depth of the neural network model and the size of the sample
number. To date, only summer data are available for GF-3. In the future, with the GF-3
QPS mode data of other seasons, a more comprehensive analysis should be performed
to assess the classification accuracy for winter ice types. The optimal usage of LibSVM
for GF-3 classification also has potential for improvement. In summary, the results of this
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study have shown that GF-3 QPS mode data can be used to classify summer sea ice types
in the Arctic, with an accuracy that is comparable to that obtained with near-coincident
Sentinel-1A EW swath data.
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