
remote sensing  

Article

Mapping and Monitoring the Multi-Decadal Dynamics of
Australia’s Open Waterbodies Using Landsat

Claire E. Krause * , Vanessa Newey , Matthew J. Alger and Leo Lymburner

����������
�������

Citation: Krause, C.E.; Newey, V.;

Alger, M.J.; Lymburner, L. Mapping

and Monitoring the Multi-Decadal

Dynamics of Australia’s Open

Waterbodies Using Landsat. Remote

Sens. 2021, 13, 1437.

https://doi.org/10.3390/rs13081437

Academic Editor: Yang Hong

Received: 22 February 2021

Accepted: 3 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Geoscience Australia, Canberra, ACT 2609, Australia; Vanessa.Newey@ga.gov.au (V.N.);
matthew.alger@ga.gov.au (M.J.A.); Leo.Lymburner@ga.gov.au (L.L.)
* Correspondence: claire.krause@ga.gov.au

Abstract: Water detection algorithms are now being routinely applied to continental and global
archives of satellite imagery. However, water resource management decisions typically take place
at the waterbody rather than pixel scale. Here, we present a workflow for generating polygons of
persistent waterbodies from Landsat observations, enabling improved monitoring and management
of water assets across Australia. We use Digital Earth Australia’s (DEA) Water Observations from
Space (WOfS) product, which provides a water classified output for every available Landsat scene,
to determine the spatial locations and extents of waterbodies across Australia. We generated a
polygon set of waterbodies that identified 295,906 waterbodies ranging in size from 3125 m2 to
4820 km2. Each polygon was used to generate a time series of WOfS, providing a history of the
change in surface area of each waterbody every ~16 days since 1987. We demonstrate the applications
of this new dataset, DEA Waterbodies, to understanding local through to national-scale surface
water spatio-temporal dynamics. DEA Waterbodies provides new insights into Australia’s water
availability and enables the monitoring of important landscape features such as lakes and dams,
improving our ability to use earth observation data to make meaningful decisions.

Keywords: water; Landsat; WOfS; dams; waterbodies; data cube

1. Introduction

Water availability and security is a key consideration for humans and natural ecosys-
tems world-wide. Competing demands for limited water resources between human con-
sumptive use and ecosystems is already placing many natural systems under stress [1–5].
Water resource conflicts between neighbouring nations are already occurring, and these
conflicts are likely to worsen as climate change increases the uncertainty in rainfall and
evapotranspiration [6–8].

In Australia, the world’s driest inhabited continent, water availability is a key social,
environmental and economic issue affecting the lives of millions of Australians. Australia
has an extensive surface water monitoring network in place, consisting of stream gauges
and publicly owned water storage monitoring. While these surface monitoring networks
consist of tens of thousands of instruments, Australia’s large land area and ephemeral
surface water mean that large parts of its surface water network remain unmetered.

Multi-decadal archives of satellite imagery provide insight into water resource avail-
ability in two key ways. Firstly, they have the ability to map and monitor catchment-wide
and continent-wide surface water dynamics, supplementing or replacing surface networks
in data-sparse regions [9–11]. Secondly, the multi-decadal perspective of these archives
means that the changes in surface water that are currently taking place can be placed into
the context of historical surface water dynamics [12,13]. Satellite data from public-good
satellites such as the Landsat series are freely available and global in coverage [14–16],
facilitating global-scale analysis of inland surface water [12,13,17,18]. Australia-specific
surface water studies have also been carried out, which detect the frequency of water
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across the landscape [19,20], as well as map the locations of seasonal and permanent
waterbodies [21,22].

Whilst information about the presence/absence of water provides valuable insight into
multi-decadal surface water dynamics, further analysis is required to make the information
content more accessible to water managers. This is because water management decisions
are typically based on waterbodies (dams, lakes, river reaches, refugial pools) rather than
pixels. Waterbody mapping with satellite imagery has almost exclusively been done on
a pixel-by-pixel [12,13,18,20,21,23,24] (or sub-pixel [25–28] basis), with only a few studies
delineating waterbodies as vector objects [29–32]. The delineation of waterbodies provides
an object-based analysis, which characterises the dynamics of the whole waterbody, not
its individual pixels. This allows analysis of waterbody characteristics such as the change
in surface area over time [24,33], facilitating study of the events observed to be impacting
individual waterbodies [33]. This in turn allows environmental water managers to eval-
uate the efficacy of environmental flow events in providing aquatic ecosystem provision
objectives [34].

Analysing surface water dynamics with respect to individual waterbodies depends on
the availability of a waterbody polygon set. In previous studies waterbody polygons have
been generated from pre-existing cartographic coverages [35], or from a select number of
cloud-free images [31,36]. The key limitation of these approaches is that the polygon sets
are dependent on line work derived from either a single point in time [35] or reference
imagery from a narrow range of dates [31,36]. This limits the ability of these approaches to
identify ephemeral or recently formed waterbodies.

The combination of ‘analysis ready data’ [37] with large scale Earth observation
analytics platforms such as Google Earth Engine [38] and Open Data Cube [39] now make
it possible to analyse all available water observations to derive a waterbody polygon set.

The aim of this paper is to describe the use of Digital Earth Australia (the Australian
instance of Open Data Cube) [39] to identify inland waterbodies across Australia and to
characterise the change in their surface area from 1987–2018 for the purposes of providing
river regulators, environmental water managers, agricultural water users and catchment
managers with a common, transparent, and shared understanding of Australia’s surface
water resources. The specific objectives are to:

1. Use Water Observations from Space (WOfS) [19] inundation frequency from 1987–
2018 to generate waterbody polygons delineating each waterbody’s maximum surface
extent over this period.

2. Quantify the time series of water surface area for each polygon for all available
Landsat observations (1987–present).

3. Demonstrate how these polygon-specific time series can be aggregated to provide
insight into water availability.

The DEA Waterbodies interface is publicly available via DEA Maps (https://maps.
dea.ga.gov.au/, accessed on 31 March 2021), ensuring that routine, robust, and repeatable
information about Australia’s waterbodies remains current and openly available.

2. Materials and Methods
2.1. Study Area

Australia is the driest inhabited continent on Earth. Australia’s climate spans Koppen
climate zones from tropical rainforest to hot desert and temperate climates (Figure 1).
Australia experiences highly variable rainfall patterns driven by multiple large-scale climate
drivers [40] as well as shorter-lived weather events [41,42]. The amount of surface water
across the Australian continent at any point in time is hard to determine, however some
estimates exist from remotely sensed data [19,43] and surface hydrology networks [44].

https://maps.dea.ga.gov.au/
https://maps.dea.ga.gov.au/
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Figure 1. Koppen climate classification of Australia adapted from [45].

2.2. Satellite Imagery

DEA is a data platform created within Geoscience Australia that generates analysis-
ready satellite data that can be used to monitor changes in Australia’s land surface over
time [39,46]. DEA provides free and open earth observation data from two public-good
satellite programs: Landsat [47] and Sentinel 2 [48]. The Landsat program, operated by
the United States Geological Survey and National Aeronautics and Space Administration
(NASA), consists of three multi-spectral satellites/sensors: Landsat 5 TM (1984–2013),
Landsat 7 ETM+ (1999–present), and Landsat 8 OLI (2013–present). These sensors have a
30 m pixel resolution, and image the Earth every 16 days on average. Landsat 5 TM was
operational from 1984, however routinely collected data from 1987 to 2011, before being
decommissioned in 2013 [49]. The Landsat 7 ETM+ and Landsat 8 OLI missions are still
operational, however a failure of the scan-line corrector in Landsat 7 ETM+ in May 2003
means that imagery acquired by the satellite after this date has stripes of missing data, as
no gap-fill algorithm is applied to this data. These missing data have some effect on the
overall quality of the data from this satellite, however the data present can still provide
valuable insights into surface changes across Australia [50], particularly when combined
with data from Landsat 8 OLI.

The raw satellite data from the Landsat missions have been corrected, standardised,
and orthorectified to produce an archive of analysis-ready data at 25 m pixel resolution [39,46].
This data can be accessed using the Open Data Cube API [51] via DEA, allowing automatic
extraction and processing of the Earth observation archives.

2.3. Water Observations from Space (WOfS)

Water Observations from Space (WOfS) is a water detection algorithm that classifies
each cloud-masked, observed pixel into wet, dry or invalid (i.e., cloud obscured, high slope)
for all available observations through time [19]. WOfS uses a decision tree based on a
series of Landsat band ratios and ancilliary datasets such as valley bottom flatness and
pixel quality. This additional information provides an extra degree of validation for the
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decision tree classifications, over more basic band ratio water classifiers like the normalised
difference water index (NDWI).

The WOfS classifier has a high overall degree of accuracy (97%) in correctly classifying
the presence of water, however this accuracy decreases where there are water and other
targets, particularly vegetation, occurring within the same pixel. WOfS is most effective
where there is a clear, unobstructed water surface that has been sampled by the satellites,
and is known to misclassify areas where water and vegetation co-exist as dry, such as
wetlands and riparian zones.

WOfS is run on the Landsat archive by DEA, providing a 32-year history of water
classified pixels for all of Australia. We make use of this archive to identify where pixels
have been frequently mapped as wet using the WOfS classifier to generate a map of surface
waterbodies across Australia.

3. Workflow

Our methodology takes advantage of WOfS data within DEA to locate and extract
information about persistent waterbodies across Australia. The workflow is written in
Python, and has been almost completely automated to minimise subjective decision making
and ensure reproducibility, allowing the workflow to be run repeatedly with the same
outcome. The code used to produce DEA Waterbodies is open source, and provided for
use under an Apache Licence, Version 2.0 (see Appendix A).

The workflow is built off the WOfS Statistics dataset [52]. The WOfS Statistics
dataset provides a pixel-by-pixel count of clear observations (i.e., not impacted by cloud,
cloud shadow, or other satellite acquisition issues), wet observation counts (total number
of times a pixel was observed as wet over the archive period), and a frequency statistic
that provides the number of wet observations as a percentage of the number of clear
observations over the period 1987–2018. The frequency statistic provides an indicator of
how often water is observed in each pixel over this time period, and it is this product that
forms the basis of this workflow.

In order to turn the WOfS frequency statistic into automatically generated polygons
of waterbody locations, a series of steps need to be applied to remove erroneous data, and
to map only the areas of water that meet specified thresholds. The decision tree used to
produce DEA Waterbodies is shown in Figure 2. A detailed description of the methodology
is included in Appendix A.
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The workflow for DEA Waterbodies consists of ten steps:

1. Check each pixel has been observed ≥128 times over the period 1987–2018 (equates
to at least four observations per year of analysis) to exclude pixels that are very
infrequently observed.

2. Check each pixel meets a wet frequency threshold, to define waterbodies only where
water persists in the landscape. We used two thresholds to generate two wet layers: 5%
and 10%. These two thresholds were used in combination to ensure that infrequently
inundated portions of larger waterbodies were included in the final polygons (see
Appendix A).

3. Turn wet pixels into polygons. This facilitates an object-based, rather than a pixel-
based analysis.

4. Merge polygons artificially cut by tile boundaries. Tile boundaries are an artefact of
the way the data are stored and adjoining waterbodies need to be connected.

5. Filter polygons by minimum size. We applied a five Landsat pixel (25 by 25 m)
minimum size limit (3125 m2).

6. Remove polygons containing ocean. We applied a custom ocean mask to remove
ocean and ocean-connected waterbodies from the final dataset.

7. Remove polygons within city centres. The WOfS classifer can mistake deep shadows
from high-rise buildings for water, so we remove any waterbodies identified within
high-rise city regions.

8. Find polygons within the 5% wet frequency threshold layer that intersect with the
10% wet frequency threshold layer. The locations of the waterbody polygons are
defined by the 10% wet frequency threshold, but the extent of the polygon is defined
by the 5% wet frequency threshold.

9. Use the Polsby–Popper test [53] to identify and manually split very large polygons.
The Polsby–Popper statistic was used as an objective means of identifying very long
and/or complicated polygons for manual curation.

10. Generate a geohash identifier for each polygon. A geohash was used to generate a
unique identifier for each mapped waterbody polygon.

The resulting waterbody polygon dataset represents the maximum extent of water-
bodies across the Australian landscape from 1987–2018. The wet frequency thresholds have
been chosen to include locations that are infrequently, but repeatedly wet, while excluding
short-lived and infrequent events like flash flooding (see Appendix A).

4. Time Series Extraction for Each Polygon

Each individual waterbody polygon was interrogated to return a time series of wet
surface area through time. The WOfS classifier can be run on individual Landsat scenes
to get a snapshot of water/not water for every satellite acquisition since 1987. We used
the waterbodies dataset to perform polygon drills, whereby the individual waterbody
polygons were used to ‘drill’ through the stack of water classified Landsat imagery through
time, to produce a 32-year history of water surface area (Figure 3). Only scenes where at
least 80% of the total waterbody was clearly observed were included to minimise erroneous
results caused by cloud, Landsat 7 scan-line off missing values or swath boundaries.
Each waterbody time series provides insights into the percentage of each total polygon
area that is observed as wet for each satellite observation. Given that the waterbody
polygons represent a maximum area for each waterbody, it is common for only part of
the whole polygon to be observed as wet. Depending on the shape and nature of each
polygon, some polygons will regularly be observed as 100% wet area or 100% dry area
(e.g., constructed on-farm storages), while some polygons will never be completely dry
(e.g., most large water reservoirs) or completely wet (e.g., large inland lakes like Kati
Thanda–Lake Eyre).

The time series associated with each waterbody is stored in a separate CSV file,
named according to the polygon geohash. Each CSV file is updated as new WOfS data
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become available, providing an operational picture of the changing wet surface area of
each waterbody over time.

Due to the 2D nature of satellite imagery, this information is only available for surface
area, and not for waterbody volume. For steep-sided waterbodies (for example, constructed
water storages), a negligible change in surface area may equate to a large change in total
waterbody volume. Despite this, the surface area change in water extent provides powerful
insights into the timing of filling and emptying events.
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Figure 3. Conceptualisation of the time series extraction for each polygon. (a–c) At each individual
time step, the percentage surface area of water (indicated in blue) within each waterbody polygon
(outlined in red) was calculated, producing a time series (d) of the change in surface water extent for
each waterbody since 1987.

5. Results
5.1. Validation
5.1.1. Polygon Validation

We compared polygons from DEA Waterbodies to those from the Bureau of Meteo-
rology Australian Hydrological Geospatial Fabric (Geofabric). The Geofabric is Australia’s
most comprehensive hydrological cartography product: a digital database of surface and
groundwater hydrological features, including the spatial relationships between them [54]. It is
described as a ‘digital street directory of Australia’s important water features’ ([55], p. 2).
Waterbody polygons contained within the Geofabric are taken from the Surface Hydrology
Database [56], which is composed of datasets from state government agencies from satellite
imagery, aerial imagery, fieldwork, digital elevation models and other data sources. The Geo-
fabric represents the best available, nationally recognised and extensively quality controlled
dataset of Australian waterbodies, and as such, is the most suitable dataset for validation of
DEA Waterbodies polygons.

The overall distribution of waterbody size is very similar between DEA Waterbodies
and the Geofabric. DEA Waterbodies misses waterbodies smaller than 5 Landsat pix-
els (3125 m2) which we explicitly filtered out (Figure 4). However, DEA Waterbodies
maps more small waterbodies above this threshold. There are likely two reasons for
this: first, complex waterbody boundaries may result in many small discrete waterbodies,
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rather than a single object; second, DEA Waterbodies identifies additional new waterbodies
not mapped in the Geofabric. Other discrepancies may come from the different methods
by which the products were created: waterbodies mapped in DEA Waterbodies must have
been observed to be wet in at least 10% of observations since 1987, as opposed to Geofabric
waterbodies, which are visually interpreted and may be no longer active or may not have
existed at the time of production.
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less than 0.1 km2.

We also performed a closer comparison on two regions, one near Moree NSW with
well-defined but dynamic farm dams, and one area dominated by salt lakes near Cranbrook
WA. The comparison between DEA Waterbodies and Geofabric polygons near Moree is
shown in Figure 5 and the comparison with Cranbrook salt lakes is shown in Figure A7.
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Figure 5. Difference and intersection between DEA Waterbodies and Geofabric in the Moree test area,
dominated by constructed farm storages. Differences have been smoothed and buffered by 10 m to
aid visibility.

The Moree comparison shows that almost all Geofabric waterbodies are also in-
cluded in DEA Waterbodies, with only minor differences along the edge of the polygon.
These minor differences are due to the pixel grid of Landsat compared to the smooth and
manually-curated Geofabric polygons. The Geofabric-only polygons in the northeast are
rarely active and do not fulfil the >10% wet pixel threshold to be included in DEA Water-
bodies. Additionally, DEA Waterbodies includes two large reservoirs that are not present
in the Geofabric. The larger reservoir is often dry for entire years, and the smaller reservoir
was wet only from 2016 to 2018, explaining why they were missed in the Geofabric. There is
also a large creek in the northwest which the Geofabric does not include, as it manages
streams separately to waterbodies. The Cranbrook comparison shows little difference in
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which polygons are identified, but some polygons are smaller in DEA Waterbodies than
in the Geofabric (Figure A7). This is due to salt lakes being misidentified as cloud in the
underlying WOfS dataset.

To perform a statistical comparison between DEA Waterbodies and the Geofabric,
we associated the polygons in DEA Waterbodies and Geofabric by searching for their
intersections, and assumed that intersecting polygons represented the same waterbody.
If for a given polygon in one dataset there were multiple intersecting polygons in the other
dataset, we assumed that all intersecting polygons were part of the same physical water-
body. We compared the areas covered by the waterbody in each dataset. The distribution
of the differences in area for each waterbody is shown in Figure 6. While most waterbodies
are very close in area between the two datasets (with a median deviation of 0.73% for
Moree and –8.11% for Cranbrook) DEA Waterbodies and the Geofabric are much more
consistent on constructed farm storages, compared to salt lakes, which tend to be smaller
in DEA Waterbodies. This highlights the difficulties in defining a boundary for natural
waterbodies, with DEA Waterbodies defining the polygon limit based on observed wet
history, compared to Geofabric, which is manually curated.

We tested the asymmetric difference between all polygons in the two test areas, and
computed the area of the result. This describes how much of each waterbody is contained in
the Geofabric but not in DEA Waterbodies and vice versa. The distributions of these areas
are shown in Figure A8. For the Cranbrook salt lakes, the difference in area is primarily due
to the difference in the polygon boundary as defined in the Geofabric that is not included in
DEA Waterbodies, largely due to the edges of salt lakes being masked as cloud. The Moree
test site is much more symmetric, with similar rates of omission and commission between
the datasets.
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Figure 6. Distribution of differences in area between DEA Waterbodies polygons and Geofabric
polygons for the Moree and Cranbrook test areas.

5.1.2. Surface Area Time Series Validation

Validation of the DEA Waterbodies time series (a wet surface area time series) is made
difficult by the lack of a comparable dataset to validate against. We chose to compare a sub-
set of DEA Waterbodies time series against gauged reservoir volume time series available
through the Bureau of Meteorology’s Water Data Online (WDO) service. WDO provides vol-
ume and depth measurements for gauges in approximately 360 reservoirs, dams, and weirs
around Australia. We selected a subset of 139 gauges for validation, based on the length of
the gauge record, the availability and quality of depth and volume measurements, and the
waterbody type (See Appendix B). We compared each volume time series to the surface
area time series from DEA Waterbodies using the Spearman ρ coefficient. The Spearman
coefficient measures the correlation of two datasets which have a positive monotonic rela-
tionship, regardless of whether that relationship is linear or otherwise. It can be assumed
that the relationship between waterbody surface area and volume is positive monotonic,
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making this statistic suitable for comparison of two different measurements (surface area
vs. volume), without the need to convert between them.

The locations and ρ values of the 139 gauges are shown in Figure 7. Most waterbodies
show good correlation with the gauge data, with ρ coefficients > 0.8. Waterbodies in
Tasmania show an overall poor relationship between DEA Waterbodies and WDO gauges.
The highland lakes in Tasmania have high tannin content, making them look dark, resulting
in very low levels of water leaving radiance. When combined with low solar angles this
results in near-zero surface reflectance values across both the visible and near/shortwave
infrared wavelengths. The normalised difference indices within the WOfS classification
algorithm are extremely sensitive to noise, resulting in areas of water being misclassified as
land. This causes the waterbody’s wet surface area observations to fluctuate as misclassified
land pixels are counted amongst the correctly classified water pixels Figure 7d).
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Figure 7. Validation of DEA Waterbodies time series. (a) Spearman ρ coefficients from the DEA
Waterbodies/WDO time series comparison. Waterbodies/gauges used to validate the DEA Water-
bodies time series, coloured by the Spearman ρ coefficient of the relationship. (b) Distribution of
Spearman ρ coefficients for all analyses. The individual gauges and their corresponding ρ are given in
Appendix C, in Table A1. (c) Lake Burrendong surface area in DEA Waterbodies and estimated from
WDO. (d) Lake St. Clair surface area in DEA Waterbodies and estimated from WDO. The surface
areas in (c,d) are scaled as a percentage of maximum waterbody extent in DEA Waterbodies.

To help visualise the comparison between WDO and DEA Waterbodies, we estimated
the surface area time series for each WDO volume time series using the volume and
depth gauge data. Figure 7c and d show the estimated WDO surface area time series
plotted alongside the DEA Waterbodies surface area time series for Lake Burrendong (New
South Wales) and Lake St. Clair (Tasmania) respectively. The Burrendong time series
(Figure 7c) shows very close agreement between the surface area time series modelled
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from the reservoir gauge and the surface area time series retrieved from Landsat. This is
reflected in its high Spearman ρ of 0.99. The time series diverge when the dam is close
to completely full. This may be due to steep slopes at the edges of the reservoir, or trees
obscuring the edges of reservoir blocking the water signal and generating mixed signal
pixels. The Landsat time series does not capture the 2012 filling event as this occurred in
the gap between Landsat 5 and Landsat 8.

The Lake St. Clair time series (Figure 7d) shows poor agreement between the surface
area time series modelled from the reservoir gauge and the surface area time series retrieved
from Landsat. This is reflected in its relatively low Spearman ρ of 0.33, and is a result
of a misclassification of water as land by WOfS. Based on the results of our analysis,
DEA waterbodies surface area time series for Tasmanian highland lakes should be treated
with caution. Such a pattern mainly occurs in the highland lakes of Tasmania, where Lake
St. Clair is located. This spatial pattern is apparent in Figure 7a. In future, the WOfS water
classifier will be revised to address the inaccuracies that can occur over dark waterbodies
at low solar angles.

5.2. Case Studies of DEA Waterbodies Insights

DEA Waterbodies provides an unprecedented level of insights into the spatial and
temporal dynamics of surface water across the Australian continent. The combination of
waterbody polygons with accompanying wet area observational time series provides an
opportunity to explore surface water dynamics at an individual waterbody, through to
national scale. The following section presents a series of case study results that demonstrate
the power of this dataset, though these do not represent an exhaustive analysis of the
insights available from DEA Waterbodies.

5.2.1. Per Waterbody

Individual waterbody time series provide insights into the change in wet surface area
of each waterbody across Australia, providing detailed information about the behaviour of
the waterbody over time and providing indirect insights into the nature of the waterbody
itself. The time series produced for each polygon corresponds well with the observed
percentage of the total surface area of each waterbody observed as wet at each time step
(Figure 8). These time series are most useful for indicating the timing of a change in the
surface wet area, since they do not provide insights into volume. The timing of filling
and emptying events is an important metric for understanding how waterbodies change
over time. These changes are not attributed in DEA Waterbodies, and could result from,
rainfall events, watercourse flooding, human management of a waterbody (e.g., pumping
into/out of a storage), groundwater processes etc.

In constructed waterbodies (e.g., Figure 8) the wet area time series provides an indica-
tive measure of the date the waterbody was constructed. The date that each waterbody
was first observed as having at least 50% of the total waterbody area classified as wet was
used as a proxy for construction date. Waterbodies that are natural and therefore not built,
or waterbodies constructed prior to 1987, can be expected to return a ‘build date’ that
corresponds to the first time they filled since our records began in 1987. A moderate La
Niña event occurred in 1988–1989, which could be expected to fill present waterbodies
across Australia’s east coast. We therefore discard any ‘build dates’ before 1990 to remove
the natural and existing waterbodies from this construction analysis, but recognise that
early dates may reflect water availability, rather than waterbody existence.

Prior to the construction of the storage in Figure 8, the associated time series shows
almost no open water signal. Examination of satellite imagery (not shown) indicates this
waterbody commenced construction in April 2000, and first began to fill with water in
November 2000, registering in the time series as nearly 100% ‘wet’ for the first time in
December 2000. This method can lead to bias towards very wet years, particularly in cases
where waterbodies were constructed, but not filled until a wet season a few years later.
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5.2.2. Per Region

Individual waterbody time series can be combined at the catchment scale to provide
insights into regional-scale catchment behaviours and trends. Water management is done at
multiple scales, and catchment-scale water management in Australia regularly corresponds
to government policies and decisions that have been implemented at this scale [57].

The Fitzroy Basin in Queensland is one of the state’s largest basins covering an area of
approximately 142,600 km2. The growth in the number of waterbodies mapped within the
Fitzroy Basin reflects the development of agriculture and mining in this region (Figure 9).
The recently constructed waterbodies in the northern part of the Fitzroy Basin are primarily
tailings dams from mining operations [58]. Insights into the growth of waterbodies within
a region provide an independent assessment of infrastructure growth, and can be used to
verify the installation of approved works and potentially flag unapproved works as well.
A recent paper by Malerba et al. [59] used DEA Waterbodies to explore the rate of large
storage construction across Australia since 1987.

5.2.3. National/Continental

Analysis of all the waterbody time series together allows us to develop a picture of
the changing nature of open surface water across Australia. The total area of waterbody
polygons is 87,548.7 km2, which is approximately 1% of the total land area of Australia.
The seasonal average wet area within all mapped waterbodies across Australia suggests
that there is never an occasion where all mapped waterbodies contain at least some water,
and there is a large degree of spatial variability in the spatial and temporal patterns of
waterbody wet events (Figure 10). Two similarly extensive wet events in 1989 and 2010
show large variations in the spatial patterns of wet waterbodies across Australia. The 1989
event shows wet areas dominating in the south of the continent, corresponding with a
weak La Niña event, while the 2010/11 event that coincided with a large La Niña event
shows wet waterbodies mainly in eastern Australia (Figure 10). Future work will explore
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the spatiotemporal relationships between DEA Waterbodies and large-scale climate drivers
like El Nino Southern Oscillation, Indian Ocean Dipole, and the Southern Annular Mode.
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Figure 10. National-scale seasonal wet area statistics. The bar chart at the top indicates the total wet
surface area (average of all wet pixels inside waterbody polygons each year), the total dry surface
area (average of all dry pixels inside waterbody polygons each year), and the total area of polygon
waterbodies that was unobserved (average of all unobserved pixels inside waterbody polygons each
year e.g., cloud, Landsat 7 scan-line off missing values etc.) for all waterbodies. The maps indicate
the spatial pattern of the percentage of each waterbody’s surface wet area at selected time steps.
The data gap in 2011/12 occurs between the Landsat 5 and Landsat 8 missions.
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6. Discussion
6.1. Accuracies and Limitations of DEA Waterbodies

Accuracies and limitations of DEA Waterbodies are largely inherited from WOfS,
with DEA Waterbodies a reanalysis and mapping product built off the WOfS datasets.
WOfS has a number of known limitations and these manifest as incorrectly mapped
waterbodies within this analysis. WOfS uses the spectral signature of water to classify wet
pixels and is known to be suboptimal in locations where water and vegetation are mixed.
This includes locations such as rivers with vegetated riparian zones and vegetated wetlands
(Figure 11). The effect of this can be seen by the discontinuity of narrower river features
identified within this analysis (Figure 11a), and by an under-representation of water within
vegetated wetlands, such as the Macquarie Marshes, NSW (Figure 11b).
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Other known WOfS limitations have been addressed through the filtering processes
used to produce the map of waterbodies. The size of mapped waterbodies is limited to
at least five Landsat pixels, removing small, isolated ‘water’ pixels. The size filtering
reduces the noise associated with the dataset by only focusing on larger groups of pixels.
Misclassification of water in deep shadows in high density cities has been handled by
removing any waterbody polygons identified within central business districts (CBDs).
Intermittently misclassified features, which return valid results only a handful of times
over the 32-year study period, are also filtered out by testing for the number of valid
observations returned for each pixel.

Despite this, some errors remain in the final waterbodies dataset. Steep terrain
shadows present a known difficulty for the WOfS classifier, due to the shadows produced.
While WOfS has attempted to mitigate this issue, some misclassification remains. We have
not specifically attempted to address these errors within this workflow, and as such,
a negligible number of the identified waterbodies may in fact be artefacts caused by terrain
shadow. A signal-to-noise ratio error over deeper water in the WOfS classifier has also
not been addressed here, and may result in some pixels missing from the centre of deeper
waterbodies, resulting in doughnut-shaped mapped polygons. Similarly, different water
colours may interfere with the decision-tree classifier, resulting in very turbid or coloured
waterbodies being omitted. For a full discussion of the limitations and accuracy of WOfS,
see Mueller et al., 2016.

Not all waterbodies across Australia have been identified by this product, and there
remain a number of known reasons why some waterbodies may have been missed:

1. They might be too small: DEA Waterbodies only maps waterbodies larger than
3125 m2 (five whole Landsat pixels).
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2. They might not have been wet enough: DEA Waterbodies only maps waterbodies
that have been observed as wet at least 10% of the time between 1987 and 2018. If a
waterbody fills very infrequently, it may not meet this threshold.

3. The waterbodies might have too much vegetation surrounding them: The WOfS
classifier does not work well where water is combined with vegetation. If there
is vegetation obscuring the water (like a tree leaning across a river, or a wetland),
the classifier will not see this as water and the waterbody may not be mapped.

4. The waters in the waterbodies are not classified as water: Sediment rich water or
other unusual water spectra [60], like those in algae-rich waterbodies can confuse the
WOfS classifier, resulting in the pixels being incorrectly classified as not water.

5. The waterbodies might be new: Waterbodies that have been constructed or modified
after 2016 may not be captured within this tool as they will not have been observed as
wet at least 10% of the time between 1987 and 2018. Future updates of this product
should capture newer waterbodies.

The automated nature of DEA Waterbodies identification and mapping means that
some artefacts exist in the waterbody outlines, which do not directly match the real-world
waterbody shape. Waterbodies have been mapped by DEA Waterbodies using the res-
olution of Landsat, so the outlines of every waterbody are pixelated, and may not be
an exact representation of the real-world shape of the waterbody. Since DEA Waterbod-
ies uses an automatic workflow utilising Landsat data to objectively map waterbodies,
we have chosen to leave the final waterbody line work pixelated to transparently iden-
tify which Landsat pixels have been mapped inside (and outside) of each waterbody
(Figure 12). Future iterations of DEA Waterbodies could make use of sub-pixel meth-
ods [25–28] or higher resolution imagery to better capture the true waterbody shape.
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as a single waterbody; (b) complex waterbody boundaries resulting in many small polygons rather
than a single large polygon; (c) incomplete waterbody outlines.

The relatively coarse spatial resolution of Landsat and WOfS has resulted in the loss
of some discontinuities like dam walls, causing multiple waterbodies to be mapped as a
single polygon (Figure 12a). This is most common where separating features like dam walls
or banks are relatively narrow, resulting in mixed water/land pixels being recorded over
these features, and losing the clear distinction between two waterbodies within the Landsat
data. Conversely, discontinuities in the water classifier caused by real world features such
as small discrete water pools, or spatial variability in the frequency of inundation within a
single waterbody, or limitations in the WOfS classifier as described above, have resulted
in waterbodies being mapped as a large number of small polygons, rather than a single
connected waterbody (Figure 12b), or the extent of the waterbody being incompletely
captured by the polygon (Figure 12c).

The production of DEA Waterbodies using an objective, coded workflow means that
as new data become available, the workflow can be easily re-run to update the analysis
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and improve the overall dataset quality. Future work that makes use of Sentinel 2 data
will increase the spatial and temporal resolution of the analysis, and assist in developing a
more accurate DEA Waterbodies map. Discontinuities caused by real world features could
be minimised in future data releases by removing holes from ‘doughnut-shaped’ polygons,
however this would require additional work to explore how much this process would
help improve the quality of the DEA Waterbodies map, rather than introduce new sources
of error.

Identified waterbodies are a combination of natural and man-made waterbodies,
and contain features such as rivers, lakes, water supply dams, on farm storages, wetlands,
oxbow lakes, and ponds. The DEA Waterbodies product does not identify the nature
of the waterbody (natural vs. man-made) nor its purpose. We also do not attempt to
label features that have a known name and instead use the geohash as a unique identifier.
This means that well known features such as Kati Thanda–Lake Eyre are not labelled with
their common name in this product, and are instead referred to just using their geohash
(e.g., r4ctk0hzm). DEA Waterbodies could be spatially joined with the Geofabric [61] to
attach names from previously mapped features, however differences in the extents of
mapped features between these two products may make this task difficult.

6.2. Comparison of DEA Waterbodies against Other Datasets

National-scale water mapping has been done previously over all of Australia, however
DEA Waterbodies represents the first, national-scale, satellite-derived polygon dataset of
waterbodies across the continent. Pekel et al., 2016 and Pickens et al., 2020 both present
global surface water maps, comparable to WOfS. Both of these products look at the fre-
quency of water for each individual pixel, but do not provide vector-based analyses of
surface water, making it more difficult to interrogate whole waterbodies. Pekel et al., 2016
and Pickens et al., 2020 provide the ability to generate a time series of water history for each
individual pixel, adding some time context to the water maps. While this functionality is
similar to DEA Waterbodies, our ability to track the surface area of water over time across a
whole waterbody provides insights into the behaviour of the waterbody as a whole, rather
than an arbitrary pixel within it.

The Blue Dot Water Observatory (https://www.blue-dot-observatory.com/; [62]
accessed on 31 March 2021) provides insights into the change in surface area of water,
much like DEA Waterbodies, however on a much more limited spatial and temporal scale.
The Blue Dot Observatory allows users to interrogate changes in the surface area of water
for 188 identified waterbodies across Australia (40,330 globally) using the archive of Sen-
tinel 2 data. The period of common data coverage between DEA Waterbodies and The Blue
Dot Observatory shows a high degree of similarity between the results derived from the
two products. This acts as an additional validation of our methods, which source different
waterbody extent polygons, use different water detection algorithms and use different
satellites to produce the outputs. The use of Landsat to derive the waterbody extents and
time series histories in DEA Waterbodies extends the length of the analysis back to 1987,
compared to Blue Dot Water Observatory’s five-year record from Sentinel 2.

6.3. DEA Waterbodies Applied Case Study

The development of a satellite-based waterbody map for all of Australia means that
regional and national-scale monitoring of the state of Australia’s surface waterbodies
can be carried out routinely. DEA Waterbodies is being used in the New South Wales
(NSW) Department of Primary Industries Monthly Seasonal Conditions State Seasonal
Update [63]. The State Seasonal Update is a monthly report containing an overview of the
current climate and drought state of NSW provided to government, industry, landholders
and the public. Data from DEA Waterbodies are resampled to a parish scale (to de-identify
the data) and mapped according to the average wet surface area within all storages in
that parish. This update provides an indication of stock water availability, as well as
the potential risk to agricultural water supply in the region. Insights gained from the

https://www.blue-dot-observatory.com/
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State Seasonal Update are being used by government to help inform drought mitigation
strategies and financial support [64].

7. Conclusions

DEA Waterbodies maps and monitors almost 300,000 waterbodies across Australia,
providing updating insights into the change in the wet surface area within each waterbody
over time. DEA Waterbodies also provides insights into the behaviour of individual
waterbodies over time, and can be used to gain insights into drought, regional-scale
development, water management practices, and water spatial variability. Future versions
of this product will make use of the higher temporal and spatial resolution of Sentinel
2 satellites to improve both the quality of the waterbody polygons themselves, and the
frequency with which they are observed. The provision of both the code used to develop
DEA Waterbodies and the outputs datasets under open-source licenses will facilitate future
work in this area, allowing others to build off the results presented here.

While DEA Waterbodies provides new insights into the change in surface water area
within waterbodies over time, water managers need to understand changes in water vol-
ume to input into water balance accounts. Future work will integrate DEA Waterbodies
with LiDAR data to derive surface area/volume curves for individual waterbodies, allow-
ing an uncertainty-bounded estimate of volume changes to be provided alongside changes
in wet surface area. This will make the product much more useful to water managers and
the water industry, who need to monitor and understand the movement of water volumes
within a catchment over time.

National-scale reporting on water availability is a critical metric for the United Nation
Sustainable Development Goal (SDG) six: clean water and sanitation. DEA Waterbodies
provides a mechanism for reporting against SDGs by providing snapshots in time of the
amount and spatial locations of surface water across Australia. Development of the product
to include volume estimates will also increase the relevance of DEA Waterbodies to this
type of national-scale reporting.
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Appendix A

Details of the methodology used to produce DEA Waterbodies is provided here to
facilitate reproducibility of the workflow. The code produced for this workflow can be
found here: https://github.com/GeoscienceAustralia/dea-waterbodies (accessed on 31
March 2021), and is open source, provided under an Apache Licence, Version 2.0.
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Appendix A.1. Step 1: Check Each Pixel Has Been Observed ≥128 Times

The maximum extent of each waterbody is identified using WOfS classified scenes
from Landsat from 1987 to 2018. The number of valid WOfS observations for each pixel
varies depending on the frequency of clouds and cloud shadow, the proximity to high slope
and terrain shadow, and the seasonal change in solar angle. The ‘count_clear’ parameter,
calculated within the WOfS all time summaries, provides a count of the number of valid
observations each pixel recorded over the analysis period. We can use this parameter to
mask out pixels that were infrequently observed. If this mask is not applied, pixels that
were observed only once could be included, if that observation was wet (i.e., a single wet
observation means the calculation of the frequency statistic would be (1 wet observation)/
(1 total observation) = 100% frequency of wet observations). A threshold for the number
of clear, valid observations needed to be determined to generate a filter to exclude pixels
that were not observed frequently enough over the 32-year analysis period. We chose to
set this threshold at 128 valid observations, equating to roughly four observations per year,
though we do not require that the timing of valid observations meets any temporal regularity.

Appendix A.2. Step 2: Check Each Pixel Meets 5% and/or 10% Wet Frequency Threshold

The WOfS Statistics was filtered to remove pixels that were infrequently wet, as we
wanted to define waterbodies where water persists in the landscape, rather than floodplains.
The threshold used to filter out low frequency wet pixels can be varied based on the required
sensitivity of the output to flood events. Similarly, this threshold could be set higher to
identify the locations of refugial waterbodies.

For this analysis, a sensitivity test was conducted to determine the effect of different
wet frequency thresholds on the number and size of resulting waterbody polygons. The wet
frequency threshold indicates how frequently a pixel needed to be observed as wet in
order to be included. A wet frequency threshold of 0.1 means that at least 10% of the total,
valid observations needed to be classified as ‘wet’. Five wet frequency thresholds were
tested: 0.01, 0.02, 0.05, 0.1 and 0.2. The suitability of each threshold was tested in three
separate locations, representing three different landcover types: desert floodplain, irrigated
cropping, combination of natural water and irrigated cropping.

The influence of the varying wet frequency thresholds on both the number and area of
identified waterbodies was explored (Figure A1). The lower the wet frequency threshold
applied, the larger both the number of total identified polygons, and the area of individual
polygons (Figure A1). The area distribution of identified polygons is consistent between
wet frequency thresholds, with the absolute number of polygons the changing parameter
(Figure A1a). The number and areas of polygons identified by the 0.1 and 0.05 thresholds
are relatively consistent, suggesting that these wet frequency thresholds result in similar
numbers and size distributions of waterbody polygons. The changing sensitivity of the
wet frequency threshold on the total area of waterbodies identified (Figure A1b), shows
an exponential relationship, highlighting the importance of finding the balance between
errors of omission and commission.

While an objective analysis of the suitability of different wet frequency thresholds
is preferred, the final decision on the wet frequency thresholds used was determined
based on looking at the suitability of the individual waterbody polygons identified by
each threshold. The outputs in Figure A2 demonstrate the impact of the wet frequency
thresholds on waterbody polygon locations and shapes, however the thresholding is
applied at the pixel level prior to turning adjoining pixels into polygons. The lowest two
thresholds (0.01 and 0.02), return a lot of noisy pixels that contain some striping from
Landsat 7’s scan line corrector failure, as well as a lot of small polygons that do not clearly
line up with waterbody features (Figure A2a). At the other end of the sensitivity thresholds,
0.2 was shown to be not sensitive enough, missing both the maximum extent of some
identified features, or missing whole waterbodies entirely (Figure A2b).



Remote Sens. 2021, 13, 1437 18 of 28

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 28 
 

 

found here: https://github.com/GeoscienceAustralia/dea-waterbodies (accessed on 31 
March 2021), and is open source, provided under an Apache Licence, Version 2.0. 

Appendix A.1. Step 1: Check Each Pixel Has Been Observed ≥ 128 Times 
The maximum extent of each waterbody is identified using WOfS classified scenes 

from Landsat from 1987 to 2018. The number of valid WOfS observations for each pixel 
varies depending on the frequency of clouds and cloud shadow, the proximity to high 
slope and terrain shadow, and the seasonal change in solar angle. The ‘count_clear’ pa-
rameter, calculated within the WOfS all time summaries, provides a count of the number 
of valid observations each pixel recorded over the analysis period. We can use this param-
eter to mask out pixels that were infrequently observed. If this mask is not applied, pixels 
that were observed only once could be included, if that observation was wet (i.e., a single 
wet observation means the calculation of the frequency statistic would be (1 wet observa-
tion)/(1 total observation) = 100% frequency of wet observations). A threshold for the num-
ber of clear, valid observations needed to be determined to generate a filter to exclude 
pixels that were not observed frequently enough over the 32-year analysis period. We 
chose to set this threshold at 128 valid observations, equating to roughly four observations 
per year, though we do not require that the timing of valid observations meets any tem-
poral regularity. 

Appendix A.2. Step 2: Check Each Pixel Meets 5% and/or 10% Wet Frequency Threshold 
The WOfS Statistics was filtered to remove pixels that were infrequently wet, as we 

wanted to define waterbodies where water persists in the landscape, rather than flood-
plains. The threshold used to filter out low frequency wet pixels can be varied based on 
the required sensitivity of the output to flood events. Similarly, this threshold could be set 
higher to identify the locations of refugial waterbodies. 

For this analysis, a sensitivity test was conducted to determine the effect of different 
wet frequency thresholds on the number and size of resulting waterbody polygons. The 
wet frequency threshold indicates how frequently a pixel needed to be observed as wet in 
order to be included. A wet frequency threshold of 0.1 means that at least 10% of the total, 
valid observations needed to be classified as ‘wet’. Five wet frequency thresholds were 
tested: 0.01, 0.02, 0.05, 0.1 and 0.2. The suitability of each threshold was tested in three 
separate locations, representing three different landcover types: desert floodplain, irri-
gated cropping, combination of natural water and irrigated cropping. 

 
Figure A1. Wet frequency threshold impacts on (a) the total number of individual mapped water-
bodies, (b) the total area contained within the individual mapped waterbodies. Individual scatter 
points represent integrations over different time periods from 1987 to 2018. 

The influence of the varying wet frequency thresholds on both the number and area 
of identified waterbodies was explored (Figure A1). The lower the wet frequency thresh-

Figure A1. Wet frequency threshold impacts on (a) the total number of individual mapped waterbodies, (b) the total area
contained within the individual mapped waterbodies. Individual scatter points represent integrations over different time
periods from 1987 to 2018.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 28 
 

 

old applied, the larger both the number of total identified polygons, and the area of indi-
vidual polygons (Figure A1). The area distribution of identified polygons is consistent 
between wet frequency thresholds, with the absolute number of polygons the changing 
parameter (Figure A1a). The number and areas of polygons identified by the 0.1 and 0.05 
thresholds are relatively consistent, suggesting that these wet frequency thresholds result 
in similar numbers and size distributions of waterbody polygons. The changing sensitiv-
ity of the wet frequency threshold on the total area of waterbodies identified (Figure A1b), 
shows an exponential relationship, highlighting the importance of finding the balance be-
tween errors of omission and commission. 

While an objective analysis of the suitability of different wet frequency thresholds is 
preferred, the final decision on the wet frequency thresholds used was determined based 
on looking at the suitability of the individual waterbody polygons identified by each 
threshold. The outputs in Figure A2 demonstrate the impact of the wet frequency thresh-
olds on waterbody polygon locations and shapes, however the thresholding is applied at 
the pixel level prior to turning adjoining pixels into polygons. The lowest two thresholds 
(0.01 and 0.02), return a lot of noisy pixels that contain some striping from Landsat 7’s 
scan line corrector failure, as well as a lot of small polygons that do not clearly line up 
with waterbody features (Figure A2a). At the other end of the sensitivity thresholds, 0.2 
was shown to be not sensitive enough, missing both the maximum extent of some identi-
fied features, or missing whole waterbodies entirely (Figure A2b). 

 
Figure A2. Waterbody polygons identified using the different wet frequency thresholds. The color 
of the polygon indicates the highest threshold that an area is identified by, e.g., if you see an area 
in pink, this has been detected by the 0.05, 0.02 and 0.01 thresholds; if it’s blue, then it has been 
detected by all thresholds etc. (a) All wet frequency threshold polygons. (b) 0.01 (yellow) and 0.02 
(green) thresholds removed. Locations missed by the 0.2 (blue) threshold are shown in pink/or-
ange. (c) Just 0.05 (pink) and 0.1 (orange) thresholds. Locations missed by the 0.1 (orange) thresh-
old are shown in pink. (d) Just 0.05 (pink) and 0.1 (orange) thresholds. Locations missed by the 0.1 
(orange) threshold are shown in pink. Legend for all figures as in (a). 

Both the 0.05 and 0.1 thresholds showed both errors of omission and commission, 
depending on the location in which they were applied. In a location with large areas of 

Figure A2. Waterbody polygons identified using the different wet frequency thresholds. The color of
the polygon indicates the highest threshold that an area is identified by, e.g., if you see an area in
pink, this has been detected by the 0.05, 0.02 and 0.01 thresholds; if it’s blue, then it has been detected
by all thresholds etc. (a) All wet frequency threshold polygons. (b) 0.01 (yellow) and 0.02 (green)
thresholds removed. Locations missed by the 0.2 (blue) threshold are shown in pink/orange. (c) Just
0.05 (pink) and 0.1 (orange) thresholds. Locations missed by the 0.1 (orange) threshold are shown in
pink. (d) Just 0.05 (pink) and 0.1 (orange) thresholds. Locations missed by the 0.1 (orange) threshold
are shown in pink. Legend for all figures as in (a).

Both the 0.05 and 0.1 thresholds showed both errors of omission and commission,
depending on the location in which they were applied. In a location with large areas
of flood irrigation, the 0.05 threshold identified a number of paddocks as waterbodies,
indicating this threshold is too sensitive in these conditions (Figure A2c). In more arid
areas, where waterbodies rarely reach their maximum extent, the 0.1 threshold was shown
to underrepresent the maximum waterbody extent, picking out only partial polygons
within individual waterbodies (Figure A2d). Given the limitations of both wet frequency
thresholds, a hybrid threshold was chosen, whereby the locations of waterbodies were
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identified using the 0.1 threshold, but the spatial extent of these waterbodies was charac-
terised using the 0.05 threshold. This minimises commissions caused by flood irrigation,
which are not readily captured by the 0.1 wet frequency threshold, but also captures the
larger spatial extent of individual waterbodies afforded by the 0.05 threshold. While we
have chosen a 0.1/0.05 threshold for our purposes, the workflow has been written to allow
the user to define their own single, or hybrid threshold, making it customisable to different
environmental conditions.

Appendix A.3. Step 3: Turn Wet Pixels into Polygons

In order to treat pixels from common waterbodies in the same way, we polygonise the
raster to produce polygons that represent the outlines of wet waterbodies. Once the wet
frequency threshold had been applied to the data, pixels that did not meet this threshold
were set to ‘NaN’ and pixels that were to be included were set to ‘1’. This was done to
ensure that the boundaries of each waterbody were easily discernable prior to converting
them into polygons, to minimise errors caused by the polygonisation process (Figure A3).

Appendix A.4. Step 4: Merge Polygons Artificially Cut by Tile Boundaries

The workflow has been designed to be completed on individual Albers Equal Areas
tiles across Australia as a means to break up the processing into sensible chunks. A tempo-
rary shapefile was written that included all of the identified polygons for each individual
tile. This shapefile was appended to following each tile’s processing. This resulted in
waterbodies that straddle tile boundaries being segmented artificially at the tile boundary.
To correct this, we created a one-pixel buffer around the Albers Equal Area tile grid, iden-
tified any polygons that intersected with this buffer, and merged any selected polygons
that touched.
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Appendix A.5. Step 5: Filter Polygons by Max and Min Size

A size filter was applied to the mapped waterbody polygons that removed polygons
below five Landsat 25 m by 25 m pixels in size (3125 m2). This threshold was set to limit
noise associated with very small waterbodies. As a result of this threshold, small farm
storages and small sections of river have also been excluded from the final product.

The workflow has been designed to allow the user to specify their own size thresholds,
which can be modified depending on the desired outcome.

Appendix A.6. Step 6: Remove Polygons Containing Ocean

A coastline dataset is used to remove waterbodies containing ocean. The user can
choose which coastline dataset to use, depending on whether they would like features like
estuaries included in the final product. Here, we use a coastline based on the Intertidal
Extents Model version 2 (ITEM [65]), which uses Landsat data to generate snapshots
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of the Australian coastline at different tidal heights. We use the highest tide modelled
by ITEM (pixels exposed at highest 80–100% of the observed tidal range (land) [66]) to
represent the high-tide coastline of Australia. In order to remove estuaries and some
inland lakes, we considered any pixel connected to the ocean to be ‘ocean’, and were thus
removed by this mask. The mask has a number of limitations, which result in parts of
tidal river estuaries being mapped as waterbodies. These primarily occur where there
is a discontinuity in the water signal along the river channel, caused by large bridges or
narrowing river channels, for example (Figure A4).
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Appendix A.7. Step 7: Remove Polygons within CBDs

The WOfS dataset has a known limitation, whereby deep shadows caused by high
rise buildings in CBDs are classified as water [19]. This means that our workflow is
defining ‘waterbodies’ around these misclassified shadows in capital cities (Figure A5).
To address this problem, we use the Australian Bureau of Statistics Statistical Area 3 (SA3)
shapefile [67] to define a spatial footprint for Australia’s CBD areas. The SA3 boundaries are
a regional population grouping that contain between 30,000 and 130,000 people, typically
clustered around commercial and transport hubs [68].
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We use the following SA3 statistical areas as our CBD filter: 11703: Sydney Inner
City, 20604: Melbourne City, 30501: Brisbane Inner, 30901: Broadbeach–Burleigh, 30910:
Surfers Paradise, 40101: Adelaide City, 50302, Perth City. The CBDs of other cities, such as
Canberra and Darwin, do not contain enough high-rise buildings to be affected, and so
were not used within this filter.

Appendix A.8. Step 8: Find Polygons within the 5% Wet Frequency Threshold Layer That Intersect
with the 10% Wet Frequency Threshold Layer

The hybrid wet frequency threshold discussed above is applied in this step. Up until
this point, two parallel analyses are being run—the 5% wet frequency threshold and the
10% wet frequency threshold. The filtering steps described in the workflow up until this
point are applied independently to these two differently thresholded products, producing
two outputs. At this point, we perform a spatial join on the two polygon datasets to find
locations where the 10% and 5% threshold overlap. Where a polygon in the 10% wet
frequency output is found to overlap with the 5% wet frequency product, the polygon
from the 5% wet frequency product is kept, and the 10% wet frequency polygon is thrown
away. This means that the locations of the waterbody polygons are defined by the 10%
wet frequency threshold, but the extent of the polygon is defined by the 5% wet frequency
threshold. This produces more spatially extensive polygons, but only in locations that have
been identified with the more conservative threshold.

Appendix A.9. Step 9: Use the Polsby-Popper Test to Identify and Split Very Large Polygons

The final waterbodies shapefile was checked for large river segments using the Polsby–
Popper statistical test [53]. The Polsby–Popper test is an assessment of the ‘compactness’ of
a polygon. This method was originally developed to test the shape of congressional and
state legislative districts, to prevent gerrymandering. The Polsby–Popper test examines the
ratio between the area of a polygon, and the area of a circle equal to the perimeter of that
polygon. The result falls between 0 and 1, with values closer to 1 being assessed as more
compact. We selected all polygons with a Polsby–Popper test value ≤ 0.005 for further
interrogation. This resulted in a subset of 186 polygons (Figure A6).

The 186 polygons were buffered with a −50 m (2 pixel) buffer to separate the polygons
where they are connected by two pixels or less. This allows us to split up these very large
polygons by using natural thinning points. The resulting negatively buffered polygons was
run through the multipart to singlepart tool in QGIS, to give the now separated polygons
unique IDs. These polygons were then buffered with a +50 m buffer to return the polygons to
approximately their original size. These final polygons were used to separate the 186 original
polygons identified above.

The process for dividing up the identified very large polygons varied depending
on the polygon in question. Where large waterbodies (like the Menindee Lakes) were
connected, the buffered polygons were used to determine the cut points in the original
polygons. Where additional breaks were required, the Bureau of Meteorology’s Geofabric
v3.0.5 Beta [61] waterbodies dataset was used as an additional source of information for
breaking up connected segments.

The buffering method didn’t work on long segments of river, which became a series
of disconnected pieces when negatively and positively buffered. Instead, we used a
combination of tributaries and man-made features such as bridges and weirs to segment
these river sections. Where no tributaries existed, large river segments were split using the
Albers Equal Area tile boundaries.
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This method was used to produce an objective flag for waterbodies that may need
to be split to produce smaller and more meaningful waterbody polygons as well as a
semi-objective means for splitting large polygons. As much as was possible, decisions were
hard coded to make them repeatable for future runs of this workflow.

Appendix A.10. Step 10: Generate a Geohash ID for Each Polygon

A unique identifier is required for every polygon to allow it to be referenced. The nam-
ing convention for generating unique IDs here is the Geohash [69]. A Geohash is a geocod-
ing system used to generate short unique identifiers based on latitude/longitude coor-
dinates. It is a short combination of letters and numbers, with the length of the string a
function of the precision of the location. We use the python package ‘python-geohash’
to generate a Geohash unique identifier for each polygon. We use precision = 9 geohash
characters, which represents an on the ground accuracy of <20 m. This ensures that the
precision is high enough to differentiate between waterbodies located next to each other.
Finally, individual polygon areas were recalculated and added as an attribute to the final
waterbody shapefile.

Appendix B. Geofabric Polygon Comparison

This appendix shows the spatial differences between DEA Waterbodies and Geofabric.
Figure A7 shows the Moree test area, which mostly contains farm dams, and Figure A8
shows the Cranbrook test area, which is dominated by salt lakes. The difference polygons
have been smoothed and buffered by 10 m to aid visibility.
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Appendix C. Water Data Online Time Series Comparison

This appendix details the water level and volume gauges used to validate DEA
Waterbodies and the corresponding Spearman ρ values of the comparison.

The Water Data Online service maintained by the Bureau of Meteorology provides vol-
ume and depth measurements for gauges in approximately 360 reservoirs, dams, and weirs
around Australia. We selected a subset of these gauges for validation based on the follow-
ing criteria:

• The gauge needed to have at least 10 years of data.
• Depth and volume measurements needed to be related, i.e., an increase in depth

needed to be associated with an increase in volume.
• Gauges at weirs and locks were removed, since a gauged volume at a weir is not

comparable to a waterbody polygon, and they cannot be meaningfully compared.
• Exceptionally noisy gauge time series were removed. This was determined by man-

ual inspection of each time series. Gauges were removed where there were erro-
neous spikes in data, prolonged data gaps and values that didn’t change over time,
where they could be expected to.

• Gauges that did not correspond to a polygon of a waterbody in DEA Waterbodies
were removed.
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Thus, 139 volume gauges remained, and were compared against the corresponding
DEA Waterbodies polygon time series using the Spearman coefficient (ρ). These correlations
are shown in Table A1.

Table A1. Storage gauges and the ρ values from comparing their time series to DEA Waterbodies.

Gauge ρ

Arthurs Lake—At Pump Station 0.889
Aroona Creek/Dam 0.845

Brogo Dam 0.506
Bronte Lagoon—At Dam 0.713

Burbury Lake—At Crotty Dam 0.442
Burrendong Dam 0.991

Barkers Creek Storage 0.955
Bjelke-Petersen Dam 0.989

Boondooma Dam 0.986
Burdekin Falls Dam 0.948
Cargelligo Storage 0.950

Cluny Lagoon—At Dam 0.358
Cairn Curran Reservoir 0.993

Callide Dam (Intake) 0.997
Canning Wsl—Logger Data 0.934

Canning Wsl-Ranger 0.934
Cascade Ck Dam No. 2 0.364

Churchman Bk Wsl-Ranger 0.900
Clarendon Head Water 0.973

Coolmunda Dam 0.990
Corin Res. At Dam 0.860
Cotter Res. At Dam 0.723
Devilbend Reservoir 0.787

Dartmouth 0.913
Drakes Bk Wsl 0.729

Echo Lake—At Dam 0.665
Eildon 0.989

Eungella Dam 0.923
Fellmongers C At Res 0.887

Fairbairn Dam 0.992
Fred Haigh Dam 0.974

Great Lake—At Poatina Inlet 0.737
Greaves Creek Dam 0.849
Geehi At Geehi Res 0.326

Glen Mervyn Wsl—Logger 0.907
Googong Res At Dam 0.855

Greens Lake 0.968
Guthega Pondage Rl 0.437

Happy Valley Reservoir (Sa Water) 0.702
Harding Dam Water Levels—Site Readings 0.953

Harris Wsl 0.846
Harvey Dam Water Level 0.974

Harvey Dam Water Level-Logger 0.970
Harvey Dam Water Level-Manual 0.975

Jounama Pondage Rl 0.854
Julius Dam Hw 0.661

Keepit Dam 0.998
Kangaroo Creek Reservoir (Sa Water) 0.959

Kerferd Reservoir 0.720
Kinchant Dam Hw 0.864
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Table A1. Cont.

Gauge ρ

Kroombit Dam 0.946
L Pamararoo Copi H 0.943
L Wetherell Tandure 0.962

Lake Cawndilla 0.982
Lal Lal Res. H.G. 0.901

Laughing Jack Lagoon—At Dam 0.879
Lake Awoonga 0.817

Lake Eucumbene Rl 0.955
Lake Mokoan 0.991

Lake Nillahcootie 0.954
Lake Paluma 0.666

Lake Victoria Wl 0.884
Leslie Dam 0.993

Little Para Reservoir (Sa Water) 0.944
Logue Brook Wsl 0.986

Loombah Reservoir 0.369
Mackenzie Lake—At Dam 0.809
Mackintosh Lake—At Dam 0.470

Margaret Lake—At Dam 0.128
Moorabool Wb Res Hg 0.960
Malmsbury Reservoir 0.988

Mccay Storage 0.687
Millbrook Reservoir (Sa Water) 0.880

Moochalabra WSL 0.825
Moochalabra Wsl Logged Dow 0.574
Mt Bold Reservoir (Sa Water) 0.957

Mundaring Wsl-Logger 0.930
Mundaring Wsl-Ranger 0.911

Myponga Reservoir (Sa Water) 0.931
New Victoria Water Level-Ranger 0.930

Nil Gully Reservoir 0.351
North Pine 0.935

Nth Dandalup Wsl—Logger Data 0.968
Pine Tier Lagoon—At Dam 0.692

Paradise Dam 0.925
Peter Faust Dam 0.950

Prospect Reservoir 0.664
Quickup Wsl—Logger 0.768
Rocklands Reservoir 0.986

Ross Dam 0.961
Silvan Reservoir 0.360

Scabby Gully Dam Wsl Logger 0.622
Serpentine Main Dam Wsl—Ranger 0.954

South Para Reservoir (Sa Water) 0.940
St.Clair Lake—at Pump House Point 0.330

Sth Dandalup Wsl-Ranger 0.968
Stirling Wsl—Logger Data 0.856

Thomson Reservoir 0.957
Trevallyn Lake—At Dam 0.389

Talbingo Res—Ro 0.224
Tantangara Dam Rl 0.985

Teemburra Dam 0.712
Upper Coliban Reservoir 0.944
Upper Stony Creek No. 2 0.601
Upper Stony Creek No. 3 0.876
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Table A1. Cont.

Gauge ρ

Upper Stony Creek Reservoirs 0.362
Waranga Basin 0.987

Watts Riv-Maroondah 0.868
Wayatinah Lagoon—At Intake 0.621

Windamere Dam 0.962
Woods Lake—At Dam 0.776
Woronora R. @ Dam 0.824

Waroona Dam Water Level Logger 0.842
Warragamba 0.907

Wartook Reservoir 0.752
White Swan 0.928

Wurdee Boluc Reservoir 0.855
Yarra Riv-Uy Res Hg 0.927
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