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Abstract: Coastal tidal flats are important ecological resources. As the dividing line between marine
and terrestrial ecosystems, tidal flats provide a large number of ecosystem services. However, with
the excessive development of coastal areas, tidal flat resources have been drastically reduced, leading
to the deterioration of coastal ecosystems. There is an urgent need to acquire accurate information
on the changes in tidal flat resources. This research proposes a tidal flat extraction model (RF-W
model) that combines the random forest (RF) method and waterline method, which aims to improve
the accuracy of tidal flat extraction. This method can effectively eliminate the shortcomings of the
RF method in determining the lower boundary of tidal flats and those of the waterline method in
distinguishing river channels and tidal flats. The tidal flat extraction of Qingdao Jiaozhou Bay in 2020
is performed as an example of the model. The results show that the user’s and producer’s accuracies
of the RF-W model were both the highest, indicating that the improved model can accurately extract
tidal flat information. Then, we used the RF-W model to extract tidal flat information for Jiaozhou
Bay in seven periods (1990, 1995, 2000, 2005, 2010, 2015, and 2020) and to study the spatiotemporal
changes in the tidal flats and influencing factors from 1990 to 2020. The tidal flat area of Jiaozhou
Bay showed an overall downward trend before 2015, and the area decreased by 21.9 km2, with a
reduction in the rate of approximately 1.1%/year. After 2015, the tidal flat area rebounded slightly.
The overall change in Jiaozhou Bay showed reclamation and expansion toward the sea. The reduction
in the sand content of the rivers entering the sea, reclamation and cultivation, and land development
were the main factors contributing to the reduction in the tidal flat area in Jiaozhou Bay. In addition,
sea level rise due to climate warming is a long-term potential factor.

Keywords: tidal flats; random forest method; waterline method; Jiaozhou Bay

1. Introduction

Tidal flats refer to the tidal flooding zone between the high tide line and the low tide
line in the coastal zone, and they are mostly distributed in estuaries [1]. As one of the
most widely distributed ecosystems in coastal areas, tidal flats are the boundary between
marine and terrestrial ecosystems and provide many ecosystem service functions [2]. For
example, tidal flats support biodiversity and provide a habitat for a variety of animals
and plants [3]; as a natural barrier for marine and terrestrial ecosystems, they can absorb
multiple pollutants [4] and are an important part of the “blue carbon” ecosystem, playing a
role in carbon sequestration [5]. However, with the rapid development of coastal areas and
the continuous movement of city centers to coastal areas, tidal flats are sharply shrinking,
disrupting the balance of the ecosystem and making tidal flats one of the most vulnerable
areas on the planet. From 1989 to 2014, the area of tidal flats in the northern gulf near the
Mong Cai watershed, Vietnam, decreased by 208 km2 due to human activities and natural
factors [6]. From 1990 to 2017, the area of tidal flats in the Yangtze River Delta decreased by
324 km2 at a rate of approximately 21.7 km2/year [7]. In the past 50 years, the tidal flats
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along the Yellow Sea have been reduced by more than 50%, resulting in increased pollution,
algae blooms, and loss of many animals and plants [8]. Therefore, there is an urgent need
to accurately measure the geographic location and area of undeveloped tidal flats and to
understand the extent and causes of changes in developed tidal flats to protect and adjust
land use planning [9,10].

Due to the poor accessibility of tidal flat regions, field measurement data are scarce.
With the rapid development of remote sensing technology, the richness of remote sensing
datasets, and the diversity of data processing methods, it is possible to accurately extract
tidal flat information [11,12]. Many studies have used edge detection or threshold segmen-
tation to extract water lines and then obtain high tide lines and low tide lines to determine
the tidal flat range and study its temporal and spatial changes [13–15]. For example, Qiu
et al. (2019) used the normalized difference vegetation index (NDVI) combined with a
threshold segmentation method to obtain the water and vegetation lines to extract tidal
flats in the Yangtze River Delta and analyze their changes from 1975 to 2017 [7]. Sagar
et al. (2017) used a large-scale tide model combined with the normalized difference water
index (NDWI) index to survey and map the coastal beaches of Australia [16]. Behling et al.
(2018) used modified NDWI (mNDWI) time-series data to monitor changes in the coastline
and tidal flats of the Gulf of Namibia from 1984 to 2014 [17]. Based on Landsat imagery,
Wang et al. (2018) used the mNDWI and other vegetation indexes (NDVI and the enhanced
vegetation index, EVI) to extract water and vegetation lines, to obtain an annual average
water frequency map to determine the tidal flat range, and to generate a map of the coastal
tidal flat changes in eastern China from 1986 to 2016 [18]. Traditional extraction methods
based on waterlines are affected by tidal conditions, residual surface water, and other
environmental parameters, resulting in inaccurate waterline extraction [13]. Moreover,
because the intertidal zone contains some salt-tolerant vegetation and tidal flat streams,
the waterline method cannot distinguish vegetation from tidal flats well, resulting in a
decrease in the accuracy of tidal flat extraction.

The intertidal zone is completely exposed at low tide, and it is continuously submerged
at high tide. The tidal flat information extracted by remote sensing classification methods,
such as visual interpretation [19], supervised classification [20], and object orientation [21],
represents only the instantaneous state when an image is acquired. This phenomenon
places high requirements on the time and quality of image acquisition, which hinders the
rapid extraction and accurate analysis of tidal flat information. With the rapid development
of machine learning and the continuous improvement in the spatial and temporal resolution
of remote sensing images, an increasing number of studies have appeared in the fields of
automatic feature extraction and image classification. As a machine learning algorithm,
the random forest (RF) classification method can automate the feature extraction process,
reduce work costs, and improve efficiency [10]. For example, Dubeau et al. (2017) used
the RF classification method to classify the Dabs’ wetland in Ethiopia, with an overall
classification accuracy of 94.4% [22]. Gu et al. (2019) used the RF classification method
to extract the information for the Wei-Ku oasis wetland on the edge of the Tarim River,
with an overall accuracy of 90.1% [23]. Hou et al. (2020) used GF-1 images and combined
out-of-bag (OOB) data to perform feature reduction and finally classified alpine wetlands
with an RF classifier, with an overall classification accuracy of 90.1% [24]. Although the RF
classification method has been widely used, the results of tidal flat information extraction
are greatly affected by the tidal conditions at the time of data acquisition, which leads to
shortcomings in the application of this method.

This study combines the advantages of the RF method and the waterline method in
tidal flat extraction and proposes an improved RF-W tidal flat extraction model. First,
multisource remote sensing images are used to extract tidal flat information in the study
area through the RF classification method. Second, the enhanced water boundary index
(EWBI) of each image is calculated, and the waterline is extracted through threshold
segmentation and edge detection of the EWBI information from the image. A digital
shoreline analysis system (DSAS) is used to generate a high tide point set and a low tide
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point set to determine the tidal flat range. Third, the lower boundary of the tidal flats
obtained by the waterline method is used to correct the tidal flat information obtained by
the RF classification method to obtain more accurate tidal flat information. Finally, the
RF-W model proposed in this paper is used to extract the tidal flats in the Qingdao Jiaozhou
Bay coastal zone at 5-year intervals (1990–2020) and to study their temporal and spatial
changes and influencing factors. This research will provide methods and data support for
sustainable management and ecological assessment of coastal zones.

2. Materials and Methods
2.1. Study Area and Data

Jiaozhou Bay is located on the coast of the Yellow Sea on the south coast of China’s
Shandong Peninsula (36◦01′N~36◦15′N, 120◦03′E~120◦25′E). Jiaozhou Bay is the founda-
tion of the formation and development of Qingdao and an important carrier of economic
development; it is known as the “Mother Bay of Qingdao” (Figure 1). The terrain along
Jiaozhou Bay gradually decreases from southeast to northwest, with mountains in the
south and southwest, plains in the north and northwest, and the Laoshan Mountains in
the east. Jiaozhou Bay is a typical semienclosed bay with a total area of 446 km2, of which
the wetland area is approximately 177.6 km2 [25]. More than 10 rivers flow along the coast
of the bay. Among them, the Dagu River, Moshui River, and Baisha River deposit large
amounts of sediment in their estuaries, resulting in abundant tidal flat resources in Jiaozhou
Bay, and these tidal flats are mainly distributed along the northern and northwestern coasts
of Jiaozhou Bay (Figure 1). The tidal flats in this study mainly refer to the intertidal zone,
which is the area between the average high tide level and low tide level of the spring tide.
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Figure 1. Location of the study area and remote sensing image (GF-2).

The remote sensing data used in the research were mainly Sentinel-2 images and
Landsat images. From 1990 to 2020, a total of 102 images were obtained to extract tidal flat
information (Figure 2). Sentinel-2 images (L1C) from the official website of the European
Space Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home; accessed on 12 Septem-
ber 2020) and the United States Geological Survey (USGS) (https://glovis.usgs.gov/app;
accessed on 12 September 2020) cover 13 bands from visible light to shortwave infrared,
with a maximum spatial resolution of 10 m and a revisit period of 5 days. Landsat images
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were obtained from USGS, and the images included those captured by the OLI sensors and
TM sensors. The OLI sensor included 9 multispectral bands and 1 panchromatic band, and
the spatial resolution after fusion can reach 15 m; the TM sensor included 6 multispectral
bands with 30 m spatial resolution and the revisit period was 16 days for both sensors. The
selected images had limited cloud coverage and high quality in the bay region. In addition,
several Chinese GF-2 remote sensing images in 2020 were also included, with a spatial
resolution of up to 1 m, which assisted in the collection of classified samples together with
the high-resolution images in Google Earth.
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The atmospheric correction needs to be performed on the acquired images to obtain
true surface reflectance data. Sentinel-2 (L1C) images were processed by the Sen2Cor-
2.8.0 algorithm [26] published by the ESA and converted into L2A images, and then
the images were resampled to 10 m resolution through SNAP software and converted
into ENVI standard format. The Sen2Cor algorithm was a plug-in released by the ESA
for atmospheric correction of Sentinel series images. The core of the algorithm was the
atmospheric radiation transmission model libRadtran [27]. This model was suitable for
various atmospheric conditions, including the radiation, irradiance, and photochemical
flux of the sun and part of Earth’s spectrum. The Landsat image was corrected by the
FLAASH atmospheric correction model in ENVI [28], and finally, the image to be classified
in the Jiaozhou Bay area was obtained by cropping.

2.2. Technical Process of Tidal Flats Extraction

When the RF classification method was used to extract tidal flats, the low tide lines
were not accurately determined, which affects the accuracy of the extracted tidal flat
information. The waterline method had certain advantages in determining the lower
boundary of tidal flats [29]. This research proposed a tidal flat extraction model (RF-W
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model) that combined the RF method and waterline method to achieve rapid and high-
precision extraction of tidal flats. The specific technical process is shown in Figure 3. (1)
Determine the optimal segmentation parameters of the images to segment the images and
select samples based on field survey data and high-resolution images; (2) build an RF
classification feature database and select suitable features; (3) extract tidal flat information
through the RF algorithm; (4) based on time series data, use the waterline method to extract
the high tide line and low tide line, and finally determine the lower boundary of the tidal
flats; (5) use the lower boundary of the tidal flats determined by the waterline method to
modify the RF classification algorithm to extract the tidal flats and generate a thematic map
of tidal flats. In this technical process, the extraction of tidal flats in Jiaozhou Bay in 2020
was taken as an example to introduce the specific extraction process.
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3. Results
3.1. RF Method Extraction
3.1.1. Image Segmentation

A multiscale algorithm combined with a spectral difference segmentation model
was used to segment the image. The multiscale image segmentation algorithm was a
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region merging segmentation algorithm based on the minimum heterogeneity [30]. When
segmenting, we must first analyze the spectral features and shape features of the objects in
the image, then set the segmentation parameters by a certain proportion according to the
importance of these features, gradually merge the homogeneous pixels from bottom to top,
and reduce the area of heterogeneous regions. Spectral difference segmentation was based
on multiscale segmentation, using the spectral reflectance difference between different
features to optimize the results of multiscale segmentation to achieve the best segmentation
effect [31]. Therefore, when performing image segmentation, the most important aspect is
to find the optimal segmentation scale and segmentation parameters.

This study was based on the estimation of the scale parameter (ESP) plug-in in
eCognition 9.0 software to calculate the optimal segmentation scale of the image to be
classified [32]. This tool can calculate the impact of different segmentation scales on the
local variance (LV) of the image object, expressed as the rate of change in LV (ROC-LV).
When ROC-LV has an extreme value, the segmentation scale corresponding to this point is
the local optimal segmentation scale. Figure 4 shows that there are multiple local optimal
segmentation scales. A segmentation scale that is too small will fragment the tidal flats too
much, and a segmentation scale that is too large will cause other land types to be included
in the tidal flat segmentation results. Therefore, combined with the completeness of the
tidal flat information in the segmentation results, the segmentation scale was set to 90; the
shape factor and the spectral factor were 0.2 and 0.8, respectively; and the smoothness
and compactness were both 0.5 to split the image. After the multiscale segmentation was
completed, the result of spectral difference segmentation was optimized to obtain the final
segmentation result.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 19 
 

 

top, and reduce the area of heterogeneous regions. Spectral difference segmentation was 
based on multiscale segmentation, using the spectral reflectance difference between dif-
ferent features to optimize the results of multiscale segmentation to achieve the best seg-
mentation effect [31]. Therefore, when performing image segmentation, the most im-
portant aspect is to find the optimal segmentation scale and segmentation parameters. 

This study was based on the estimation of the scale parameter (ESP) plug-in in eCog-
nition 9.0 software to calculate the optimal segmentation scale of the image to be classified 
[32]. This tool can calculate the impact of different segmentation scales on the local vari-
ance (LV) of the image object, expressed as the rate of change in LV (ROC-LV). When 
ROC-LV has an extreme value, the segmentation scale corresponding to this point is the 
local optimal segmentation scale. Figure 4 shows that there are multiple local optimal seg-
mentation scales. A segmentation scale that is too small will fragment the tidal flats too 
much, and a segmentation scale that is too large will cause other land types to be included 
in the tidal flat segmentation results. Therefore, combined with the completeness of the 
tidal flat information in the segmentation results, the segmentation scale was set to 90; the 
shape factor and the spectral factor were 0.2 and 0.8, respectively; and the smoothness and 
compactness were both 0.5 to split the image. After the multiscale segmentation was com-
pleted, the result of spectral difference segmentation was optimized to obtain the final 
segmentation result. 

  
Figure 4. Evaluation of segmentation scale. 

3.1.2. Build a Classification Feature Library 
Before performing RF classification, a classification feature database must be con-

structed. To accurately distinguish between water bodies and tidal flats, a series of remote 
sensing indexes were calculated using ENVI 5.3 software to build a classification feature 
database, including the NDWI, automatic water body extraction index (AWElsh) [33], 
high-resolution water index (HRWI) [34], water index based on linear discriminant anal-
ysis (WI2015) [35] and an outcropping tidal flat extraction index (TFEI) [36]. Due to its 
high salt content, salt-tolerant vegetation often grows in tidal flats, and these vegetation 
types can be distinguished by the NDVI. Additionally, the sliding window size was set to 
3*3, the window moving distance was set to 1, and the quantized gray level was set to 8 
to calculate the gray level co-occurrence matrix to obtain 8 texture features of the image. 
The brightness index (BI), greenness index (GI), and wetness index (WI) can be obtained 
through tasseled cap transformation [37,38]. The specific classification features and their 
calculation equation or description are shown in Table 1. 

-0.5

4.5

9.5

14.5

19.5

24.5

R
O
C
-L
V

Scale

Figure 4. Evaluation of segmentation scale.

3.1.2. Build a Classification Feature Library

Before performing RF classification, a classification feature database must be con-
structed. To accurately distinguish between water bodies and tidal flats, a series of remote
sensing indexes were calculated using ENVI 5.3 software to build a classification feature
database, including the NDWI, automatic water body extraction index (AWElsh) [33],
high-resolution water index (HRWI) [34], water index based on linear discriminant analysis
(WI2015) [35] and an outcropping tidal flat extraction index (TFEI) [36]. Due to its high
salt content, salt-tolerant vegetation often grows in tidal flats, and these vegetation types
can be distinguished by the NDVI. Additionally, the sliding window size was set to 3 × 3,
the window moving distance was set to 1, and the quantized gray level was set to 8 to
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calculate the gray level co-occurrence matrix to obtain 8 texture features of the image.
The brightness index (BI), greenness index (GI), and wetness index (WI) can be obtained
through tasseled cap transformation [37,38]. The specific classification features and their
calculation equation or description are shown in Table 1.

Table 1. Classification features and equations.

Feature Name Feature
Abbreviation Calculation Equation or Description

Band Band Band 1~Band 12
Normalized Difference Vegetation Index NDVI NDVI = (NIR− R)/(NIR + R)

Normalized Difference Water Index NDWI NDWI = (NIR−G)/(NIR + G)
Automatic Water Body Extraction Index AWElsh [33] AWElsh = B + 2.5 × G− 1.5 × (NIR + SWIR1)− 0.25 × SWIR2

Water Index Based on Linear Discriminant
Analysis WI2015 [35] WI2015 = 1.7204+ 171× G+ 3× R− 70× NIR− 45× SWIR1− 71× SWIR2

High-Resolution Water Index HRWI [34] HRWI = 6 × G− R− 6.5 × NIR + 0.2

Outcropping Tidal Flat
Extraction Index

TFEI [36]
TFEI1 = NIR/B
TFEI2 = NIR/G
TFEI3 = NIR/R

Brightness Index BI [37,38] Tasseled cap transformation
first component

Greenness Index GI [37,38] Tasseled cap transformation
second component

Wetness Index WI [37,38] Tasseled cap transformation
third component

Gray Level Co-occurrence Matrix GLCM GLCM1~GLCM8

Note: B is the blue band of the images, G is the green band, R is the red band, NIR is the near-infrared band, SWIR1 is the first shortwave
infrared band, and SWIR2 is the second shortwave infrared band.

3.1.3. RF Classification

The RF classification algorithm is a data-driven nonparametric machine learning algo-
rithm composed of multiple classifications and regression tree (CART) decision trees [39].
By sampling a large number of training samples with replacement N times, N training sam-
ple sets were obtained, and m classification features (m ≤M) were randomly selected from
the total features M in each sample set. Then, the nodes of the decision tree were divided
by complete splitting, and N decision trees were constructed. In the prediction stage, after
each tree independently completes the prediction, a vote was made for the category of a
new sample, and the prediction of the new sample was finally completed. Among many
machine learning algorithms, the RF algorithm exhibited fast classification speed and high
accuracy and was insensitive to noise, and suitable for a variety of classification scenarios.

A major advantage of the RF classification algorithm is that it can perform feature
dimensionality reduction, reduce data redundancy, and improve classification efficiency.
During each random sampling process, 1/3 of the data were not selected, and these uns-
elected data were called OOB data. OOB data were used to calculate the feature variable
importance score (VIS). The higher the VIS value is, the greater the contribution of the
feature during classification. For any feature Mr, its VIS value is calculated by Equation (1).

VISMr =
1
N ∑(errB1 − errB2) (1)

errB1 =
P−Q

P
(2)

In Equation (1), errB1 represents the OOB error value calculated using the OOB data
for each decision tree in the RF classification algorithm. errB2 means that for any feature,
with other features remaining unchanged, noise interference was applied to the feature
variable, and the OOB error value was recalculated. In Equation (2), P is the total number
of OOB data, and Q is the number of correct classification results obtained by inputting
OOB data into the random forest classifier.

Figure 5 shows the VIS value calculated from the OOB data for each feature. WI2015
had the largest contribution to the extraction of tidal flat information, with a VIS value
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exceeding 0.05, and the contribution of texture information was the smallest. Using the
forward sequence difference method, each feature was put into the RF classifier for classifi-
cation according to the VIS value, and the overall classification accuracy was calculated,
as shown in Figure 5. With the continuous increase in the number of features, the overall
accuracy (OA) continues to increase, and with the addition of NDVI features, the OA tends
to stabilize (Figure 5). Therefore, considering the time cost, 6 feature variables (WI2015,
SWIR2, SWIR1, NIR/B, WI, and GI) with VIS values exceeding 0.04 and NDVI were selected
as the input features of the RF classification algorithm.
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3.1.4. Field Investigation and Reference Sample Selection

According to the existing land cover research and tidal flat-related research [40],
combined with field investigation and research needs, the land cover types in the study
area were divided into tidal flats and nontidal flats, and the nontidal flats were divided
into land, water, salt-tolerant vegetation, salt pans, and offshore ponds (Table 2). The high-
resolution satellite images from Google Earth and GF-2, as shown in Figure 6, indicated
that all land cover types can be accurately identified. Taking land classification in 2020 as
an example, referring to the high-resolution remote sensing images from Google Earth and
field surveys, 2036 sample points were uniformly selected on the Sentinel-2 images in the
study area—the quantity distribution of each type is shown in Table 2. Sample points were
evenly distributed in the study area, 70% of which were used for classifier training and
30% for accuracy evaluation.
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Table 2. Land cover types and their corresponding sample numbers.

Class Description Number Area

Tidal Flats Tidal Flats A tidal flat located between the
average high and low tide lines 401 19.7%

Non-Tidal Flats

Salt-tolerant
Vegetation

Salt-tolerant vegetation located
on the beach and in the sea 211 10.4%

Breeding Ponds
and Salt Pans

Fish ponds and salt pans
along the coast 102 5.0%

Land Construction land, cultivated land,
woodland and unused land 633 31.1%

Water River and sea 689 33.8%
Total 2036
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3.1.5. Tidal Flat Extraction by the RF Method

The RF classification code was written in PyCharm integrated development environ-
ment based on libraries such as GDAL, Numpy, and Sklearn in Python 3.6. In total, 70%
of the sample points were randomly selected as the training set, and the remaining 30%
were used as the verification set. Since the RF classifier was composed of multiple decision
trees, increasing the number of decision trees can improve the classification accuracy, but
when the number of trees was very large, the computational cost will be high. Therefore,
to improve accuracy and save costs, the number of decision trees was set to 110, and
the number of classification features was set to 7. RF classification was then performed.
Then, the classification results were imported into ENVI 5.3 software for post-classification
processing, merging of adjacent homogeneous areas by cluster analysis, and modifying
the misclassified parts through visual judgment to obtain the final classification informa-
tion for tidal flats and various nontidal flats. Tidal flat information was derived for the
following research on tidal flat extraction, and other nontidal flat information was used for
change analysis.

3.2. Waterline Extraction Method

Due to the influence of tidal conditions, residual surface water, and regional restric-
tions, some traditional edge detection and threshold segmentation methods for extracting
waterlines were less effective in extracting waterlines in Jiaozhou Bay than in other ar-
eas [41–43]. Therefore, this study proposes an EWBI for waterline extraction to minimize
this inaccuracy. As shown in Figure 7, the EWBI index proposed by this research was
compared with the land surface water index (LSWI) and mNDWI indexes, which can better
identify the water body boundary and improve the accuracy of waterline extraction.

EWBI = LSWI −mNDWI + 0.02 (3)

LSWI =
NIR− SWIR1

NIR + SWIR1
(4)
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mNDWI =
G− SWIR1

G + SWIR1
(5)

G is the green band of the remote sensing images, NIR is the near-infrared band, and
SWIR1 is the shortwave infrared band 1.
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First, the EWBI was proposed based on the difference in spectral reflectance between
tidal flats and nontidal flats along Jiaozhou Bay, as shown in Equation (3). This index
can highlight the boundary of the waters along Jiaozhou Bay and yield an accurate in-
stantaneous waterline. Second, the EWBI image was segmented with 0 as the threshold
to generate a binary image of land and water. Then, the Canny operator was used to
detect whether each pixel was an edge pixel to extract the waterline. Finally, the extracted
waterline was revised through visual interpretation. To extract tidal flat information, the
outermost low tide waterline was selected as the lower boundary of the tidal flats, and the
innermost high tide waterline was selected as the upper boundary of the tidal flats [14].

Due to changes in daily tide levels, weather, and other factors, the tidal movement
in the same area may vary, causing different water lines to cross each other. To determine
the accurate tidal flat range, the DSAS plug-in in ArcGIS software was used to generate
a cross-section every 100 m along the coastline of the study area. The intersection of
the cross-section and the waterline was considered the tidal point, which represents the
instantaneous tide level at the time of satellite overpass. The distance between each tide
point and the baseline was calculated for each section. The nearest and farthest points from
the baseline were selected to form a high tide point set and low tide point set, respectively,
and all high tide points and low tide points were connected to determine the annual high
tide line and low tide line. Finally, the upper and lower boundaries of the tidal flats were
determined in this study (Figure 8).
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Fifteen Sentinel-2 images in the study area in 2020 were selected for the tidal flat
waterline extraction experiments. First, the EWBI values were calculated to extract the
waterlines of 15 images through methods such as threshold segmentation, edge detection,
and visual interpretation, and the results are shown in Figure 8a. Second, the DSAS tool
was used to generate a cross-section every 100 m for a total of 990 cross-sections. Each
section generated 15 tide points along the waterline, for a total of 14,850 tide points. The
distance between each tide point and the baseline was calculated in each section, and the
farthest point from the baseline and the nearest point were filtered out, constituting the
high tide point set and low tide point set, as shown in Figure 8b. Finally, all the high
tide points and low tide points were connected to generate the annual high tide line and
low tide line, as shown in Figure 8c. In this way, the area between the final high and
low tide lines in Figure 8c was the tidal flat area of Jiaozhou Bay in 2020 obtained by the
waterline method.

3.3. RF-W Model Extraction

The results of tidal flat extraction through the RF method and the waterline method
showed that the extracted tidal flat range was roughly the same, but there were some
differences in the details (Figure 9a). Compared with the waterline method, the tidal flats
extracted by the RF method were more detailed, allowing the effective distinguishing of
rivers, tidal flats, and creeks and the accurate extraction of tidal flats (Figure 9a(i)). The
waterline method used multiple images to extract low tide point sets to determine the
lower boundary of the tidal flats, which was a more accurate process than the RF method
(Figure 9a(ii)). Therefore, we combined the two methods, adopted the shaping element tool
in ArcGIS, and revised the extraction results of the RF method based on the lower boundary
of the tidal flat extracted by the waterline method. First, select the shaping element tool
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in the editor toolbar to select a point in the extraction result of the RF method, then select
the trace element tool to identify the lower boundary extracted by the waterline method,
and finally, return to the starting point to form a closed curve to obtain the final tidal flats
extraction result (Figure 9b).
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3.4. Accuracy Evaluation

To verify the accuracy of the tidal flat information extracted in this research, a con-
fusion matrix was used for accuracy evaluation [44]. The 30% sample dataset used for
accuracy verification described in Section 3.1.4 was divided into two sets of tidal flats and
nontidal flats, including 120 tidal flat verification points and 480 nontidal flat verification
points. The confusion matrix of the three methods was calculated to obtain the final ex-
traction accuracy, as shown in Tables 3–5. The tables show that both the user’s accuracy
and producer’s accuracy of the RF-W model were the highest, which were 3.3% and 5.3%
higher than those of the RF method alone, and the user’s accuracy and producer’s accuracy
of the waterline method were the lowest. These results indicated that the RF-W model can
effectively improve the accuracy of tidal flat information extraction.

Table 3. RF method confusion matrix.

Tidal Other ∑ Producer’s Accuracy (%)

Tidal 108 19 127 85.0
Other 12 461 473 97.5

∑ 120 480
User’s accuracy (%) 90.0 96.0
Overall accuracy (%) 94.8

Table 4. Waterline method confusion matrix.

Tidal Other ∑ Producer’s Accuracy (%)

Tidal 101 31 132 76.5
Other 19 449 468 95.9

∑ 120 480
User’s accuracy (%) 84.2 93.5
Overall accuracy (%) 91.7
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Table 5. RF-W method confusion matrix.

Tidal Other ∑ Producer’s Accuracy (%)

Tidal 112 12 124 90.3
Other 8 468 476 98.3

∑ 120 480
User’s accuracy (%) 93.3 97.5
Overall accuracy (%) 96.7

4. Discussion
4.1. Overall Changes in Tidal Flats

The RF-W model proposed in this study was used to extract the tidal flats of Jiaozhou
Bay in 1990, 1995, 2000, 2005, 2010, 2015, and 2020 (Figure 10). The tidal flats of Jiaozhou
Bay are mainly distributed along the western, northern, and northeastern coasts of the gulf.
Since 1990, the overall tidal flat area has shown a downward trend (Figure 10h). The tidal
flat area reached the lowest value of 58.8 km2 in 2015, after which there was a rebound,
with the area reaching 60.4 km2 in 2020. The area of tidal flats decreased by 20.3 km2 over
30 years, representing a reduction of 25.2%. The regions with large changes in the tidal
flats are mainly located near the eastern bank of the Moshui River estuary (Figure 10a(i)),
the southern bank of the Dagu River estuary (Figure 10a(ii)), and the southern shore of
Jiaozhou Bay (Figure 10a(iii)). The overall change trend is mainly presented as tidal flat
reclamation and sea expansion.
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1990–1995; (c) 1995–2000; (d) 2000–2005; (e) 2005–2010; (f) 2010–2015; (g) 2015–2020; (h) change in
tidal flat area.

4.2. Tidal Flat Changes in Focus Areas

The area near Banqiaofang on the northeastern shore of Jiaozhou Bay, located to the
east of the Moshui River, is a focus area for land reclamation in Qingdao (Figure 10a(i)).
Beginning in 1995, the coastal area of Banqiaofang began to reclaim the sea area, resulting
in a reduction in tidal flat area by approximately 2.9 km2 (Figure 11a). In 1997, due to the
construction of the Jiaozhou Bay Expressway, the shoreline became straighter and moved



Remote Sens. 2021, 13, 1436 14 of 18

toward the sea by a large margin. Large areas of tidal flats disappeared and turned into
roads and residential areas.
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The southwestern shore of Jiaozhou Bay, located in the area south of the Dagu River,
is adjacent to the western coast of Huangdao and is another focus area for land reclamation
in Qingdao (Figure 10a(ii)). In the past 30 years, Qingdao has made vigorous efforts
to develop Huangdao District, and the original agricultural and fishery economy has
been gradually replaced by sectors such as industry, commerce, and port-related activity.
Large-scale land reclamation and the construction of factories have caused the tidal flat
area to decrease. In 2010, due to large-scale urbanization, the surface water permeability
decreased, and the requirements for flood storage and discharge greatly increased. To meet
the flood storage requirements, tidal flat reclamation was carried out on the northern bank
of the Yanghe River, and the Yuejin River flood control dike was constructed. As shown
in Figure 11b, this dike was basically completed by the end of 2013, reducing the tidal flat
area by approximately 5.3 km2.

The southern bank of Jiaozhou Bay is located in the northeastern sea area of the
community of Xiaoshitou and is also a focus area for reclaiming and building ports
(Figure 10a(iii)). With the establishment of the Qingdao economic and technological de-
velopment zone, Huangdao District’s industry has developed rapidly, and the demand
for ports has increased, resulting in frequent seaport building activities. As shown in
Figure 11c, the reclamation project started in the northeastern sea area of Xiaoshitou in
1992. By 1998, the sea reclamation project was basically completed, and the port construc-
tion project was mostly completed by 2006. The project construction led to a reduction in
tidal flat area by approximately 1.9 km2.

4.3. Analysis of the Causes of Tidal Flat Changes
4.3.1. Direct Cause

Coastal tidal flats are formed by rivers carrying sediment to the sea and nearby coast
via an estuary. The tidal flat area depends on the relationship between sediment deposition
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and the hydrodynamic environment and is also affected by human factors. For Jiaozhou
Bay, the interference of human activities dominates. Jiaozhou Bay is a semiclosed bay with
superior natural conditions and rich fishery resources, providing people with an ideal living
environment. Therefore, the tidal flats in this area are extremely susceptible to interference
by human activities. The estuary of the Jiaozhou Bay River is mainly concentrated in the
Dagu River estuary and Yanghe River Estuary in the northwest, and the Moshui River
estuary and Baisha River estuary in the northeast (Figure 1). The tidal flat area in this region
accounts for 80% of the total area of tidal flats in Jiaozhou Bay. After 2000, the regulation of
the Dagu River, Yanghe River, Moshui River, and Baisha River began to increase. Reservoir
dams were built upstream, and the interception of sediment reduced the sediment flux
from the river to the sea, which affected the evolution of estuary beaches. The regulation of
runoff by dams also affected the evolution of estuary beaches to a certain extent [45,46].

Because of the benefits of fish and salt in the bay and the convenience of boats
providing good development conditions, sea reclamation and land reclamation are also
important factors affecting the changes in the tidal flats of Jiaozhou Bay [47,48]. In the
1990s, with the significant improvement in China’s economic development, the rate of
reclamation in Jiaozhou Bay accelerated, and a large area of tidal flats was used for marine
aquaculture. The area used for marine aquaculture increased rapidly from 11 km2 in 1986
to 33 km2 in 2000, accounting for 40% of the entire reclamation area [49]. Additionally,
transportation also began to develop rapidly: The construction of the highway around
Jiaozhou Bay made the eastern coastline straighter and moved the coastline toward the
sea by a large margin, and a large number of beaches disappeared. With the vigorous
development of Huangdao District after 2000, most reclamation activities in Jiaozhou Bay
were concentrated in the Huangdao Qianwan Port and Free Trade Zone and Xuejiadao
Coastal Shipyard. Ports and industries have become new factors affecting reclamation.
With the promulgation and implementation of the Sea Area Management Measures in
2002, sea area use rights were determined by collecting sea area usage fees, reclamation
activities were restricted by law, and the rate of sea reclamation in Jiaozhou Bay decreased.
Therefore, the human activities along Jiaozhou Bay have had an important impact on the
coastal changes.

4.3.2. Underlying Forces

Government control is also an important factor affecting the changes to the tidal
flats in Jiaozhou Bay. Since Qingdao was listed as one of 14 open coastal cities in 1984,
the government has encouraged economic development in this area, which has led to a
rapid increase in population and has resulted in over-cultivation, weakened upstream soil
fixation capacities, increased soil erosion, and increased river sediment loads. These factors
caused gradual silting at the downstream entrance to the sea and increased the tidal flat
area [50,51]. Additionally, large-scale reclamation activities transformed a large area of tidal
flats into aquaculture ponds, which led to a decrease in the tidal flat area. In September
2014, the Qingdao Municipal Government formally implemented local regulations such as
the “Regulations on the Protection of Jiaozhou Bay of Qingdao City” and implemented
five major projects, including river improvement, dye source improvement, return to the
sea, ecological restoration, and greenway construction around the bay. The construction of
wetland parks and wetland protection areas led to a slight rebound in the tidal flat area of
Jiaozhou Bay after 2015.

In addition, with the warming of the climate and the intensification of the greenhouse
effect, the sea level has gradually risen, which has also become one of the factors affecting
the changes in the tidal flats of Jiaozhou Bay. According to the data from the China Sea
Level Bulletin of the State Oceanic Administration, the sea level in Jiaozhou Bay will
continue to fluctuate and rise, and it is estimated that by 2050, the sea level of Shandong
Province will have risen by 5–19 cm. Due to sea level rise, the beach surface of the silted
bank will gradually become steeper, and the upward convex shape will become larger. The
erosion of the beach surface will gradually slow, and the upward concave shape will tend to
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become straight. The change in the beach surface shape is bound to have an impact on the
development of the beach, resulting in a decrease in the area of the beach [52]. Furthermore,
the weakening of the hydrodynamic force, the reduction in tidal capacity, the reduction in
water exchange and the reduction in seawater carrying capacity due to reclamation will
cause an increase in the tidal flat area [53,54]. Although the influence of these factors is a
long-term and slow process, their potential impacts on the evolution of tidal flats cannot
be ignored.

4.4. The Damage Caused by Tidal Flat Changes

The ever-increasing reclamation activities have directly led to a reduction in tidal
flat resources in Jiaozhou Bay, causing incalculable harm to the coastal environment and
ecosystem. The tidal flats along Jiaozhou Bay are key habitats for fish spawning and
migration, sources of food for migratory birds, and areas of animal and plant growth.
Large-scale reclamation activities have converted a large number of tidal flat wetlands
along Jiaozhou Bay, resulting in a large reduction in the biological species in the tidal flat
wetlands and the endangerment or local disappearance of ecological service functions [55].
On the coast of Jiaozhou Bay, activities such as aquaculture, port docks, and port industries
have increased the discharge of pollutants into the sea, while the reduction in tidal flats has
weakened the self-purification capacity of the sea area. The pollution of the shore water
environment and sedimentary environment has continued to intensify As Jiaozhou Bay is
a semi-closed harbor, this kind of hazard will become more prominent.

5. Conclusions

With the excessive development of coastal areas, tidal flat resources have been contin-
uously reduced, and there is an urgent need to accurately understand their distribution
and the factors driving the change. This study proposes an improved model (RF-W model)
for tidal flat extraction, which combines the RF method and the waterline method, and
carries out model verification through the extraction of tidal flats in Jiaozhou Bay in 2020.
The results show that the accuracy is distinctly better than those of the RF method and
waterline method alone and demonstrate that the RF-W model can be applied for the
extraction of large-scale tidal flat information and further spatiotemporal change analysis.

Information on tidal flats in the Jiaozhou Bay from 1990 to 2020 was extracted by the
RF-W method, and the results showed a downward trend over the past 30 years. The
total tidal flat area decreased by approximately 20 km2, of which the area decreased by
nearly 17 km2 from 1995 to 2010, accounting for 85% of the total decrease. The areas with
large changes were mainly located on the southern bank of the Dagu River estuary and
the areas near the two banks of the Moshui River estuary. The overall change mainly
reflected tidal flat reclamation and expansion toward the sea and changes in the sediment
content of rivers entering the sea. Human activities, such as reclamation, land development,
and government policies, are the main factors affecting the tidal flat changes in Jiaozhou
Bay. Over the long term, glacier melting and sea level rise due to climate warming
and the greenhouse effect, as well as changes in hydrodynamics and tidal absorption
due to reclamation, are also potential factors leading to the changes in the tidal flats in
Jiaozhou Bay.
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