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Abstract: Selective logging in the tropics is a major driver of forest degradation by altering forest
structure and function, including significant losses of aboveground carbon. In this study, we used a
30-year Landsat time series (1985–2015) to analyze forest degradation and carbon emissions due to
selective logging in a Forest Reserve of the Venezuelan Amazon. Our work was conducted in two
phases: the first, by means of a direct method we detected the infrastructure related to logging at the
sub-pixel level, and for the second, we used an indirect approach using buffer areas applied to the
results of the selective logging mapping. Pre- and post-logging forest inventory data, combined with
the mapping analysis were used to quantify the effects of logging on aboveground carbon emissions
for three different sources: hauling, skidding and tree felling. With an overall precision of 0.943, we
demonstrate the potential of this method to efficiently map selective logging and forest degradation
with commission and omission errors of +7.6 ± 4.5 (Mean ± SD %) and −7.5% ± 9.1 respectively. Forest
degradation due to logging directly affected close to 24,480 ha, or about ~1% of the total area of the
Imataca Forest Reserve. On average, with a relatively low harvest intensity of 2.8 ± 1.2 trees ha−1 or
10.5 ± 4.6 m3 ha−1, selective logging was responsible for the emission of 61 ± 21.9 Mg C ha−1. Lack of
reduced impact logging guidelines contributed to pervasive effects reflected in a mean reduction of
~35% of the aboveground carbon compared to unlogged stands. This research contributes to further
improve our understanding of the relationships between selective logging and forest degradation in
tropical managed forests and serves as input for the potential implementation of projects for reducing
emissions from deforestation and forest degradation (REDD+).

Keywords: carbon; climate change; forest degradation; Landsat; REDD+; selective logging; Venezue-
lan Amazon; TerraAmazon; Imataca Forest Reserve

1. Introduction

More than 400 million hectares (ha) of natural tropical forests have been designated
as production forests globally [1–3]. Moreover, about 40% of sawn wood traded annually
in tropical regions has an origin in natural forests [4], often under a “selective logging”
approach in which large trees of a relatively low number of tree species are harvested
in rotation cycles of 30 years on average [2,5,6]. With some exceptions, one of the main
features of selective logging across the tropics has been the insufficient adoption of reduced
impact methods with negative environmental effects on forest structure and function [7,8].

Forest degradation is a change process caused by anthropogenic and/or environ-
mental forces that result in alterations within any given forest, negatively affecting the
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structure and or function of the stand and site, and thereby lowering the capacity to sustain
a continuous supply of products and/or services [9]. Selective logging, a major degrada-
tion driver in tropical forests, may account for at least half of the total carbon emissions
coming from tropical forest degradation, representing ~6% of total tropical greenhouse
gas emissions [10,11]. Logging can cause significant losses in the aboveground carbon
in tropical forests up to 10–50% [12,13], and in some cases can add up to 123% more
forest-area damage above what has been reported for deforestation alone [14]. Moreover,
in tropical regions of Latin America and Asia, selective logging has been responsible for
more than 70% of the area of total forest degradation [15], and is often consider a preamble
to deforestation processes [16–18]. Consequently, in recent years, forest degradation has
become a major topic of discussion within the international scientific community as a
factor of great importance in the global carbon cycle [11,19,20]. This process has been
addressed in the United Nations Framework Convention on Climate Change (UNFCCC)
since the Bali agreement in 2007 (CP. 13), when the concept of reducing emissions from
deforestation (RED) was expanded to REDD+ to include forest management activities [21],
and currently with the so called Nationally Determined Contributions to the UN Paris
Climate Agreement [22].

Venezuela has a long history of natural forest management under long-term concession
contracts that started in the early 1970s [23,24]. By 1992, almost 3.2 million ha were allocated
to more than 30 forest management units (FMUs) and had management plans approved by
the national government [25]. However, a remarkable decline in the use of forests as reliable
sources of timber has been evident in the last 30 years. According to the last available
official data from 2018, only about 2.5% of the wood legally consumed in the country came
from FMUs in an estimated area of 246,313 ha of forests with formal management plans
mostly in the Amazon region of the country [26].

Forests in the Venezuelan Amazon account for at least 83% of the national forest
cover [27]. In this region, forests have been managed via various legal protection schemes,
from strictly protected areas such as national parks to others with sustainable use objectives
as the case of forest reserves, forest lots and forest areas under protection [28,29]. One of
the most important reserves in the region is the Imataca Forest Reserve (IFR), which harbor
important levels of biodiversity [30]. In addition, different studies have estimated that
the region represents one of the most carbon-rich areas in Venezuela with an average of
205 ± 15 Mg C ha−1 in the aboveground biomass (AGB) [31,32]. At the same time, the
IFR is considered a hot spot of deforestation [33] and was recently labelled as one of the
deforestation fronts of the tropical belt [34]. In the last two decades, approximately 1144 ha
of forests have been lost every year due to mining activities (55.5%), land use change for
livestock (26.5%) and agriculture expansion (17.9%) [35]. Yet, from the close to 4 million ha
that IFR covers, about 97% is still covered by different forest-types, mostly dominated by
lowland “terra firme” forests [35].

Selective logging, via legal, yet mostly unplanned conventional timber harvesting
operations was formally authorized in IFR around the 1980’s decade and has become a
major factor of anthropogenic disturbance since then [35]. In a standard logging operation
in this region, large trees with diameters at breast height (dbh) > 40 cm and with an average
height between 20−30 m from a few commercially valuable species are harvested, where
for every tree harvested close to 11 additional trees can be severely affected [36]. Moreover,
without adequate planning, the impacts of these operations can double the background
rates of tree mortality when compared to unlogged stands while also causing a significant
reduction in aboveground carbon [13].

To quantify carbon emissions caused by forest degradation as a result of selective log-
ging, two analytical techniques can be used: the first combines logging rates, management
plans, and high-resolution imagery for activity data (AD) and the gain/loss approach for
emission factors (EFs) [10,37]. The second combines remote detection of medium-resolution
images for AD and an assessment of the changes in carbon stocks for EFs [38,39]. For the
second technique, the AD can be obtained by a direct method, identifying and mapping
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canopy damage [40–45], or by mapping canopy damage in combination with intact forests
and regeneration patches [46,47]. Using an indirect method that implies identifying selec-
tive logging in the images, and the addition of buffer areas via geographic information
system (GIS) tools, the area of degraded forests due to logging can be quantified [18,48,49].
With this method, the intact forest concept and evaluation criteria are applied to catego-
rize intact and non-intact forests, which discriminate against forests with different carbon
stocks [16,46]. The EFs can then be obtained using data collected from field inventories mea-
sured before and after logging, with the general change in the carbon reserves calculated
using the difference between these two measurements [39].

In this study, we propose an analytical approach based on a Landsat time series [40,41,50,51],
developed for the Monitoring System of Deforestation of the Amazon (TerraAmazon) [52].
One of the main goals of our approach is to produce a local-based computing analytical
approach capable of functioning under conditions of limited connectivity. We believe this
to be an important advantage to conduct an assessment of forest degradation produced
by logging in Venezuela’s Imataca Forest Reserve (IFR) for a 30-year period between
1985 and 2015 under different conditions. Overall, because of the general lack of reduced
impact logging guidelines being applied [29], we expected that despite a relatively low
logging intensity typically between 10 to 12 m3 ha−1 [36,53,54], compared to an average of
20 m3 ha−1 for the Amazon [55], carbon losses could be significant. We put our results in
the context of other studies where the effects of logging on carbon have been addressed.

2. Materials and Methods
2.1. Study Area

Imataca Forest Reserve (IFR), located in southeastern Venezuela between Bolívar and
Delta Amacuro states, was officially created in 1961 and has a total area of 3,821,900 ha,
which represents 8.1% of the total area of the Venezuelan Amazon (~46.9 M ha) (Figure 1a).
The reserve has been divided into 23 different management units distributed across three
major zones (north, central, and south) (Figure 1b). 90% of these units with extensions
between 120,000 and 340,000 ha have been designated for permanent forest production,
while the rest is officially allocated for mining activities and/or conservation of biodiversity.
Between 1985 and 2012, about half of the timber-production areas at IFR was managed
under a private concession model where national government granted management rights
after an official management plan was approved with cutting cycles ranging from 25 to
40 years [29]. In recent years, with the enactment of the Forests and Forest Management
Law of 2008, a policy shift began with regards to how forest management should be
planned and applied in Venezuela. Along with government agencies and the newly created
National Forest Company (ENAFOR), guidelines for developing new forest management
plans were put in place to gradually shift from the model of private concessions to a more
government-dominated approach. At present, the company supervises the management for
all production forests in the country and is directly responsible for an active management
operation in the Imataca Forest Reserve.

The IFR has a northeast-southwest pattern in the distribution of precipitation from
1000 mm to 3000 mm per year approximately. The average annual temperature is around
25 and 27 ◦C, evapotranspiration ranges from 1250 mm to 1400 mm per year. Overall, in
this area we find lowland tropical humid forests, seasonal evergreen forests, deciduous
forests and swamp forests. From the standpoint of species diversity around 2800 species of
plants, 450 species of birds, 153 species of mammals, 90 species of reptiles, 62 species of
amphibians and 242 species of fish have been identified [30].
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Figure 1. (a) Relative location of the Imataca Forest Reserve at the national scale and within the
Venezuelan Amazon region); (b) relative location of Unit V within Imataca Forest Reserve’s manage-
ment units; (c) location of the logging compartments used in this study.

The management Unit V located in the central region of IFR was selected as a study
case. The unit has a total area of 180,000 ha and was first granted management rights
to the company Industria Técnica de Maderas C.A (INTECMACA) in 1982. The unit
was originally divided into 25 logging compartments of an approximate equal area each
according to a 25-year cutting cycle. One component of our work is based on pre- and
post-logging inventories conducted at seven of these compartments namely: research plot
I (RP I), research plot II (RP II), experimental development plot (EDP), compartment 1
(C1), compartment 2 (C2), compartment 3 (C3) and compartment 4 (C4). After operations
were halted by the end of 1990’s, the management was later transferred in 2012 to the
Empresa Nacional Forestal (ENAFOR), where two additional compartments were allocated
for timber harvest: Santa Maria I (STM I) and Santa Maria II (STM II) (Figure 1c).

Depending on the characteristics of the overall planning process and the harvest
intensity, selective logging at Unit V can be classified into three types [18]. First, unplanned
conventional logging (CL) was characteristic of RP I, RP II and EDP between 1985 and 1988
without a formal management plan. Secondly, planned managed logging (ML) occurred in
two ways: in the first (ML1), a pre-commercial inventory of trees was carried out, followed
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by a general planning of logging roads and landing sites. These activities were part of a
more detailed management plan in which each compartment should be-in theory-logged
every year. This method was applied in C1, C2, C3 and C4 between 1990 and 1995 [56]. The
second ML method (ML2) is in many ways similar to the ML1 case, especially with regards
to how logging operations were applied. However, a major difference is that planning
was organized at the landscape scale, thus watersheds and small-watersheds were used
as management units. Two additional features that were also unique for this approach
were that, on one hand, commercial trees were spatially mapped to facilitate planning of
logging roads and landings. On the other, the minimum harvest diameter was modified
from a common threshold of 40 cm for all species to dbh > 50 cm for high-wood density
(WD) species, 60 cm for medium WD and 70 cm low WD species. This method was used in
the case of STM I and STM II between 2012 and 2015 [57]. The mean area of each logging
compartment was 2640 ± 848.5 ha (Mean ± SD).

2.2. Landsat Time Series

Fifty (50) Landsat 4, 5, 7 and 8-time series images were used, corresponding to route
233 and row 55 (Table 1). These were obtained from the collection of the US Geological
Survey (http://glovis.usgs.gov/ (accessed on 10 March 2021)), with a processing level L1T.
The time period for these datasets was selected approximately between one and two years
after logging occurred, as rapid canopy closure after disturbance and lower understory
revegetation may inhibit logging detection [41,58,59].

Table 1. General description of the Landsat time series used in this study.

Year Landsat
Sensor

Day and
Month Year Landsat

Sensor
Day and
Month Year Landsat

Sensor
Day and
Month

1986
TM5 28-November

1992
TM4 14-Dec

1996

TM5 20-Sep
TM5 30-December TM5 22-Dec TM5 6-Oct

1987

TM5 26-July

1993

TM5 7-Jan TM5 18-Aug
TM5 12-September TM4 12-Mar TM5 22-Oct
TM5 14-October TM4 5-Apr TM5 9-Dec
TM5 15-November TM5 7-Jun

1997
TM5 22-Aug

1988

TM5 7-April TM5 17-Dec TM5 23-Sep
TM5 10-June

1994
TM5 23-Mar TM5 25-Oct

TM5 12-July TM5 11-Jun 2013 ETM+ 13-Oct
TM5 6-November TM5 14-Aug 2014 ETM+ 29-Aug

1989 TM5 22-December

1995

TM5 27-Apr
2015

ETM+ 4-Jan

1990
TM4 8-February TM5 1-Aug OLI 9-Sep
TM5 23-May TM5 2-Sep

2016
OLI 27-Sep

1991
TM5 16-June TM5 4-Oct OLI 13-Oct
TM5 5-July

1996
TM5 18-Jul

2017
OLI 23-Apr

TM5 25-October TM5 3-Aug OLI 29-Aug
1992 TM4 17-September TM5 5-September

2.3. Field Data

Two independent datasets composed by information collected from temporary and
permanent ground plots were used in support of the analysis:

• The first group was obtained from INTECMACA inventories conducted between 1986
and 1995. Two groups of permanent plots were established in RP II: four plots of
0.5 ha (100 × 50 m) located in unlogged forests and four plots of 2 ha (500 × 40 m)
in logged forests. The data include all living trees with diameters at breast height
(dbh) > 10 cm [13,60].

• The second set of data was obtained from ENAFOR inventories conducted between
2012 and 2015. A group of temporary and permanent plots was systematically estab-
lished in the STM I and STM II logging subunits; a total of 65 plots of 1 ha (1000 × 10 m)
with subplots of 0.01 ha (10 m × 10 m) were measured in the pre- and post-logging

http://glovis.usgs.gov/
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periods [61,62] (Figure A1 in Appendix A). In all cases, a complete taxonomic identifi-
cation was made to every individual to account for species composition and diversity.

In addition, official reports from the logging companies were used to collect data on
the number and size of the harvested trees (diameter, height and species) [63]. Total volume
per tree was estimated using the Smalian scale formula (cm3), so total volume of wood
harvested at the compartment level could be estimated.

2.4. Analytical Approach

Our analytical approach consisted of five different phases as follows: we first mapped
selective logging, followed by a validation process of the resulting maps. The third phase
consisted of the construction and validation of the forest degradation maps, followed by
the estimation of aboveground biomass (AGB) and carbon to close with the estimation of
committed carbon emissions (CCE) (Figure 2).
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2.4.1. Mapping Selective Logging

The TerraAmazon system was used to map selective logging. This system involves a
configuration that includes the creation of a PostgreSQL database, definition of the concep-
tual model, access control, phase control, project and control rules, definition of classes,
definition of the control rules, and the definition of the control area [64]. The Landsat time
series datasets were then exported to generate a linear spectral mixing model (LSMM) for
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each image to be used in the detection of selective logging [14,43,45,48,49]. The LSMM
uses the red (0.63–0.69 µm), near infrared (0.76–0.90 µm) and mid-infrared (1.55–1.75 µm)
bands from Landsat 4, 5, 7 and 8 [44], from which the samples of soil cover, vegetation and
shade can be extracted to estimate the proportions in each pixel and in their respective
images (Equation (1)). The soil fraction image was then used to estimate the area affected
by selective logging [43,44,48,49,65].

ri = a ∗ vegi + b ∗ soili + c ∗ shadowi + ei (1)

where

ri = is the response of the pixel in band i;
a, b, and c = proportions of vegetation, soil, and shade, respectively;
vegei, soili and shadowi = spectral responses of the components of vegetation, soil and shade,
for each band respectively;
ei = is the error in band i.

A cloud mask and cloud shadow were applied to each image of the soil fraction, using
thresholds of the minimum and maximum values of the blue band (0.45–0.51 µm) to detect
shadows and the infrared thermal band (10.60–11.19 µm) to detect clouds [64,66]. Selective
logging was detected by means of a binary classification of areas with and without selective
logging based on the processed images of the soil fraction [44,49]. A value of zero was
assigned to those pixels with soil fractions lower than 37% (i.e., areas without evidence of
selective logging), and a value of one corresponded to the pixels with soil fractions between
37 and 100% (i.e., areas with signs of selective logging). A decision tree algorithm was then
used, for which the 37% limit was statistically defined based on 150 points visually selected
from a processed soil fraction image [49]. Once the binary images were obtained, these
were added to generate the mapping of selective logging.

2.4.2. Validation of the Selective Logging Maps

To determine the quality and degree of agreement between the mapping of selec-
tive logging and field conditions, maps were validated via the comparison with an ex-
ternal source that is considered a realistic representation of the characteristics on the
ground [67–70]. Thus, we applied a systematic sampling approach [50,71] to 36 blocks
of 100 ha (1 km2) [72], which represented approximately 11% of the study area. This
sampling technique allowed us to precisely and quickly estimate the error of the analy-
sis [67,73]. By using a visual on-screen interpretation of a minimum cartographic area of
1 ha in each sampling block [72] we can generate logged and unlogged forest datasets
(Figure A2 in Appendix A). These were considered the ground-truth data and were then
used to analyze the thematic quality of the selective logging map. A confusion matrix was
generated and the errors of omission and commission with the level of global accuracy
were also calculated.

To confirm the logged classification, a spatially non-localized analysis was used
by comparing the proportions of the area in each sample block in the selective logging
map and in the ground-truth data. These proportions were compared via simple linear
regression, with the rationale that if the mapping of selective logging and ground-truth
data were similar, adjustment values would be high and the coefficient (R2), would be
close to 1 [67,74]. This method has been widely used in the mapping of forest fires [75,76],
analyses of land use [74] and deforestation [77].

2.4.3. Construction and Validation of the Forest Degradation Maps

Using an indirect method, mapping of forest degradation was performed for each
logging compartment. In doing so, we estimated the average radius between log landings
in each of the soil fraction images as proposed by Monteiro et al. [48]. In our case, this value
was 600 meters (m), so 300 m was used as a threshold to estimate the approximate area of
forest degradation caused by logging, and a square buffer was applied to the mapping of
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selective logging using GIS tools. Maps of forest degradation were validated by comparing
these with the area logged reported in the management plans, which allowed for the
calculation of commission and omission errors [68].

2.4.4. Estimation of Aboveground Biomass (AGB) and Carbon

Forest inventory data for pre- and post-logging conditions were used to estimate AGB
and carbon, following the approach by the Global Observation of Forest and Land Cover
Dynamics panel (GOFC-GOLD) [46] for the establishment of REDD+ projects. The AGB
per tree in each ground plot was estimated using the pantropical allometric regression
from Chave et al. [78] (Equation (2)). All the estimates were generated for each plot and
the estimations were scaled to 1 ha when necessary. Values of aboveground carbon (Mg C
ha−1) were assumed to be 50% of AGB [79].

(AGB)est = exp
(
−1.803 − 0.976E + 0.976ln(ρ) + 2.673 ln(D)− 0.0299(ln(D))2

)
(2)

where:
AGB = is the aboveground biomass of the individual trees expressed in kilograms

(kg); E = is a water stress factor that shows an important covariance with the diameter-
height ratio in tropical trees and includes information on seasonal temperature (ST) and the
climatic water deficit (CWD). Based on the geographic location of each plot, E and CWD
were derived from a 2.5 arc-minute resolution raster file available at http://chave.ups-tlse.
fr/pantropical_allometry.htm. (accessed on 10 March 2021); ρ = is the density of the wood
in g cm−3, with data assigned for each taxonomic group from the pantropical database of
Zanne et al. [80] and Chave et al. [81]; D = is the diameter of each tree in cm.

2.4.5. Estimation of Committed Carbon Emissions (CCE)

A stock-difference method was used to estimate emissions related to selective logging
following the 2019 refinement of the 2006 IPCC guidelines [39]. In doing this, the following
assumptions were considered:

• To simplify the carbon accounting process, the committed emissions approach was
used, in which all carbon removed is assumed to be emitted at the time of its removal
via logging [37,39].

• Emissions were estimated in each compartment by multiplying the area affected by
degradation (activity data) with the difference of the carbon content in the pre- and
post-logging period (emission factor) [39].

• The different harvesting activities were classified in the selective logging map into: log
landings, caused when the forest is cleared for the purpose of temporary log storage
before final transportation; logging roads, built to transport timber from log landings
to sawmills; and logging gaps, created by tree felling and skid trails, resulting in
damage or death to other standing trees [18,46]. These categories were associated with
the emissions in each compartment to determine the overall emission contribution for
each activity.

• Using the reported values of timber extracted from each compartment, carbon losses
from logging were estimated by calculating the equivalent carbon of the volume of
extracted roundwood, which considered the wood specific density to obtain AGB. A
factor of 0.5 was used to estimate the amount of carbon [79,82].

• To adapt our data categories to the gain and loss method proposed by the IPCC [39] and
used in Pearson et al. [37] and Ellis et al. [10], we linked the data to three main sources of
emissions as follows: (1) roundwood extracted and felling emissions; (2) logging gaps
and skidding emissions; (3) log landings and roads with hauling emissions.

• We express carbon emissions in three ways: (1) emissions per area (Mg ha−1) by divid-
ing all emissions from each compartment using the estimated area of degradation [83];
(2) emissions per volume of harvested roundwood (Mg m−3), dividing all emissions
from logging in each compartment by the total volume extracted [10]; (3) the carbon

http://chave.ups-tlse.fr/pantropical_allometry.htm
http://chave.ups-tlse.fr/pantropical_allometry.htm
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impact factor (CIF) (Mg Mg−1) also called “mean carbon export ratio” [82], represents
the emissions of each compartment relative to the emissions of the total volume of
extracted roundwood.

3. Results
3.1. Accuracy of Maps of Selective Logging and Forest Degradation

The results from the error matrix are presented in terms of area proportions. The row
totals of the error matrix (Sum = 0.113) provide what was represented in the ground-truth
samples in each class and constitutes the total proportion of selective logging. Conversely,
the column totals provide the estimated proportions according to the ground-truth data,
and this was estimated in 0.013 for the logged class. Multiplying this value by the total
number of pixels on the map (i.e., 330,386), the result is 4158 pixels, or approximately 374 ha.
The area of agreement between the mapping of selective logging and the ground-truth
data was 2452 pixels or close to 221 ha. There was an underestimation of 1706 pixels or
around 154 ha that was confused with the unlogged class. On the other hand, the logged
class had the highest user error (commission), with a proportion of 0.146, and a producer
error (omission) of 0.4103 because greater proportions of areas were included and excluded
in this class, respectively (Table 2). The proportion of these errors was observed in nine of
the 36 blocks that were used in the validation, three for the case of ENAFOR and six for
INTECMACA (Figure A3 in Appendix A). The global precision of the selective logging
map was 0.943.

Table 2. The error matrix, omission and commission errors, and overall precision in terms of
estimated area proportion.

Ground Truth (Proportion)

Class Logged Unlogged Total

Logged 0.007 0.001 0.009
Unlogged 0.005 0.099 0.105

Total 0.013 0.101 0.113

Error

Commission 0.146 0.049

Omission 0.410 0.013

Global Precision 0.943

The values of the ground-truth proportions and those of the mapping of selective
logging showed an overall good fit. The proportions presented high similarity, as indicated
by a high value in the coefficient of determination after a simple linear regression (R2 = 0.82)
(Figure A4 in Appendix A). In relation to the area of forest degradation obtained from
the map, this represented approximately 13.6% (24,484 ha) of the entire area of Unit V.
Analyzing this area for each compartment, six had commission errors, ranging from
+1.6% in compartment C2 (71 ha) to +14.7% in compartment RP II (325 ha), while three
compartments had errors of omission, ranging from −0.3% in compartment EDP (5 ha) to
−17.7% in compartment C1 (292 ha) (Figure A5 in Appendix A).

3.2. Mapping Selective Logging at Imataca Forest Reserve

Figure 3 shows the full process to detect and outline selective logging activities for the
case of the EDP compartment (i.e., experimental development plot), logged during the first
three months of 1988.
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Figure 3. Stepwise process for the mapping of selective logging for the case of compartment EDP. Composition 453 (a) which
was used to generate the soil fraction of the linear spectral mixing model (LSMM), a cloud mask (b) was then applied, and
later a decision tree classification was used to obtain a binary image of the logged and unlogged areas (c). This image was
then categorized to analyze the three main logging activities (d).

The total area directly affected by selective logging-related activities was around
2535 ha, from which compartment C2 had the largest area with 539 ha (21.2% of total
area) and compartment C1 the lowest with 89 ha (3.5%), with an overall mean area of
forest degradation of 282 ± 124 ha (±SD). The number of log landings built was, on
average, 2.1 ± 0.6 (±SD) per 100 ha, with a total area of 2926 ± 496 m2 and an area af-
fected by logging of 59 ± 16 m2 ha−1. In terms of the extension of logging roads, we
estimated an average of 16 ± 2.3 m ha−1 in length, and a disturbed area of roads close
to 583 ± 109 m2 ha−1. Finally, the average area affected in logging gaps was estimated at
174 ± 111 m2 ha−1 (Table 3). Spatial patterns of the different areas affected by logging were
highly heterogeneous across all compartments. More regular arrangements, especially
in terms of road building and distribution, seem clearer in the case of the oldest logging
operations (e.g., RP1, RP2, EDP) in contrast with the most recent logged areas (i.e., STM I,
STM II) (Figure 4).
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Table 3. General description of the area disturbed by construction of log landings, roads, and logging gaps in each
compartment by logging approach in Unit V, Imataca Forest Reserve, Venezuela.

Compartments a

Unplanned Conventional
Logging

(CL)

Planned Logging 1
(ML1)

Planned Logging 2
(ML2)

RP I RP II EDP C 1 C 2 C 3 C 4 STM I STM II

Loglandings
Number of log landings

per 100 ha logged 1.7 2.6 2.5 2.1 1.2 1.1 2.7 2.1 2.9

Mean area of log
landings (m2) ± SD

2690
±1183

2317
±935

2825
±1073

2614
±1018

3485
±1774

3650
±1563

3324
±1345

3133
±2139

2297
±925

Log landings area per ha
logged (m2 ha−1) 46.1 59.7 69.4 55.7 41.2 40.4 90.4 64.6 65.8

Logging roads
Length of logging road

per hectare logged
(m ha−1)

14 19 20 13 14 16 17 16 17

Logging road area per
hectare logged

(m2 ha−1)
404 617 769 448 605 642 625 601 533

Logginggaps
Area of gaps per total
area logged (m2 ha−1) 184 278 254 41 378 64 106 153 105

a Compartments: RP I: Research plot I; RP II: Research plot II; EDP: Experimental Development Plot; C1: Compartment 1; C2: compartment
2; C3: Compartment 3; C4: Compartment 4; STM I: Santa Maria I; and STM II: Santa Maria II.

3.3. Analysis of Forest Degradation

The total area of forest degradation caused by selective logging activities was estimated
in 24,484 ha. The average area of forest degradation by compartment was 2720 ± 911 ha
(Mean ± SD), with a maximum value of 3457 ha for compartment C4 and a minimum
of 1360 ha in compartment C1 (Figure 4; Table 4). In total, 65,036 trees were harvested
in all compartments with a total volume of 247,034 m3, for a mean logging intensity of
2.8 ± 1.2 trees ha−1 or 10.5 ± 4.6 m3 ha−1. Average ground area damaged per tree logged
was estimated in 334 ± 121.9 m2, equivalent to 91 ± 41.9 m2 for each cubic meter of timber
harvested. The mean of the total area affected by logging represented 8.2 ± 1.8 % of the
entire degraded area, 0.6 ± 0.2 % of this area corresponded to the construction of log
landings, 5.8 ± 1.1 % to roads, and 1.7 ± 1.1 % to logging gaps (Table 4).

3.4. Aboveground Carbon Density

The values of forest carbon density for pre- and post-logging varied in the different
compartments, with the pre-logging ranging from 268 Mg C ha−1 (C4 compartment) to
312 Mg C ha−1 (C2 compartment), with an average of 308 ± 76 (± SD) Mg C ha−1. After
logging, aboveground carbon density varied from 222 Mg C ha−1 (RP I compartment) to
263 Mg C ha−1 (STM I compartment), with an average of 229 ± 30 (± SD) Mg C ha−1. The
average difference between the two conditions was estimated in 35% (Table 5).
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3.5. Committed Carbon Emissions (CCEs) from Selective Logging

Mean CCEs per volume harvested was 2.9 ± 1.1 (mean ± SD) Mg C m−3, those from
construction of logging roads were 1.9 ± 0.7 Mg C m−3 (64% of all emissions), logging gaps
~0.5 ± 0.4 Mg C m−3 (17% of all emissions), logged roundwood with ~0.3 ± 0.01 Mg C m−3

(10% of all emissions), and those from log landings ~0.2 ± 0.1 Mg C m−3 (9% all emissions).
The maximum value was 4.4 ± 1.1 Mg C m−3 in the EDP compartment, and the minimum
was 1.7 ± 0.4 Mg C m−3 from STM I compartment (Figure 5A). Mean CCEs per area for
all selective logging activities was 64.2 ± 22.2 Mg C ha−1. Logging road construction
accounted for 43.9 ± 13.7 Mg C ha−1 (68% of all emissions), logging gaps represented
11.3 ± 9.2 Mg C ha−1 (18% of total), log landings accounted for 5.9 ± 2.0 Mg C ha−1

(9%), and logged roundwood represented 3.2 ± 1.4 Mg C ha−1 (5% of all emissions). The
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maximum value was estimated at 91.4 ± 24.4 Mg C ha−1 in the compartment RP II, while
the minimum was 23.8 ± 4.1 Mg C ha−1 from the STM I compartment (Figure 5B).

Table 4. General characteristics of the harvesting operations and the area affected in each compartment classified by activity
and logging approach.

Compartments a

Unplanned Logging
(CL)

Planned Logging 1
(ML1)

Planned Logging
2 (ML2)

RP I RP II EDP C 1 C 2 C 3 C 4 STM I STM II

Year of logging 1985 1987 1988 1990 1991 1992 1995 2012 2015
Area of forest degradation (ha) 2099 2525 1995 1360 4480 2892 3457 2571 3105
Total number of trees logged 4000 11,458 5566 6116 10,240 5125 12,249 4345 5937

Total logged volume (m3) 15,433 44,207 13,650 24,566 33,804 25,695 47,073 16,639 25,967
Logging intensity 1 (trees ha−1) 1.9 4.5 2.8 4.5 2.3 1.8 3.5 1.7 1.9
Logging intensity 2 (m3 ha−1) 7.4 17.5 6.8 18.1 7.5 8.9 13.6 6.5 8.4

Log landings (%) 0.5 0.6 0.7 0.6 0.4 0.4 0.9 0.6 0.7
Logging roads (%) 4.0 6.2 7.7 4.5 6.1 6.4 6.3 6.0 5.3
Logging gaps (%) 1.8 2.8 2.5 0.4 3.8 0.6 1.1 1.5 1.0

Total area affected by logging (%) 6.3 9.6 10.9 5.4 10.2 7.5 8.2 8.2 7.0
Ground damage per tree

logged (m2) 333 211 391 121 448 421 232 484 368

Ground damage per m3 of timber
harvested (m2)

86 55 160 30 136 84 60 127 84

a Compartments: RP I: Research plot I; RP II: Research plot II; EDP: Experimental Development Plot; C1: Compartment 1; C2: compartment
2; C3: Compartment 3; C4: Compartment 4; STM I: Santa Maria I; and STM II: Santa Maria II.

Table 5. Density of carbon in the aboveground biomass by logging compartment in pre- and post-
logging and average (including the mean ± standard deviation).

Forest C Density (Mg C ha−1)

Compartments Logging Method Pre-Logging Post-Logging Difference (%)

RP I CL 299 ± 76 222 ± 30 35
RP II CL 300 ± 91 219 ± 23 37
EDP CL 293 ± 76 220 ± 30 34
C 1 ML1 280 ± 29 225 ± 37 24
C 2 ML1 312 ± 76 229 ± 30 36
C 3 ML1 289 ± 7 246 ± 21 17
C 4 ML1 268 ± 29 226 ± 37 18

STM I ML2 283 ± 7 263 ± 21 8
STM II ML2 272 ± 29 224 ± 37 21

Average 308 ± 76 229 ± 30 35

CCEs for all nine compartments were highly variable. The CCEs expressed in terms
of the Carbon Impact Factor (CIF), ranged between a minimum of 5.0 and a maximum
of 13.2 Mg C Mg C−1 for compartments C1 and EDP respectively, and their baseline was
8.6 ± 3.7 Mg C Mg C−1. On a volume basis, CCEs ranged between 1.8 and 4.4 Mg m−3 for
the case of C1, C4, STM I and EDP compartments, and their baseline was 2.9 ± 1.1 Mg m−3.
On an area basis, CCEs ranged between 21.9 and 86.1 Mg ha−1 for STM I and RP II
compartments respectively, and their baseline was 61 ± 22 Mg ha−1. The effect of the
intensity of logging on CCEs was very similar in all three ways of reporting emissions
(Figure 6). In terms of the logging approach, logging intensity values for the EDP and
RP I compartments, where a conventional unplanned (CL) approach was common, were
relatively low (between 6 and 8 m3 ha−1), but the effects on carbon were above the baselines
of the three ways of reporting emissions. In the case of the RP II compartment, logging
intensity was high (17.5 m3 ha−1) but below the CCEs baselines expressed either by
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volume or CIF. Planned selective logging 1 (ML1) used in compartments C1, C3 and C
4 had values below the baseline for all three ways of reporting emissions. However, the
intensities increased from 8.3 m3 ha−1 for compartment C3, 13.6 m3 ha−1 for compartment
C4 and 18.1 m3 ha−1 for compartment C1, while in compartment C2 this intensity was low
(7.5 m3 ha−1) but its CCE values were still the highest. For planned selective logging 2
(ML2) applied in the compartment STM I, all values when reporting emissions were below
the baseline, with an intensity of 5.2 m3 ha−1, while compartment STM II the CCEs values
by volume and CIF were above the baseline with an intensity of 8.4 m3 ha−1 (Figure 6).
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carbon impact factor (CIF) (A), volume of timber extracted (B) and area (C). The purple symbols are compartments with
unplanned conventional logging (CL), the turquoise ones with planned managed logging 1 (ML1) and the yellow with
planned managed logging 2 (ML2). Black dashed line and gray polygons show the trend and 95% confidence intervals of a
linear regression; horizontal gray dashed line show the average emissions considered as a baseline in each case.

4. Discussion
4.1. Potential of the Analytical Approach

In this study we were able to develop a reliable and useful method to analyze selective
logging via a local network using the Amazon Deforestation Monitoring System (TerraA-
mazon), with an architecture developed in a client-server environment, and with a TerraLib



Remote Sens. 2021, 13, 1435 16 of 25

database which uses PostgreSQL as a Database Management System [52]. This analytical
approach allowed us to estimate the area of forest degradation caused by selective logging
with a high level of accuracy that subsequently help estimating the amount of carbon
emissions produced.

Our results show the potential for this method to efficiently map selective logging
automatically as shown in other studies [44,48,49,84,85]. With a relatively high global
precision (GP = 0.943) that is within the range recommended by the GOFC-GOLD [46] for
the development of forest cover monitoring maps, and slightly higher than that reported in
the Brazilian Amazon (0.92) [49], and a high determination coefficient (0.82) that shows a
close fit between the model and real proportions of the logging classes [67,74,77], we believe
this is a promising and powerful tool to study forest degradation in tropical countries with
severe connectivity limitations as the case of Venezuela.

Nonetheless, our study also confirms that detecting and mapping forest degradation
with optical remote sensing data is a complex task, because the pixels that indicate forest
degradation are an intricated mix of different land cover with diverse signals (i.e., vege-
tation, dead trees, bark, tree branches, soil, shadows, etc.) [45]. In addition, evidence of
logging can rapidly disappear in less than two years after logging due to canopy closure and
understory revegetation potentially limiting the overall accuracy of the method [18,41,58].

Mapping of forest degradation caused by selective logging yielded acceptable re-
sults, with average commission and omission errors of +7.6 ± 4.5 % (mean ± SD) and
−7.5% ± 9.1 respectively, well below the uncertainty threshold of ±20% of the estimate for
area [46], and of the results reported for the Brazilian Amazon (18% and 20%) [18] and the
entire Amazon region (12% and 32%) [40].

The use of a relatively simple GIS model where the average of the log yarding radius
was used, as in other studies [48,49], obeys to the fact that the Landsat time series for this
area of the Amazon was not robust enough. Large proportions of clouds and cloud shadows
covering the images [86], and the fairly low number of images available during the 1980s
and 1990s [87] limited the use of spectral indices specialized in forest degradation such as
the Normalized Degradation Fraction Index (NDFI) [18,41] and Continuous Degradation
Detection (CODED) [40], or other more specialized statistical indices such as the Forest
Degradation Index (FDI), based on a Multi Criteria Decision Analysis (MCDA) approach
using the Analytic Hierarchy Process (AHP) technique [88,89]. Indeed, a similar result was
found in a recently study on forest degradation in the Amazon using the NDFI [40], where
forest degradation was marginally detected in our study area, sometimes overlapping with
deforested areas.

The radius of the storage yards used by this indirect method (300 meters) to determine
the buffer areas is slightly lower than in the case of other forest-types with lower densities
of commercial tree species in the central and southern Amazon where 350 m was used as a
threshold [48]. Our number of 300 m is, however, higher than the 180 m buffer zone used
in a study carried out in dense tropical forests in the south-central Amazon [49]. Although
stands of Unit V at IFR are often dense to moderately dense with an average volume of
commercial trees of 33 m3 ha−1 [57], compared to 20 m3 ha−1 for transitional forests [48]
and the 38 m3 ha−1 for dense forests [49], we argue that an intermediate threshold value
can reflect the fact that logging intensity was overall low in this unit of the Imataca Forest
Reserve (IFR).

4.2. Selective Logging Detection

The use of Landsat images with a spatial resolution of 30-m has been a common
approach in other studies analyzing the effects of selective logging [41,45,51,90–92], so
these results are useful to compare the degree of agreement with our estimates. For
instance, the mean mapped size of the log landings in our study area was 2926 ± 496 m2

(mean ± SD), 17% higher than the originally planned area of 2500 m2 (50 × 50 m) [56,61].
Despite this, the mean size mapped is within the range (1–4 pixels) of log landings detection
in the soil fraction image [48], since approximately 3.3 pixels were detected.
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In our study area, log landings were approximately nine times larger than those
reported in southern Brazilian Amazonia (339 ± 31 m2) for reduced impact logging (RIL)
operations. Regarding the number of log landings, we found that for every 100 ha, a
mean of 2.1 ± 0.6 landings was created, equivalent to a disturbed area of 59 ± 16 m2 ha−1.
These estimates largely differ from those reported for RIL in the Brazilian Amazon by
Feldpausch et al. [82], where for every 100 ha, a higher density of log landings was created
(6.2 ± 0.4), but with a much lower area disturbed of 20.8 ± 1.2 m2 ha−1. We interpret
these results as a reflection of the overall poor planning and practical operationalization of
logging activities in the case of IFR in comparison with RIL operations in other parts of
the Amazon.

With regards to the effects of construction of logging roads, the management plans
indicate a maximum width of 10 meters for main roads and 5 meters in the case of secondary
roads plus an extra 10 m portion at each side for shoulder and ditch purposes in both type of
roads [56,61,93,94]. Our mapping analysis shows that the mean length of all roads mapped
was 16 ± 2.3 m ha−1 and the disturbed area was 583 ± 109 m2 ha−1. If we consider
that all the roads were established with an average of 30 m, the equivalent disturbed
area that should have been expected would be around 483 ± 69 m2 ha−1, indicating a
potential overestimation of ~21%. This overestimation can be interpreted as a result of the
inaccuracies in the measurements of these areas due to the effect of the pixel size [18].

The average disturbance of logging gaps indicates a large variability in the total area
disturbed (i.e., 174 ± 111 m2) likely a direct response of the different densities of commercial
trees that can be found in this type of forests and the subsequent effects that felling and
hauling one or more logged trees can have on the overall structure of the unlogged portion
of the forest stands [36,94].

4.3. Relationship between Logging Intensity and Degradation

We found no significant differences between the CL and ML1 harvesting modalities
(3.1 ± 1.3 trees ha−1 and 3.0 ± 1.2 trees ha−1 respectively). However, the ML2 modality was
significantly different (1.8 ± 1.2 trees ha−1), likely a consequence of the increase made to the
minimum harvest diameters (MHD) for this compartment [57]. Overall, logging intensity was
relatively low and similar to other management units in the IFR [53,54]. Compared to other
areas in the Amazon, logging intensity at IFR is lower (e.g., 4.4 trees ha−1—Jackson et al. [95];
4.5 trees ha−1—Johns et al. [96]; 6.4 trees ha−1—Verissimo et al. [97]), which can be explained
by the differences in species composition and the abundance of commercial species among
these areas.

Considering the different approaches of selective logging applied in our study case,
the proportion of aboveground biomass (AGB) affected by logging was 35 ± 1.7% for the
CL modality, below the 60% reported for other conventional logging cases in Amazonian
forests [18,59]. In the case of planned logging, the average AGB damaged was 24 ± 8.5%
for ML1 and 14.5 ± 9.7% for the ML2 case, above and below respectively compared with
an overall 20% reported for this type of logging [18,59]. In general, all three modalities
of logging were within the ranges of effects to living biomass (10–46%) found in other
studies [97–99].

Of the total area of forest degradation (24,484 ha), the mean area affected by selective
logging that was detected by the direct method was 8.2 ± 1.8%, slightly lower than the
10.2 ± 1.2% [100] and 13 ± 4.5 (SD) % [82], reported for the eastern and southern Brazilian
Amazonia respectively, where reduced impact techniques were applied.

Logging disturbances were not homogeneous in each compartment and within the
different types of logging. In some cases, however, by increasing the minimum harvest
diameter (MHD), the logging intensity declined but not the proportion of area disturbed,
such as the case of ML2 where MHDs were stratified by specific wood density. A potential
explanation for these discrepancies can be found in the fact that while a lower number of
trees were harvested, their average size also increased. Thus, without an adequate planning
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for liana removal prior to logging or the sufficient application of directional feeling during
harvesting there is potential for a much larger disturbance effect [101].

4.4. Pre and Post Logging Aboveground Biomass (AGB) and Committed Emissions (CCE)

If the AGB is averaged prior to logging, the value obtained is 308 ± 76.3 Mg ha−1,
which coincides with several studies in humid tropical lowland forests of the Venezuelan
Amazon [12,13,31,32,102]. Logging across all compartments reduced pre-disturbance AGB,
on average, by 35% with higher values found for the unplanned logging approaches as
expected (Table 3; Figure 6). While the characteristics of the logging at each compartment
are unique, it is encouraging to see a lower reduction in carbon losses when selective
logging includes a better preparation. However, it must be noted that a lower damage
is not always a response of better planning. Instead, it can also be a direct response to
the spatial aggregation of commercially valuable timber trees along with topographical
conditions and other biophysical/economic factors that are particular at each site and at the
time when logging occurred (e.g., 1985 vs. 2015). For instance, in a recent review conducted
across the tropics, Putz et al. [101] found that an average of 57% (range 22–97%) of the area
in logging blocks was not directly affected by timber harvests, with more forests being left
intact in areas farther from roads, on slopes >40%, and within 25 m of perennial streams.
In addition, our study, as many others focusing on the impacts of selective logging in the
tropics (e.g., Verissimo et al. [97]; Gerwing, [98]; Veríssimo et al. [99]) is mostly based on
aggregated means of logging intensity, and that often can be a relatively weak reflection of
the conditions on the ground [101].

In our analysis, CCEs both by sources (Figure 5) and those expressed by area, vol-
ume and impact factor (Figure 6) were higher compared to other parts of the tropics
(e.g., [98–100]). This corroborates what has been discussed regarding the intensity and
the logging methods used across these areas of the IFR, highlighting the widespread low
efficiency compared to other cases where reduced impact logging is formally applied.
Although beyond the scope of our work, the absence of formal criteria and indicators for
monitoring forest management practices in Venezuelan managed forests that has been
demonstrated previously [29], our results add new evidence about the inadequate planning
of logging activities, which may further limit the potential of forest management to serve
as a climate change mitigation tool.

5. Conclusions

Compared to other regions of the Amazon basin and the tropics in general, our
research reveals that in the northeastern Venezuelan Amazon, while the overall harvesting
intensity has remained low over long periods of time, the disturbances associated to logging
were considerably high. Selective logging activities showed rather poor planning and low
efficiency, reflected in the fact that, regardless of the metric used (area-based, volume-based
or CIF), carbon emissions were higher than most studies focusing on similar questions.

Digital image processing and GIS techniques used within the TerraAmazon system,
and in conjunction with the 2019 Refinement IPCC Guidelines, enabled us to develop,
for the first time in Venezuela, a low-cost and robust analytical approach to study the
relationships between selective logging, forest degradation and carbon emissions. Our
work also reveals that the use of spectral contrast along with Landsat time series, and
ground-based data are excellent tools for the analysis of forest degradation, the evaluation
of the impact at the canopy level due to the different activities and modalities of selective
logging, and for the estimation of carbon emissions. This study is a step forward to
improve and plan other more detailed analytical techniques (e.g., Lidar-Light Detection and
Ranging) and for establishing a baseline of carbon emissions in the context of sustainable
forest management.
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