## Supplementary Materials



Figure S1. Distribution of Landsat imagery used in this study by satellite and decade.



**Figure S2.** Comparison of TOA reflectance ( $\rho_{\lambda}$ ; **a**,**c**,**e**,**g**,**i**,**k**) and  $R_{\text{rs}}$  (**b**,**d**,**f**,**h**,**j**,**l**) for six randomly selected lakes with Landsat-7 (blue) and Landsat-8 (orange) images one day apart. Chart titles include lake name, latitude/longitude coordinates, and dates of the two images. Note that Landsat-8 includes an extra short-wavelength band.



**Figure S3.** Landsat-8 image (ultrablue band). Green points are pixels properly included in the dataset when filtering with the BQA band and blue points are pixels properly excluded.



**Figure S4.** The residuals from the RF algorithm versus the difference in days from the Secchi measurement. There is no clear pattern in the residuals.



**Figure S5.** Histograms of the (**top**) test and (**bottom**) training set showing similar Scheme 6.4 m) was slightly higher than that of the 'training' set (5.5 m).



Figure S6. Full-range of pseudo-R<sup>2</sup> for 15 tested algorithms for predicting Secchi depth from Landsat imagery.



**Figure S7.** The difference between predictions from the overall models with Landsat-8 and the overall model predictions without Landsat-8.



**Figure S8.** Testing dataset model output for the overall dataset. Panels with a single asterisk ("\*") after the model indicate that there are values that are not displayed because there are negatively predicted Secchi. Panels with two asterisks ("\*\*") indicate that there are values that are not displayed because they are outside of the bounds of the limits displayed here (maximum Secchi depth displayed is 20m).

**Table S1.** The sources for a four-state (Maine, New Hampshire, Vermont, and New York) in-lake Secchi database consisting of six data providers.

| Database Name                                                      | Data Provider                                                | Website                                                                                        | Data Temporal<br>Extent | Access Means            | Version<br>Information     | Accessed Date    |
|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|-------------------------|----------------------------|------------------|
| Maine lakes water<br>quality - Secchi<br>transparency (by<br>date) | Maine Department of<br>Environmental Protec-<br>tion         | http://www.gulfof-<br>maine.org/kb/2.0/rec-<br>ord.html?recor-<br>did=9213                     | 1952–2016               | Public<br>communication | Released<br>10 August 2017 | 11 December 2017 |
| New Hampshire<br>Volunteer Lake<br>Assessment Pro-<br>gram         | New Hampshire De-<br>partment of Environ-<br>mental Services | https://www.des.nh.<br>gov/organization/di-<br>visions/wa-<br>ter/wmb/vlap/in-<br>dex.htm      | 1986–2017               | Personal communication  | N/A                        | 13 December 2017 |
| Vermont Lay<br>Monitoring Pro-<br>gram                             | Vermont Department<br>of Environmental<br>Conservation       | https://anrweb.vt.gov<br>/DEC/_DEC/Lay-<br>Monitoring.aspx                                     | 1979-2017               | Personal communication  | N/A                        | 7 March 2018     |
| New York Citizen<br>Statewide Lake<br>Assessment Pro-<br>gram      | New York Depart-<br>ment of Environmen-<br>tal Conservation  | https://www.dec.ny.<br>gov/chemi-<br>cal/81576.html                                            | 1986–2016               | Personal communication  | N/A                        | 21 December 2017 |
| Lake Champlain<br>Basin Program                                    | Vermont Department<br>of Environmental<br>Conservation       | https://www.lcbp.org<br>/water-environ-<br>ment/data-monitor-<br>ing/monitoring-pro-<br>grams/ | 1992–2016               | Personal communication  | N/A                        | 7 March 2018     |
| Environmental<br>Protection Agency<br>Water Quality Por-<br>tal    | Environmental Protec-<br>tion Agency                         | https://www.water-<br>qualitydata.us/portal                                                    | 1986–2016               | Public<br>communication | N/A                        | 11 December 2017 |

**Table S2.** Further description of published algorithms for predicting Secchi depth from Landsat imagery, as reported by original sources.

| Name                   | Lakes              | Location                | Error       | Atmospheric Processing |
|------------------------|--------------------|-------------------------|-------------|------------------------|
| Allee and Johnson      | oligo-meso-trophic | Arkansas, USA           |             | [122]                  |
| Baban                  | eutrophic          | Norfolk, UK             |             |                        |
| Chipman et al.         |                    | Wisconsin, USA          |             |                        |
| Dekker and Peters 1    | eutrophic          | Utrecht, Netherlands    |             |                        |
| Dekker and Peters 2    | eutrophic          | Utrecht, Netherlands    |             |                        |
| Dominguez Gomez et al. |                    | Madrid, Spain           | RMSE = 0.51 | [123]                  |
| Giardino et al.        | sub-alpine         | Lake Iseo, Italy        | RMSE = 0.45 |                        |
| Kloiber et al.         |                    | Minnesota, USA          | SE = 0.18   |                        |
| Lathrop and Lillesand  |                    | Wisconsin, USA          | SE = 1.05   |                        |
| Lavery et al.          | estuaries          | Perth, Australia        | SE = 0.4    |                        |
| Mancino et al.         |                    | Monticchio Lakes, Italy | RMSE = 0.54 | [124]                  |
| Wu et al.              |                    | Poyang Lake, China      | SE = 0.2    | [124]                  |
| Yip et al.             |                    | Saskatchewan, Canada    | RMSE = 1.01 | DOS, low-pass filter   |

Table S3. Summary statistics for the overall model training and testing data, in meters.

|          | Minimum<br>Secchi Depth | First Quartile<br>Secchi Depth | Median Secchi<br>Depth | Third Quartile<br>Secchi Depth | Maximum<br>Secchi Depth |
|----------|-------------------------|--------------------------------|------------------------|--------------------------------|-------------------------|
| Training | 0.1                     | 4                              | 5.5                    | 7                              | 18.6                    |
| Testing  | 1                       | 5                              | 6.4                    | 7.8                            | 14.4                    |

|                           |                 |                   | Tra                      | ain              |                          |                   |    |                   |                          | Test             |                          |                   |
|---------------------------|-----------------|-------------------|--------------------------|------------------|--------------------------|-------------------|----|-------------------|--------------------------|------------------|--------------------------|-------------------|
| Image<br>Date             | n               | Minimum<br>Secchi | First Quartile<br>Secchi | Median<br>Secchi | Third Quartile<br>Secchi | Maximum<br>Secchi | n  | Minimum<br>Secchi | First Quartile<br>Secchi | Median<br>Secchi | Third Quartile<br>Secchi | Maximum<br>Secchi |
| 12<br>March<br>1993       | 89              | 2                 | 4                        | 5.3              | 6.5                      | 12.2              | 10 | 2.6               | 4.8                      | 5.4              | 6.1                      | 10                |
| 14 July<br>1993           | 79              | 1                 | 4.7                      | 6                | 7.3                      | 12                | 10 | 4.2               | 5.5                      | 6.3              | 7.2                      | 10                |
| 15<br>August<br>1993      | 87              | 0.6               | 4.8                      | 6.5              | 8.2                      | 11.1              | 15 | 2.5               | 6                        | 6.9              | 7.9                      | 10                |
| 4 July<br>1995            | 14<br>1         | 0.2               | 5.1                      | 6.4              | 7.8                      | 16.7              | 8  | 2.9               | 5.2                      | 6                | 6.8                      | 8.5               |
| 6 Sep-<br>tember<br>1995  | 79              | 0.9               | 4.9                      | 6.3              | 7.7                      | 18.2              | 9  | 3.5               | 5.8                      | 6.6              | 7.4                      | 10.7              |
| 22 July<br>1996           | 76              | 1.9               | 4.2                      | 5.3              | 6.4                      | 11.6              | 8  | 3.1               | 3.5                      | 4.8              | 6.1                      | 7.9               |
| 7 Augus<br>1996           | <sup>t</sup> 82 | 2                 | 4                        | 5.2              | 6.4                      | 12.9              | 10 | 4.6               | 4.8                      | 6.2              | 7.5                      | 9                 |
| 26<br>August<br>1997      | 94              | 1.1               | 4.4                      | 5.7              | 6.9                      | 11.8              | 9  | 5.1               | 6.1                      | 6.7              | 7.3                      | 10.9              |
| 13<br>August<br>1998      | 91              | 1                 | 4.7                      | 5.8              | 6.9                      | 12.7              | 11 | 4                 | 4.9                      | 6.8              | 8.7                      | 12.4              |
| 28 May<br>1999            | 80              | 1.4               | 4                        | 5.4              | 6.8                      | 9.3               | 6  | 5.2               | 6.7                      | 7.2              | 7.7                      | 8.8               |
| 13 June<br>1999           | 91              | 1.1               | 4.6                      | 5.6              | 6.6                      | 13.2              | 7  | 4.8               | 6.1                      | 6.4              | 6.7                      | 6.6               |
| 15 July<br>1999           | 93              | 1.4               | 5.2                      | 6.3              | 7.4                      | 13.9              | 13 | 3.8               | 6.3                      | 7.4              | 8.5                      | 9.9               |
| 16<br>August<br>1999      | 87              | 1.4               | 5.4                      | 6.4              | 7.5                      | 10                | 10 | 3.6               | 5.2                      | 6.8              | 8.5                      | 11.5              |
| 1 July<br>2000            | 75              | 1.8               | 5                        | 5.7              | 6.5                      | 12                | 9  | 3.5               | 4.5                      | 5.6              | 6.7                      | 9.3               |
| 26<br>August<br>2000      | 10<br>0         | 1                 | 3.6                      | 5.3              | 7.1                      | 13.1              | 7  | 4.5               | 5                        | 5.7              | 6.4                      | 10.3              |
| 26 June<br>2001           | 98              | 1.7               | 5.1                      | 5.9              | 6.8                      | 12.1              | 9  | 4.2               | 6                        | 6.4              | 6.9                      | 8.5               |
| 21 June<br>2002           | 76              | 2                 | 4.3                      | 5.5              | 6.8                      | 10.6              | 14 | 2.7               | 5.5                      | 6.3              | 7.1                      | 8.3               |
| 29 June<br>2002           | 10<br>4         | 0.9               | 4.2                      | 5.5              | 6.8                      | 10.7              | 7  | 4.9               | 5.9                      | 7.1              | 8.3                      | 9.6               |
| 19<br>August<br>2003      | 85              | 1.1               | 4.3                      | 5.9              | 7.5                      | 11.6              | 5  | 5.2               | 6.7                      | 7.2              | 7.7                      | 8.5               |
| 12 Sep-<br>tember<br>2003 | 79              | 1.1               | 3.2                      | 5.7              | 8.2                      | 13.8              | 10 | 2.7               | 5.7                      | 7.2              | 8.6                      | 12.7              |
| 15 July<br>2005           | 91              | 1.8               | 3.9                      | 5.3              | 6.8                      | 12                | 7  | 3.6               | 6.2                      | 6.9              | 7.6                      | 8.7               |
| 16 June<br>2006           | 96              | 1.4               | 4.7                      | 5.8              | 7                        | 13.2              | 13 | 1.9               | 4.6                      | 6                | 7.4                      | 7.6               |
| 26 July<br>2006           | 99              | 1.2               | 4                        | 5.7              | 7.4                      | 10.7              | 10 | 5.2               | 6.1                      | 6.8              | 7.6                      | 14.3              |
| 11<br>August<br>2006      | 75              | 1.4               | 3.9                      | 5.3              | 6.7                      | 11.5              | 7  | 3                 | 4.6                      | 5.3              | 6.1                      | 6.3               |
| 19 June<br>2007           | 77              | 2.2               | 4                        | 5.3              | 6.5                      | 9.5               | 3  | 4.7               | 5.8                      | 6.2              | 6.5                      | 6.2               |
| 27 June<br>2007           | 78              | 2.2               | 4.8                      | 5.8              | 6.8                      | 10.3              | 5  | 3.7               | 5.1                      | 5.8              | 6.5                      | 6.7               |
| 13 July<br>2007           | 85              | 3                 | 4.9                      | 6.3              | 7.7                      | 10.4              | 15 | 2.6               | 6.9                      | 8                | 9.1                      | 10.3              |
| 14<br>August<br>2007      | 81              | 1.2               | 4.8                      | 6                | 7.2                      | 11.6              | 6  | 6.4               | 6.7                      | 7.7              | 8.7                      | 9.4               |
| 30<br>August<br>2007      | 75              | 1                 | 5.2                      | 6.8              | 8.4                      | 11.2              | 4  | 5.1               | 6.1                      | 7                | 8                        | 8.2               |

Table S4. Summary statistics for the single-date model training and testing data, in meters.

| 21 June<br>2008 82                     | 1.5 | 4.6 | 6   | 7.3 | 12.6 | 7  | 4.3 | 5   | 5.9 | 6.9  | 7.6  |
|----------------------------------------|-----|-----|-----|-----|------|----|-----|-----|-----|------|------|
| 15 July<br>2008 88                     | 2.1 | 5.7 | 6.6 | 7.5 | 12.2 | 7  | 4.8 | 4.9 | 7.2 | 9.5  | 10.8 |
| 24<br>August 10<br>2008 4              | 0.8 | 3.9 | 5.2 | 6.5 | 10.4 | 9  | 5.1 | 5.1 | 7.3 | 9.4  | 12.3 |
| 1 Sep-<br>tember 77<br>2008            | 1.2 | 4.7 | 5.9 | 7.2 | 13.2 | 8  | 5   | 5   | 5.8 | 6.6  | 12.4 |
| 10 July 12<br>2009 8                   | 1.9 | 3.6 | 5   | 6.5 | 12.7 | 19 | 2.7 | 6.7 | 7.4 | 8.1  | 8.8  |
| <sup>3</sup> August <sub>2009</sub> 87 | 1.8 | 4   | 5.4 | 6.7 | 10.3 | 11 | 4.2 | 6.5 | 8.5 | 10.5 | 10.2 |
| 27<br>August 92<br>2009                | 1.4 | 4.1 | 5.5 | 7   | 10.7 | 9  | 3.5 | 4.8 | 6   | 7.2  | 7.9  |
| 4 Sep-<br>tember 91<br>2009            | 1.3 | 3.9 | 5.4 | 6.9 | 14.2 | 7  | 5.1 | 6.7 | 7   | 7.4  | 7.9  |
| 5 July<br>2010 79                      | 1.5 | 5   | 6.5 | 8   | 16.9 | 5  | 6.7 | 7.3 | 7.5 | 7.7  | 7.9  |
| 21 July 77<br>2010 77                  | 1.4 | 5.4 | 6.9 | 8.4 | 14.7 | 5  | 6.8 | 6.8 | 7.2 | 7.7  | 8.8  |
| 14<br>August 91<br>2010                | 1.5 | 5.7 | 6.8 | 7.8 | 14.8 | 9  | 3.8 | 5.1 | 6.4 | 7.8  | 7.2  |
| 30<br>August 4<br>2010                 | 1.2 | 4.4 | 6   | 7.6 | 15.2 | 13 | 2.6 | 5.5 | 7.2 | 9    | 12.3 |
| 16 July 10<br>2011 6                   | 1.3 | 5   | 6.2 | 7.5 | 10.9 | 14 | 2.5 | 5.8 | 6.6 | 7.3  | 8.6  |
| 1 August 10<br>2011 8                  | 1.1 | 5.2 | 6.3 | 7.5 | 10.9 | 8  | 5.3 | 6.9 | 9.1 | 11.4 | 11.6 |
| 17<br>August 12<br>2011 5              | 0.8 | 5.2 | 6.4 | 7.6 | 12.4 | 16 | 2.9 | 5.7 | 7.1 | 8.4  | 9.5  |
| 2 Sep-<br>tember 10<br>2011 4          | 1.5 | 3.1 | 4.8 | 6.5 | 11.9 | 20 | 2.5 | 3.1 | 4.7 | 6.2  | 9.8  |
| 10 July<br>2012 93                     | 1.8 | 5.1 | 6.4 | 7.7 | 13.6 | 10 | 4   | 5.6 | 6.7 | 7.9  | 12.8 |
| 12 Sep-<br>tember 85<br>2012           | 1.2 | 3.6 | 5.1 | 6.6 | 13.8 | 6  | 4.1 | 4.1 | 5   | 6    | 6.9  |
| 22<br>August 80<br>2013                | 1   | 4.8 | 6.3 | 7.8 | 11.2 | 7  | 3.7 | 6.1 | 8.1 | 10   | 10.5 |
| 25<br>August 85<br>2014                | 0.7 | 4.1 | 5.9 | 7.7 | 10.5 | 7  | 5.3 | 6.4 | 8.2 | 10.1 | 11.5 |
| 11 July<br>2015 96                     | 2.6 | 5   | 6.6 | 8.2 | 14.3 | 5  | 6.5 | 8.6 | 9   | 9.4  | 10.6 |
| 28<br>August 94<br>2015                | 1.3 | 5   | 6.8 | 8.5 | 16   | 15 | 4.3 | 4.7 | 7.5 | 10.3 | 13.1 |
| 21 Sep-<br>tember 78<br>2015           | 1.2 | 4.2 | 6.5 | 8.8 | 14.5 | 9  | 3.1 | 4.8 | 7.7 | 10.5 | 12.2 |

**Table S5.** This table reports the Gini-based importance values [113] for the four variables used in the random forest algorithm. Since Gini importance values are relative to one another, this indicates that the four bands used in this algorithm are all fairly balanced in importance in the building of the algorithm.

| Band | Gini-Based Importance |
|------|-----------------------|
| B1   | 38,842.47             |
| B2   | 44,432.64             |
| B3   | 40,320.54             |
| B4   | 36,905.26             |